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ABSTRACT   

Decision trees have been shown to be effective at classifying subjects with Parkinson’s disease when 
provided with features (subject scores) derived from FDG-PET data. Such subject scores have strong 
discriminative power but are not intuitive to understand. We therefore augment each decision node 
with thumbnails of the principal component (PC) images from which the subject scores are computed, 
and also provide labeled scatter plots of the distribution of scores. These plots allow the progress of 
individual subjects to be traced through the tree and enable the user to focus on complex or unexpected 
classifications. In addition, we present a visual representation of a typical brain activity pattern arriving 
at each leaf node, and show how this can be compared to a known reference to validate the behaviour 
of the tree. 

Keywords: Decision tree; Visualization; Medical imaging; Parkinson’s Disease; Computer aided diagnosis. 

1 Introduction  
Decision trees provide a flexible approach to classification which has been applied to a wide range of 
problem domains. Although the construction of decision trees can be a complex process [1], the 
resulting trees are typically simple and can be understood by users with little background in machine 
learning. The structure of the tree also encodes knowledge which has been learned, and this is easy to 
interpret provided that the features which are used have some intuitive meaning. This is in contrast to 
more advanced classification algorithms which operate as a ‘black box’ and for which the internal 
representation is difficult to comprehend. 

Previous work [2] has applied decision trees to the problem of separating healthy subjects from those 
suffering from Parkinsonian syndromes [3, 4, 5], based on FDG-PET images obtained before a diagnosis 
could be made by traditional means. Principal component analysis (PCA) is applied to the images and 
each subject is assigned a set of subject scores which are the features used by the decision tree for  
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classification. This yielded a classification accuracy of up to 80% (dependent on the precise Parkinsonian 
syndrome being diagnosed), but the subject scores are not intuitive nor easy to reason about. Hence it is 
difficult to extract meaningful information directly from the resulting tree (an example is shown in 
Figure 1). 

In this paper we extend this tree visualization with the aim of understanding how a given decision tree 

was constructed, determining why specific parameters were chosen and, most importantly, revealing 
the knowledge which is captured by the resulting tree. To do this we augment internal nodes with 
thumbnails of the corresponding principal component images, and show how these can be combined to 
yield typical patterns of relative brain activity for the leaf nodes. Note that our goal is therefore to 
improve the visualization of the tree and not to show that the decision tree is necessarily the best 
solution to the classification problem. 

The remainder of this paper is structured as follows. Section 2 introduces the literature related to our 
image analysis approach and the visualization of decision trees, and Section 3 then elaborates further on 
how the analysis is performed. Section 4 presents the enhanced decision tree and a discussion of its 
salient features, and Section 5 expands on these ideas to create an interactive system for decision tree 
exploration. Section 6 then presents a quantitative analysis and informal feedback from neuroscientists 
before Section 7 gives our closing remarks and ideas for future work. 

2 Related Work 
Parkinsonian syndromes are a family of neurodegenerative conditions primarily affecting the elderly 
(over 60 years of age), and are typically characterized by progressive complaints of muscle stiffness, 

Figure 1: This decision tree (adapted from [2]) separates subjects with multiple-system atrophy (MSA) from 
healthy controls. Although we can see exactly which conditions are applied to classify a patient, this is not 
enough to give an intuitive understanding of what the classifier has learned due to the abstract nature of 

the subject scores. 
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slowness of movement and sometimes tremor. The family includes idiopathic Parkinson’s disease (PD) 
[3] as well as related disorders such as multiple-system atrophy (MSA) [5] and progressive supranuclear 
palsy (PSP) [4]. These conditions exhibit similar early symptoms resulting in frequent misdiagnosis in 
daily clinical practice [6]. 

Modern brain imaging techniques allow the onset of such neurological conditions to be detected by 
identifying the associated changes in brain activity[7]. This is most widely done with univariate methods 
such as Statistical Parametric Mapping (SPM) [8], but recent work has shown that the multivariate 
Scaled Subprofile Modelling (SSM) approach has a number of advantages and is effective at 
differentiating between different Parkinsonian syndromes [9, 10]. The SSM technique involves 
performing principal component analysis on two or more groups (e.g. diseased subjects and healthy 
controls) and then projecting the brain images onto the principal component images to obtain a set of 
scores for each patient. We discuss this process in more detail in Section 3. 

