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ABSTRACT   

Mammography is an influential screening tool for preliminary detection of breast carcinoma. However, 

Interpreting mammograms is exhausting, particularly in the screening context. Moreover, sensitivity of 

mammography based screening is influenced by image quality and the experience level of radiologist. 

Thus, computer-aided diagnosis (CAD) programs can be utilized as a second-opinion tools that enhance 

the performance of radiologists, by consolidating sensitivity rates in contrast with those taken by double 

readings. The current paper is directed towards the integration of image processing and the rule-based 

reasoning into a diagnostic expert system for breast tumors. A proposed system termed IPES (Image 

Processing-enabled Expert System) is developed for the detection of breast malignant tumors, appear in 

mammography in three steps: (1) segmentation of mammographic masses from both pectoral muscle 

region and breast tissues, (2) Characterization of segmented masses upon the standards of Breast 

Imaging Reporting and Data System (BI-RADS) by: (i) shape-relevant features; (ii) margin characteristics; 

and (iii) density features, and (3) diagnosis of mass type upon some inference rules. The data set used 

for testing IPES contained 540 samples obtained from the standard Digital Database for Screening 

Mammography (DDSM). The Receiver Operator Characteristic (ROC) curves have been employed to 

evaluate the sensitivities and specificities of the system. Finally, the results reveal the efficacy of IBES in 

discriminating both malignant and benign breast masses. 

Keywords: Image processing; expert systems; diagnosis of breast masses; mammography. 

1 Background 

Breast carcinoma is a diffuse cancer and the second leading reason for mortality among women [1]. 

Although variety of imaging tools such as Breast Thermography, Magnetic Resonance Imaging, Single 

Photon Emission Computed Tomography, Radiography, and Histopathology [2] have been employed as 

adjunct screening instruments for the high-risk women characterized by epidemiology-based risk 
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models [3], mammography periodic screening is the most clinically accepted imaging modality for 

screening the general population to date [4].  

Mammography interpretation is a labor-intensive job for radiology specialists, who cannot permanently 

supply steady consequences between readings. Moreover, the readings rely on the physician’s training, 

expertise and subjective criteria [5, 6]. According to published statistics, about 10% of all malignant 

tumors in mammograms are missed by radiologists, and most of the missed tumors are in breasts of 

dense tissues [7]. Also, a high false positive rate is caused by mammography. Nearly 525 of 1800 lesions 

sent to biopsy are only malignant [8].  

The causes of those high miss rates and low specificities of mammographic screenings involve: (1) the 

low conspicuity of mammogram lesions, (2) the image noisy nature which is a serious impeding factor 

that prohibits further reading of mammograms and (3) the overlying and underlying structures 

obscuring the image features [9, 10]. Moreover, the biopsies comprise minor hazards and are costly and 

extremely uncomfortable. To obviate dispensable biopsies, the false positive rate has to be minimized 

[5]. 

In this context, double reading of mammography (interpreting the same image by two radiologists) [11] 

was suggested to decrease the missed cancers rate. However, the workload and the expense 

accompanying double reading are high. Alternatively, CAD systems that include Expert systems (ESs) 

have evolved to help one individual radiologist when interpreting mammograms supplying support to 

his/her diagnosis. In addition, CAD systems can be employed as “second-opinion” criteria by 

radiologists, as they can play an efficient part in the preliminary detection of breast carcinoma in a cost-

effective manner [12, 13]. 

ESs may be taken into consideration as a spin-off from artificial intelligence (AI) domain. The prevalent 

objective of AI is to capture and mimic both human decision-making and problem-solving processes, 

thus aiming to make computers deduce more like humans do. The three fundamental components of ES 

are usually distinguished as: a knowledge base (KB) of the domain related expertise, an inference engine 

for making deductions, and a user interface [14]. Consequently, recent advances in AI domain have led 

to the emergence of ESs for distinct medical applications. Furthermore, in the last few decades various 

intelligent tools have been designed to enhance the experiences and capabilities of physicians for 

making decisions concerned with patients. 