Decision trees [11] are a widely used approach to classification which have a number of desirable 
properties. They can be applied to data sets containing a mixture of numerical and categorical variables, 
are robust in the presence of missing attributes, and perform well with large datasets. Although easy to 
understand, the process of constructing the tree is non-trivial with numerous algorithms and metrics 
being proposed in the literature [12, 13, 1]. In this work we construct decision trees using the C4.5 
algorithm [1], which uses the concept of information gain [14] to recursively split the dataset. 

The structure of a decision tree is most often visualized as a simple hierarchy of nodes (see Figure 1), 
although more elaborate schemes such as mosaic plots [15], icicle plots [16], and the sunburst layout 
[17] have also been used. Comprehension can be aided by displaying the distribution of instances at 
each node or by showing an indication of the confidence at each stage of the tree [18]. More recently, 
interactive versions of these visualization have been developed, allowing the user to actively participate 
in the tree construction process [19, 20]. 

3 Data acquisition 
An appreciation of this work is dependent on a high-level understanding of the processing pipeline 
which transforms FDG-PET scans into decision trees. Full details of the process can be found in [9] 
(preprocessing, PCA analysis, derivation of subject scores) and [2] (decision tree construction). Here we 
restrict ourselves to providing a brief overview. 

The inputs to the system are FDG-PET scans selected from a previous study [21] describing 18 Healthy 
Controls (HC), 20 PD, 21 MSA and 17 PSP patients, with clear retrospective diagnoses according to 
established clinical research criteria. PD patients were 9 males (M), 11 females (F), 6 right body-side 
affected, 14 left-side affected, with mean age of 63±9 years and disease duration (DD) at scanning of 
3±2 years. Also 14 probable MSA and 7 possible MSA patients (10 M, 11 F, age 64±10; DD 4±2), and 13 
probable and 4 possible PSP patients (9 M, 8 F, age 68±8; DD 2±1) were included. 

To illustrate the SSM process we refer to the images shown in Figure 2(a). Note that the scans are 
actually three dimensional, and that all such images in this paper are simply depicting a single slice of 
the full data. Also, absolute intensity values of FDG-PET data are generally not meaningful for diagnostic 
purposes as they naturally vary according to the patient, the scanner, and the amount of FDG injected. 
The SSM procedure therefore performs a log transformation and double-centering of the data to 

U R L :  http://dx.doi.org/10.14738/jbemi.33.1858    27 
 

http://dx.doi.org/10.14738/jbemi.33.1858


J O U R N A L  O F  B I O M E D I C A L  E N G I N E E R I N G  A N D  M E D I C A L  I M A G I N G ,  V ol u me  3 ,  Is s ue  3 ,  J u ne ,  2 0 1 6  
 

eliminate such scaling effects, and applies a mask to remove voxels outside of the brain. Principal 
component analysis is then applied to generate a number of 3D principal component images which is 
equal to the number of input images. Slices through the first four of these principal component images 
are shown in Figure 2(b). 

The subject scores are computed by projecting each input image onto each principal component image, 
and the resulting scores indicate the extent to which each principal component is expressed in each 
subject.  
 

That is, each subject receives a number of scores which matches the number of principal components 
and in turn the number of subjects. Examples of these scores are shown in Figure 2(c) and constitute the 

feature (or attribute) vectors which are used to train the decision tree. It should be clear at this point 
that the subject scores and the principal component images are intrinsically related, and it is hard to 
interpret the former without the latter being available for context. 

Lastly, we use the C4.5 algorithm to learn from the subject scores. This part of the process is covered in 
detail in [2], and when separating healthy subjects from those with MSA it results in a decision tree such 
as the one shown previously in Figure 1. 

4 Static visualization of the decision tree 
Although Figure 1 clearly shows us the steps involved in the decision-making process, it does not provide 
much further insight into what has been learned. The tree is appropriate for use as a classifier on new 
data, but it is desirable to also understand why certain parameter values are chosen, what the 
implications would be of changing these parameters, and why certain instances are misclassified. 
Perhaps most importantly, we wish to extract examples of what a typical instance of each class looks like. 
Such a typical example can be compared to a clinician’s own expectations to further increase confidence 
that the tree is behaving as expected. 

Figure 2: Input images are hard to differentiate by eye, but principal component analysis leads to subject 
scores which can be used to separate the classes. 

 

 PC1 PC2 PC3 PC4 ... Class 

Scan 1 -625 826 -1164 149 ... HC 

Scan 2 186 1395 135 207 ... HC 

Scan 3 1273 -1420 -1070 947 ... MSA 

Scan 4 -1331 -159 887 -1501 ... MSA 

Scan 5 ... ... ... ... ... ... 

Scan 6 ... ... ... ... ... ... 

... ... ... ... ... ... ... 
 

(a) Preprocessed FDG-PET scans. 

 

(b) The first four component images. (c) Subject scores are computed as the 
projection of each scan onto each principal 

component image. 

C O P Y R I G H T ©  S O C I E T Y  F O R  S C I E N C E  A N D  E D U C A T I O N  U N I T E D  K I N G D O M  2 8  
 



David P. Williams, Deborah Mudali , Hugo Buddelmeijer , Parisa Noorishad, Sanne Meles , Remco J. Renken , Klaus L. Leenders, Edwin A. 
Valentijn and Jos B.T.M. Roerdink; Visualization of Decision Tree State for the Classification of Parkinson’s Disease. Journal of Biomedical 
Engineering and Medical Imaging, Volume 3, No 3, June (2016), pp 25-41 
 

The principles which we will describe are applicable to all disease groups, but we choose to explain them 
in the context of separating subjects with MSA from healthy controls (HC). This classification task was 
moderately successful as presented by [2], but the reported classification rate of 72% means we can still 
hope to gain insight into why the classifier does not perform better. 

The primary reason why Figure 1 provides only limited insight into the problem domain is that the 
subject scores are not intuitive to reason about. It therefore makes sense to consider the chosen subject 
score and threshold for a given node in the context of its corresponding principal component image. 

Figure 3: Scatterplots and thumbnails provide additional information on each principal component (PC). 
Positive values are shown in red with negative values are shown in blue. 

 

Figure 4: A number of diseased subjects can immediately be identified by their strong expression of the first 
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principal component. 

  

(a) The first principal component image. (b) Distribution of subjects around the threshold. 

 

We enhance the decision tree shown in Figure 1 with the following additional attributes/properties: 

o For each non-leaf node, we add a scatterplot showing the distribution of subject scores for the 
chosen principal component, along with a visual indication of where the threshold is positioned. 

o For each non-leaf node, we add a thumbnail of the principal component image. This is overlaid 
on a template magnetic resonance (MR) image for anatomical context. 

o For each leaf node, we add a thumbnail of the typical pattern of incoming instances. This is a 
linear combination of the principal component images encountered when traversing the tree to 
that node. 

The resulting visualization is shown in Figure 3. However, decision trees can grow relatively large and 
both the image thumbnails and scatter plots include fine detail which cannot be easily resolved given 
the limited physical space available in this paper. We therefore provide enlarged views of the relevant 
elements as we discuss their functionality, and use Figure 3 to simply provide a structural overview. 

We begin our analysis by looking at the root node of the tree, the visual components of which are 
enlarged in Figure 4. The C4.5 algorithm has first chosen to split the data set based on the subject scores 
derived from the first principal component image. This is a common choice, as the first principal 
component image explains the greatest amount of variance in the entire dataset and we can expect that 
this will lead to a high information gain. 

Although the input data contains only positive values, all image thumbnails contain both positive and 
negative components as a result of the double-centering operation which is performed prior to the PCA. 
We apply a red-blue colourmap to highlight these regions, and scans which yield a high subject score 
when projected onto this PC image are exhibiting a significant difference in brain activity between 
patients and healthy controls in the marked areas. 