In this context, different medical ESs that require a textual form for information input and output have 

been developed. Karabatak and Ince [15] presented an ES for diagnosing breast cancer using: (1) 

association rules, and (2) neural network. The ES diagnostic outputs were based on some required 

textual input information about number of breast cancer visual attributes, for instance, clump thickness, 

cell size uniformity, cell shape uniformity, marginal adhesion, and mitoses. The classification rate of the 

ES was 95.6% 

Garibaldi et al [16] presented a fuzzy inference system for diagnosing breast cancer. The outputs of the 

system were recommendations of treatment upon assessment of five clinical variables: (1) Nottingham 

Prognostic Index (NPI), (2) estrogen receptor status, (3) invasion, (4) age, and (5) lymph node status. 

Results demonstrated that the model significantly raised performance to around 88.1% 

http://www.sciencedirect.com/science/article/pii/S0957417408001103
http://www.sciencedirect.com/science/article/pii/S0957417408001103
http://www.sciencedirect.com/science/article/pii/S1532046411002218
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Saraiva et al. [17] presented a hybrid approach for gastrointestinal cancer diagnosis based: (1) Case-

Based Reasoning (CBR), and (2) Rule-Based Reasoning (RBR). A real patient data were used as inputs to 

the model while the output was the kind of gastrointestinal cancer. The results demonstrated that, with 

the presented approach, the diagnosis accuracy rose by 22.92% when compared with a CBR approach 

not employing RBR in case retrieval. 

There are some observations on the previous studies: there are various medical domains that rely on 

expertise which is non-textual, such as radiology and oncology. Thus, the input information that 

normally present in non-textual form such as the visual attributes of cancer, has to be manipulated and 

transformed to textual form by the user. Consequently, the advices or results provided by the ES rely 

seriously on the efficiency with which the user can process and transform non-textual information. 

Formally speaking, the mapping from non-textual modes to text restricted forms is naturally liable to 

inconsistency, knowledge destruction, or knowledge damage.  

Motivated by the need of an intelligent diagnostic tool for breast tumors that manipulates information 

in non-textual form, in this study, an image processing-enabled expert system termed IPES is designed 

to efficiently detect breast malignant tumors, appear in mammography in three main steps:  (1) 

segmentation of mammographic masses from both pectoral muscle and breast tissues; (2) identification 

of segmented masses by: (i) shape-relevant features, (ii) margin characteristics and (iii) density features; 

and (3) diagnosis of mass type upon some inference rules. 

2 Methodology 

The parts of IPES architecture are shown in Figure 1 and detailed in the following subsections. 

2.1 Segmentation of breast mass 

Breast masses may appear in pectoral muscle or breast tissue. Therefore, an automatic segmentation 

method is proposed for accurately separating mammographic masses from pectoral muscle or breast 

tissues. The proposed method is described as: 

 

Figure 1: System architecture. 

http://dx.doi.org/10.14738/jbemi.36.2346
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Step 1: Mammographic image enhancement  

1. Apply the histogram equalization to greatly adjust mammograms intensities to enhance 

contrast. 

2. Use the algorithm of median filtering for removing noise as follows: 

a. Firstly, consider each pixel in mammogram in turn and inspect its adjacent neighborhood to 

determine if it can represent its surroundings.  

b. Secondly, substitute the pixel value with the neighborhood pixel values median, where the 

median is obtained by first sorting all the surrounding neighboring pixels into numerical 

arrangement and then substituting the pixel being taken into account with the middle pixel 

value.  

This step makes the brightness divergence between the mass and its surrounding tissue extremely 

apparent, simplifying the essential mass segmentation. 

Step 2: Breast region extraction 

The purpose of this step is to perfectly segment the breast region from the background of the image as 

follows.  

1. A connected components labeling is employed as described further below: 

a. The image is scanned and the underlying pixels are labeled in line with a predefined 

connectivity scheme and the relative values of their nearby neighbors. A 4-by-4 connected 

neighborhood is used to label the breast region object. 

b. Morphological breast region opening and closing operations are then used with the aim of 

removing small artifacts in the image and smoothing the region contour. 

Step 3: Pectoral muscle segmentation 

For mammographic images, the region of pectoral muscle has a high density that leads to a strong 

margin approximated by a straight line. In this step, the region growing (RG) method and the 

morphological closing operation are used to extract the pectoral muscle from the breast region as 

follows.  

1. For growing from the seed points, seed points and predetermined criteria are required for the 

step of RG. 

a. Seed point selection: The RG begins with a number of the greatest pixel values pecked out 

from the pectoral muscle region to group adjoining pixels with homogeneous pixel values. 

b. Region growing: Homogeneous pixels are iteratively collected until the RG rate goes beyond 

a predefined threshold t  at this step. t  is set as 0.5, taken from preliminary experiments, 

where different threshold values were used to test the selected data set. Consequently, the 

RG will be discontinued when the growing region area goes beyond 0.5 of the grouped 

region area. The resulting region is a breast pectoral muscle. 

c. A morphological closing is then used to allocate a full contour of the pectoral muscle. This 

operation preserves the masses adjacent to the edge of this region.   
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Step 4: Mammographic mass segmentation 

To initialize mass segmentation from pectoral muscle or breast tissues, two properties found in 

mammographic masses are used: (1) mass internal pixels are the brightest points in the mammograms; 

and (2) inner pixels display visually continuous variation. Thus, iterative thresholding followed by 

connectivity analysis are used in current step: 

1. Suppose that 
j

S  is the segmentation threshold. To pick out a new threshold, 
j

S  is applied to 

each image to categorize pixels into one of two groups: mass or non-mass. Let 
0

  and 
n

  be 

the gray level means of the two groups, respectively, after segmentation with 
j

S . Afterwards, 

the new threshold for 1j  step  will become: 

  
)(

2

1

nbj
S                                                                                    (1) 

where this iterative procedure goes on until the threshold is converged, moreover, the 

threshold computed for one mammogram cannot be considered for all images since the grey 

level variation of each mammogram is quite different, thus, the variation in grey levels is taken 

using histograms. 

2. Perform the connectivity analysis of the thresholded images. The connected objects found in 

each breast or pectoral muscle image are counted and labeled. The largest components 

representing the breast and pectoral muscle masses are only detected.  

Step 5: Reconstruction of mammographic mass margin 

Because segmentation influences characterizing shapes and margins of masses, the morphological 

dilation is used for enhancing objects sizes. Consequently, the segmented masses will preserve both 

original shapes and marginal information. Eventually, the outcome of this step is intended to facilitate 

further mass analysis. The steps of tumor segmentation from both breast tissues and pectoral muscle 

are illustrated in Figures 2 and 3, respectively. 

 

Figure 2: Steps of mass segmentation from breast tissue: (a) original mammographic image with a lobulated 
mass shape and microlobulated margin, (b) image enhancement, (c) breast region extraction, (d) pectoral 

muscle segmentation, (e) mass segmentation, and (f) reconstruction of mass margin. 

http://dx.doi.org/10.14738/jbemi.36.2346
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Figure 3: Steps of mass segmentation from pectoral muscle: (a) original mammographic image, (b) image 
enhancement, (c) breast region extraction, (d) pectoral muscle segmentation, (e) mass segmentation, and (f) 

reconstruction of mass margin. 

2.2 Analysis of breast mass 

Mammographic mass is characterized based on BI-RADS standards [18] by three characteristics are: (1) 

shape, (2) margin and (3) density, as demonstrated in Figure 4. These characteristics are utilized to 

decide if the mass is probably being benign or malignant.  

2.2.1 Mass shape  

Mass shape naturally implies an essential medical property. Zernike moments (ZMs) have been adduced 

to be an efficient descriptor for characterizing mass shape in [19]. Different Zernike polynomials (ZPs) 

and their corresponding physical meanings have been reported in [20]. In this paper, a combination of 

ZMs and five more geometric features are used to characterize the segmented mass shape. 