Looking at the scatterplot in Figure 4(b), we can also see why the given threshold was chosen. The 
subject scores do not cleanly separate the healthy and diseased groups into two distinct clusters as we 
may have hoped, but instead define two overlapping clusters where the upper bound of the diseased 
group extends significantly beyond the upper bound of the healthy group. The threshold has been 
selected to separate instances in this extended range and classify them as diseased. From a clinical  
 

C O P Y R I G H T ©  S O C I E T Y  F O R  S C I E N C E  A N D  E D U C A T I O N  U N I T E D  K I N G D O M  3 0  
 



David P. Williams, Deborah Mudali , Hugo Buddelmeijer , Parisa Noorishad, Sanne Meles , Remco J. Renken , Klaus L. Leenders, Edwin A. 
Valentijn and Jos B.T.M. Roerdink; Visualization of Decision Tree State for the Classification of Parkinson’s Disease. Journal of Biomedical 
Engineering and Medical Imaging, Volume 3, No 3, June (2016), pp 25-41 
 

perspective, this corresponds to subjects having such high activity in the areas identified on the 
corresponding thumbnail that they can immediately be classified as diseased. 

Further insight is provided by subsequent scatter plots as we follow the left branches of Figure 3 to 
examine the subject scores corresponding to the fourth and then second principal components (PC04 
and PC02). The scatter plots reveal that the subject scores have a distribution in which the two classes 
are largely distinct but overlap. The C4.5 algorithm always uses a single threshold to perform a binary 
split of the data, but we can see in these cases that a tertiary split may also have been appropriate to 
separate the classes into ‘healthy’, ‘diseased’, and ‘unknown’. Of course, if desired the algorithm could 
have emulated such tertiary splitting by using the same split attribute for two successive nodes. 

The final test is performed according to the subject scores derived from PC07, and it is here that we see 
our first (and only) misclassification occur as a healthy subject is incorrectly classified as MSA. The 
scatter plot in Figure 5(a) shows that this happens as a result of a slight overlap between the ranges of 
the healthy and diseased scores, and if the groups were slightly more separated we can expect that the 
threshold would have been chosen to separate them correctly. Accepting the distribution as it is, we can 
also see why the C4.5 algorithm stopped the decision tree construction process at this point. Attempting 
to further separate would result in leaf nodes with only a single instance, meaning the tree would 
almost certainly be over-fitted to the dataset. 

4.1 Tracing individual instances 
Our misclassified subject also serves as an illustration of why it can be useful to trace the route of an 
individual subject through the decision tree. As discussed, this particular subject was only narrowly 
misclassified by the last internal node, and we may be interested in knowing where this particular 
subject fell relative to the other attributes and split points which were used earlier in the decision-
making process. We do not get this information from Figure 3 because we cannot differentiate any given 
subject from another of the same class, as we have only high-level statistical information about the 
distribution at each node. 

To solve this we wish to make each instance visually distinct in the scatter plots. We considered the use 
of different colours and shapes for the markers, but eventually settled on using a unique numerical 

Figure 5: Enlarged version of two scatterplots from Figure 3. Markers can be replaced with numerical 
identifiers so that a given instance can be found in different plots. Horizontal offsets are applied to reduce 

marker overlap. The blue arrow indicates the subject which was eventually misclassified. 

    

(a) Distribution for PC07 (b) Distribution for PC02 
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identifier which is drawn at the appropriate position on the scatter plots (see Figure 5). An advantage of 
this approach is that we can use the identifier to refer back to the appropriate row of the input data 
table or to the original image. We also apply a random horizontal offset to the markers to reduce 
problems with markers overlapping. Note that the horizontal position of the markers is therefore not 
meaningful (except with respect to the dashed line separating diseased from healthy subjects) and is 
used only to make the markers more legible. 

Looking to Figure 5(a), our misclassified subject is healthy and so appears on the left of the vertical 
dashed line, but lies above the threshold indicated by the red horizontal line (hence the 
misclassification). The version of the plot with numerical identifiers shows that this is subject number 14, 
which is information we did not have previously. We can now track this subject back up the tree. For 
example, the previous node (shown with identifiers in Figure 5(b)) made use of PC02 and subject 14 is 
again very close to the threshold. At this point the subject has been narrowly misclassified by two 
separate nodes, and this may warrant a closer examination of the image data by clinicians. 