For Cartesian coordinate system, computation of ZMs for a continuous image function  ),( zqF  is given 

by Eq. 2 [21]. 

dqdzzq

zq

ho
VzqF

h

ho
A ),(

1
22

),(
1









                                                      (2) 

where h  and o  denote order and repetition, respectively. The order h  is a non-negative integer, the 

repetition o  is an integer satisfying oh   = an even number and ho  . 

ho
V  refers to the Zernike basis 

function complex conjugate ),( zq
ho

V  defined over the unit disk by [22]: 

lo
ePhoDzqhoV )(),(                                                                                              (3)                                                                   
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Figure 4: Characteristics of mammographic masses used in this paper based BI-RADS standards. 
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where l

 

is the imaginary unit 1 . Radial Zernike polynomial hoD  is calculated using Eq. 5 [23]. 
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Since the ZMs represent the projection of image ),( zqF onto those orthogonal basis functions, the 

image 0I  can be divided into a weighted sum of ZPs using Eq. 6 [24]: 

  







1

,
h

h

ho hoVhoAzqF ,                                                                              (6) 

where ohI ,  indicates the ZMs, that constitute the coefficients of the ZPs.  

The first 4-order ZMs (produce a total of 15 ZMs), extracted in this paper, and five more features that 

measure the geometric attributes of the segmented masse are combined to obtain a robust final feature 

vector (Table 1).  The selected geometric features are illustrated as follows: 

 Area: The area specifies the size of the mammographic mass, which is expressed using Eq. 22, 

where R  indicates the set of pixels points inside the mass. 

 Perimeter: Suppose that 
Nss ,...,1

 denote the pixels locations on the mass contour. 

Mathematically, the perimeter feature represents the sum of distances between neighboring 

pixels, which is calculated using Eq. 23. 
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Table 1.  The Zernike polynomials and geometric features used to characterize mass shape. 

 

            a  is the angle with y axis
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 Compactness: Describes the contour complexity versus enclosed region, where   and   are the 

mass perimeter and area respectively, as demonstrated in Eq. 24. 

 Circularity: The circularity   indicates how circular a certain mass is and is defined using Eq. 25, 

where   is the convex hull perimeter. 

 Eccentricity: Is a measure of the mass lengthiness as illustrated in Eq. 26, where   is a symmetric 

matrix,   is the mass pixels number,   and   point out to the generic pixel coordinates,   and   

indicate the mass geometric center coordinates. If   and   represent the eigenvalue of  , in the 

mass region elliptical approximation, the semi-axis values will be determined using Eq. 27, the 

eccentricity is then calculated using Eq. 28. Values close to 1 refer to circular masses, whereas 

values close to zero indicate more stretched masses. 

2.2.2 Mass margin 

In this paper, the steps of extracting the mass margin features are described as:  

 Step 1: Segment the outer boundary of the mass object using Canny edge detector. 

 Step 2: Reduce the width of the mass boundary to one pixel using the edge detector of Susan 

thinning [25]. For each segmented mass, the pixel is measured and considered border pixel if 

any one of its neighboring pixels is white. Initially, all the pixels are considered as border chains. 

Afterwards, the pixels for each chain are eliminated in such a way that these eliminated pixels 

do not affect the border connectedness. After all, a mass with one-pixel contour is produced. 

 Step 3: Segment the inner shape of the mass object using the erosion morphological operation 

to reduce the object size. 

 Step 4: Compute the mass variation and sharpness degrees [26] according to Eq. 29 

innera

outerc
v  , 

                                                       innerb

outerb
s  ,                                                                             (29) 

where v  is the mass variation degree, s  is the mass sharpness degree, outerc  is the number of light 

pixels points in the mass outer border, innera  is the area of the mass inner shape, outerb  is the 

variation in the outer boundary's brightness and innerb  is the variation in the inner shape's brightness. 

2.2.3 Mass density 

This paper presents proposed method for mass density characterization by grouping the pixels inside 

the mass according to their appearance, as follows:  

 Step 1: Compute the Wavelet packet transform of an BR  discrete image Z of a segmented 

tumor up to level 1L ))
2

log,
2

(logmin( BRL , where the image is actually decomposed into 

1-approximation and 3-detail images, using two filters are low-pass H  and high-pass G , then 

the resulted image are decomposed into a second-level approximated and detailed images, 

furthermore, the process is repeatedly implemented until the third level, as follows: 
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where 
0

),(,0 us
E  is the image Z . At each stage, the image 

l

c
E   is divided into four quarter-size 

images
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c
E , further, the Daubechies wavelet of order 8 (db8) is used to 

implement this computing. 

 Step 2: Broke each terminal node of the decomposition tree into k  windows/regions of 33  

neighborhood. For each region, a center-symmetric local binary patterns (CS-LBP) is computed 

as follows: 

,2
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where cy  and )2(Ycy   are the intense values of the center-symmetric pairs of points of Y  equally 

distanced pixels on a radius circle D , S  is the value employed to threshold the gray-level differences, 

whereas, experiments showed that 8, 1, 0.02 are efficient values for the parameters Y , D , and S , 

respectively. 

 Step 3: Concatenate the CS-LBP based features corresponding to the k  neighborhood regions of 

the terminal nodes, to form the final descriptor that characterizes the tissue appearance of the 

mass. 

 Step 4: Group the pixels inside the mass according to their appearance using the fuzzy c-means 

(FCM). The result of this step is the division of the mass into two separate categories: (1) fatty 

tissue and (2) dense tissue. The FCM aims to find fuzzy partitioning for the given mass descriptor 

through minimization of the objective functional as follows: 

egD
f

e

n

g

i
egZVQiJ 



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
1 1

)();;(  ,                                                              (35) 

where ].,..,2,1[ nqqqQ   represents a set of n  local patterns, gq  is the gth pattern Q , 

fcnIegV  ][  is the matrix of fuzzy  partition of Q , ].,..,2,1[ fzzzZ  contains f number of cluster 

prototypes vectors )1,( feezez  , 
2

e
Z

g
Q

eg
D   (Euclidean norm) indicates the dissimilarity 

measure among the sample gq  and each cluster center, further, the cluster center is computed using 
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where eg  is the grade of belonging of a pattern gq  to each cluster, that is defined as 

1

2

1

1





















 if

j jg
d

eg
d

eg ,                                                                       (37) 

where   and   is a parameter, which controls the algorithm fuzziness. Moreover, the following two 

constraints have to be achieved during optimization of the functional  : (1)   and (2). 

 Step 5: Extract the mean statistic from all clusters in order to describe both fatty and dense 

regions, which are related to the clusters morphology. Furthermore, the grey level mean of each 

cluster is then employed to accomplish a ranking of cluster densities: a higher mean correlates 

with a higher likelihood of being a cluster with a dense tissue. 

 Step 6: Use the resulting vector of clusters densities ranking to train density type KB. 

2.3 Knowledge bases construction 

In terms of ESs, the knowledge acquired from knowledge source is represented in KB by production 

rules of the form: 

conclusionresultedconditiongiven  THENIF
 

Thus, the knowledge extracted from segmented masses about their shapes, margins, and densities is 

respectively stored in the shape style KB, margin style KB, and the density type KB. An example of some 

production rules that describe mass shape analysis is provided in Figure 5.  

 

IF the following pattern is present in the segmented mass image  

 
THEN the mass pathological characteristic is lobular-shaped 

END IF 

IF the following pattern is present in the segmented mass image  

 
THEN the mass pathological characteristic is irregular-shaped 

END IF 

Figure 5: Some sample production rules in IPES shape style KB. 
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Therefore, the fact bases of shape style, margin style, and the density type include the data taken by 

mass analysis algorithms. Inferred knowledge is dynamically inserted through the inferring processes. 

Likewise, rules are used to accomplish the characterization of the objects to be classified. In other 

words, the rules relate the parameters taken by mass analysis algorithms to the diagnosis. Besides, they 

operate on different criteria as the object morphologic characteristics, the occurrence of particular 

patterns in the analyzed mass, or comparing any object under detection with other reference objects. 

Furthermore, the textual knowledge acquired from BI-RADS about different combinations of mass 

shapes, margins, densities, was respectively represented in a corresponding KB. For instance, the 

interaction of shape and margin characteristics with each other through the mass development course 

may have various likelihood degrees of benignancy or malignancy. Round, oval and lobular-shaped 

masses have an obvious smooth edges which are commonly diagnosed as benign signs, nevertheless 

they are still potentially to be malignant if their margins are not smooth. Also, irregular-shaped masses 

predominantly appear with indistinct or speculated margins, which are significant evidences of 

malignancy. An example of some production rules that represent the combinations of the mass three 

pathological characteristics in the textual KB is presented in Figure 6. The outline of KBs in this paper 

was defined by CLIPS commands. Figure 7 demonstrates the representation of some rules in the textual 

KB using CLIPS.  