4.2 Reconstruction of typical disease patterns 
The techniques described so far allow the user to better understand the behaviour of the decision tree 
with respect to the individual subjects which are classified by it. Ideally, we would also like to 
understand its behaviour at a more global level, by extracting the knowledge which has been learned 
during its construction. More specifically, we would like to extract a representation of what a typical 
subject image at each node actually looks like. In neuroimaging this is usually presented in the form of a 
pattern showing relative differences in neural activity between healthy and diseased subjects. Such a 
pattern can be used directly to classify new subjects and also serves as validation of the decision tree’s 
behaviour because it can be compared to reference patterns obtained using other methods [22]. 

We can form a typical pattern for a leaf node by taking a linear combination of the principal component 
images which are used to reach it. The weights which are used should reflect the importance of a given 
image in the classification process, but they may also change depending on which class we are working 
with. For example, PC01 is instrumental in identifying the MSA class because a high score immediately 
gives a correct classification, but the reverse is not true in that a low score does not imply the subject is 
healthy. Figure 4(b) instead shows a very mixed distribution below the threshold. 

We can measure the purity of a group of instances using the concept of information [14]. This same 
principle (actually information gain) is used by the C4.5 algorithm to determine which attribute should 
be used to split the dataset, and so it is a natural extension to use this as a weighting factor. We 
compute the amount of information in each of the two groups leaving a node, and weight the principal 
component image by this value when following the path to a given leaf. 

After weighting in this way we observe that the largest contributor to the typical pattern in each leaf 
node is usually its parent node. Intuitively this makes sense, as instances arriving at a given leaf were not 
able to be classified by decision nodes prior to the leaf node’s immediate parent. Typically we see that 
approximately 90% of a leaf node’s pattern is obtained from its parent’s PC image with the remainder of 
the pattern being provided by ancestors higher up in the tree. 
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Additional consideration must be given to subjects with negative scores. Looking at Figure 3 and 
considering node PC02, we can see that subjects are classified as diseased if they have a score below -
159, whereas earlier nodes assigned a class if the score was above a given threshold. This means these 
diseased subjects have an inverse expression of this principal component image. This is a valid outcome 
as patterns are expressed as relative differences in brain activity, and so healthy and diseased patterns 
are expected to be the inverse of each other. Hence the thumbnail for leaf node ‘MSA (✓:7, ✗:0)’ is 
composed mostly of the inverse of its parent’s principal component (PC02) with small contributions 
from other ancestors. 

The significant variation between the leaf node patterns indicates that successive stages of the 
classification process are making use of different regions of the brain. However, it is useful to also derive 
a single overall pattern as a linear combination of all the diseased leaf nodes and the inverses of all the 
healthy leaf nodes. We therefore compute such an overall pattern where the weighting factor of each 
node is simply the number of subjects it classifies. The resulting pattern is presented in Figure 6(a) and 
discussed further in Section 6. 

5 Interactive visualization of the decision tree 
We have now presented the key components of our decision tree visualization and explained how they 
improve user understanding. The tree has thus far been computed as an offline process which generates 
a static image (Figure 3) which can be examined. Henceforth, this image will be referred to as the static 
visualization, because in this section we demonstrate how similar concepts can be applied in an 
interactive system to bring increased flexibility and a better workflow to the user. 

Our interactive system is implemented as an extension to the Orange data analysis software [23] which 
provides a generic framework for machine learning and visualization. Orange allows an analysis pipeline 
to be defined as an ordered collection of nodes, with data flowing from input nodes, through processing 
nodes, and finally onto visualization nodes. Within the context of our problem, this means creating a 
pipeline (Figure 7(a)) which reads subject scores from a file on disk, feeds them into a decision tree 
learner, and then allows the result to be examined with the ‘decision tree viewer’ node. Users can click 

Figure 6: The derived pattern is a linear combination of components 1, 2, 4 and 7 (components and weights 
as chosen by the tree) while the reference pattern is a different linear combination of components 1, 2 and 4 

(see [22]). A similar structure can be seen in each of these two patterns. 