2.4 Inference engines development 

This stage involves the adoption of an inference strategy for the task of rule analysis. IPES uses the 

forward chaining (data-driven reasoning) as its inference mechanism. Thus the chaining begins with 

known data and proceeds toward a conclusion. In testing phase, the query image is matched with the 

shape style, margin style, and density type KBs, respectively, using the corresponding inference engines. 

Afterwards, IPES takes the inference results obtained from those matching processes to perform a final 

reasoning operation on the information stored in the textual KB, in order to reach appropriate 

conclusion about the mass likelihood degree of being benign or malignant. 

2.5 User interface 

Image of a suspicious mammogram can be immediately read and interpreted through IPES user 

interface. Once a suspicious image is selected, the mammographic mass is segmented, analyzed and 

diagnosed. Consequently, IPES interactively displays the diagnosis results which involve the shape style, 

margin style, density type, pathology type, the region that mass appears within, and number of 

abnormalities. 
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IF the mass is irregular-shaped 
AND 
The mass margin is speculated 
AND 
The mass density is dense 
THEN 
The diagnosis indicates malignant tumor 
END IF 
IF the mass is lobular-shaped 
AND 
The mass margin is circumscribed 
AND 
The mass density is fatty 
THEN 
The diagnosis indicates benign tumor 
END IF 

Figure 6: Some sample production rules in IPES textual KB. 

 

Figure 7: Some production rules with CLIPS that represent the combinations of the mass three pathological 
characteristics in the textual KB. 

3 Experimental Results 

3.1 Database 

The mammograms used in this study were taken from the standard DDSM [25]. This database contains 

2620 cases, organized in 43 volumes. Furthermore, the case of one patient is a set of mammograms 

corresponding to one mammography population. The database presents chain codes of the suspected 

regions and each abnormality metadata according to BI-RADS standards.  

The data set selected for testing IPES contained 540 samples. Table 2 illustrates the classes of 

pathological characteristics, the class number and percentage of images. These classes were chosen 

according to two criteria: (1) available image amount, (2) existence of pathological characteristics used 

for testing, and (3) exclusion of images that do not contain pectoral muscle. 
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Table 2.  The ground truth of mammographic masses used to evaluate IPES performance 

 

3.2 Evaluation criteria 

The performance of IPES was evaluated by comparing its outputs to the diagnostic information provided 

by DDSM and realized by the authors. The performance of each reasoning test was characterized in 

terms of the capability of the system to differentiate true positives while declining false positives. The 

following two equations were used to compute the rates of both true positive and false positive, 

indicated by TPR and FPR, respectively.  

TPNFNN

TPN
TPR


                                                                                         (38) 

FPNTNN

FPN
FPR


                                                                                         (39) 

where the number of the true positive, false negative, false positive, and true negative test results, 

indicated by TPN, FNN , FPN, and TNN respectively. On the other hand, the sensitivity and specificity 

measures were also used, which are defined by Eqs. 40 and 41, respectively: 

TPNFNN

TPN
TPR(ST)ySensitivit


                                                                      (40) 

FPNTNN

TNN
FPR1(SF)ySpecificit


 .                                                                 (41) 

Furthermore, the ROC curves were used to illustrate the connection between both TPR (sensitivity) and 

FPR (1-specificity) across all potential cutoff values that depict the test positivity. The area under curve 

(AUC) demonstrates a measure of the classifier discrimination capability across a whole range of cutoffs 

[26]. 
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3.3 Protocol 

IPES operates in two fundamental steps: (1) training, and (2) testing. The "leave-one-out" method was 

employed to test the system performance. The images were divided into 10 groups, each time nine 

groups were taken for IPES training and the rest (leave-one-out) for the reasoning test. 

3.4 Discussion 

For the shape-based reasoning, four distinct shape classes indicated by round (59), oval (144), lobulated 

(137), and irregular (200), were used. Figure 8a presents the ROC curve obtained with this reasoning test 

( 981.0AUC , 7.98SE , %100SP ). Reasoning results verify the efficiency of the shape analysis method 

for discriminating both regular and irregular-shaped masses. 

Five classes of margins, including: ill-defined (148), speculated (125), obscured (114), circumscribed 

(129), and microlobulated (24), were used for margin-based reasoning. Figure 8b presents the ROC 

curve obtained with the proposed margin feature extraction method ( 982.0AUC , 98.5ST , 

100%SF ). The results indicate that masses with circumscribed and microlobulated margins can be 

effectively discriminated rather than the other three types.  

Two types of breast tissue, including: fatty (246) and dense (294), were used for density-based 

reasoning. Figure 8c illustrates the ROC curve obtained with the proposed density analysis method 

( 979.0AUC , 98.4ST , 100%SF ). Reasoning results reveal that, this method is efficient for both fatty 

and dense mammographic masses. 

Finally, after the tested images are matched with the shape style, margin style, and density type KBs 

respectively using the corresponding inference engines, the inference results are obtained to perform 

the final reasoning on the information stored in the textual KB. The result of this test provides 

appropriate conclusion about the mass likelihood degree of being benign or malignant. Figure 8d shows 

the ROC curve obtained with the textual reasoning ( 976.0AUC , 98.1ST , 100%SF ). Results indicate 

the effectiveness of IPES in discriminating malignant and benign breast masses. 

4 Conclusions 

The main objective of this paper was to integrate both image processing and the rule-based reasoning 

into a diagnostic expert system for breast tumors. An image processing-enabled expert system termed 

IPES was presented for the detection of breast benign and malignant masses. First of all, an automatic 

segmentation method has been proposed for segmenting mammographic masses from pectoral muscle 

and breast tissue. After segmentation, mammographic masses were identified and mainly described 

based on the standards of BI-RADS by: (1) shape-relevant features, (2) margin characteristics, and (3) 

density type. The knowledge extracted from segmented masses about their shapes, margins, and 

densities is respectively stored in the shape style KB, margin style KB, and the density type KB. 

Furthermore, the textual knowledge acquired from BI-RADS about different combinations of mass 

shapes, margins, densities, was respectively represented in a corresponding KB. In testing phase, the 

query image is matched with the shape style KB, margin style KB, and density type KB, respectively, 

using the corresponding inference engines. Afterwards, IPES takes the inference results obtained from 

those matching processes to perform a final reasoning operation on the information stored in the 

textual KB, in order to reach appropriate conclusion about the mass likelihood degree of being benign or 
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malignant. ROC curves were used to compare sensitivities and specificities of each reasoning test. The 

empirical conclusions of the research showed that ST for the four reasoning tests were 98.7%, 97.5%, 

97.4% and 98.1%, respectively, while the obtained SF of each test was 100%. Results indicate the 

effectiveness of IPES in discriminating the malignant and benign breast masses. 

 

 

(a) (b) 

 

 

(c) (d) 
Figure 8: ROC curves obtained for (a) shape-based reasoning ( 981.0AUC , 7.98SE  , %100SP  ), (b) margin 

based-reasoning ( 982.0AUC , 5.98SE  , %100SP  ), (c) density-based reasoning ( 979.0AUC , 4.98SE  , 

%100SP  ), and (d) textual reasoning ( 976.0AUC , 1.98SE  , %100SP  ).   
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APPENDIX 

CLIPS programming language was used to construct KBs and develop inference engines of IPES. MATLAB 

was used to build image processing algorithms and user interface of the system. The main interface of 

IPES is shown in Figure 9, which assist user to process and diagnose the selected mammogram. A 

Snapshot of mass segmentation is presented in Figure 10. Figure 11 demonstrates a snapshot of the 

mass density analysis. The multi-resolution analysis of the segmented mass is shown in Figure 12. The 

interface of mass margin analysis is shown in Figure 13, which help user to extract and study the 

segmented mass margin. Figure 14 shows a snapshot of the final case report provided by IPES  

  

Figure 9: Snapshot of the main interface of IPES Figure 10: Snapshot of mass segmentation 

  

Figure 11: Snapshot of mass density analysis. Figure 12: Snapshot of the multi-resolution 
analysis of the segmented mammographic mass 
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Figure 13: Snapshot of mass margin analysis Figure 14: Snapshot of the final case report 
provided by IPES 
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