  
(a) Derived pattern (b) Reference pattern 
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on any pipeline node to open a window containing configuration and visualizations as shown in Figure 
7(b–e). 

Figure 7: Images of our interactive decision tree exploration tool based on Orange [23]. A sample data flow 
graph (a) demonstrates the use of widgets for decision tree construction and image visualization. The user 

can click on nodes in the tree explorer (b) to see the images updated in real time. The visualization can 
display principal component images (c), group reconstructions (d) or the original subject scans (e). 

 
(a) Data flow pipeline defined in the Orange software. 

  
(b) The existing ‘decision tree viewer’ with the lowest 

internal node selected. 
(c) The principal component image corresponding to the 

selected node. 

  
(d) Reconstruction of the typical pattern arriving at the 

selected node. 
(e) Subject scans being classified by the selected node. 
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Existing functionality in Orange already enables a more flexible approach to classification than the static 
tree shown previously, because the ‘decision tree learner’ node allows the modification of key learning 
parameters such as the attribute selection criterion, the maximum number of instances per leaf, and the 
maximum tree depth, with changes being shown in real time. Additionally, the ‘decision tree viewer’ is 
interactive and shows additional information such as the distribution of classes at each node via a small 
pie chart (Figure 7(b)). But our key contribution to this system is the addition of a new type of 
visualization node which embeds medical image data directly inside Orange. This ‘medical image viewer’ 
node can be seen on the right-hand side of Figure 7(a) and the expanded form is shown in Figure 7(c-e). 

The image viewer features several modes of operation. At a basic level it allows the user to visualize 
single 3D images such as preprocessed subject scans or principal component images. As such it serves as 
a direct replacement for the thumbnails which form part of the static visualization, with the additional 
benefit that the user is able to scroll through the individual slices of an image and perform common 
operations such as adjusting the window-level settings. This clearly allows for more careful examination 
of the data than is possible with a single thumbnail image. The only drawback compared to the static 
visualization is that our interactive system currently only displays image data for a single node at a time, 
and so in this sense the static visualization provides a better overview. Note that Orange also provides a 
built-in widget for displaying scatterplots of the subject scores but this is not shown in Figure 7. 

The interactive system also exposes additional functionality which would be difficult to implement in the 
static version. Most notably, the image viewer can present a ‘small multiples’ view in order to display 
several 3D images at the same time. The images which are displayed are synchronized to the currently 
selected node and this allows the individual subject scans of patients to be examined as they pass 
through the tree. Furthermore, we color the background (dark green and dark orange in Figure 7(e)) of 
these thumbnails to indicate their true class so that the subject scans of misclassified patients can be 
easily identified. Adding such additional images to the static visualization would quickly overload the 
user with information. 

The workflow of the interactive system improves significantly over the static visualization. Further 
analysis of the subjects in Figure 3 requires separate medical imaging software and burdens the user 
with the task of finding and loading the appropriate images based on the numerical identifiers which are 
read from the scatterplots. By integrating the image viewer and tree visualization into a single package 
the user is relieved of this task, and is able to quickly switch between different images as desired. If 
further analysis in an external application is desired then the user is able to export the reconstructed 
images in standard NIfTI format. 

6 Evaluation 
We believe that the methods presented in this paper can aid a user in understanding and visualizing the 
classification process, but we do not claim that a decision tree is necessarily the most accurate method 
of classification. Promising results have also been obtained using other methods [9, 24]. However, a 
decision tree is certainly a viable method for separating MSA from healthy controls as shown by the 
results of a set of leave-one-out cross-validations which were performed in previous work [2]. In this 
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section we do not focus any further on the performance of the tree, but instead provide validation of 
the derived pattern and present clinical feedback which was obtained from neuroscientists. 

Figure 8: Individual subjects and the pattern derived from the tree are both projected onto the reference 
pattern. Derived patterns for both MSA and PSP score very highly. The PD pattern is still representative of 

the group but does not serve as such a distinguished example. Horizontal jittering of markers serves only to 
reduce clutter. 

 

   
 

 (a) MSA (b) PSP (c) PD  
 

6.1 Validation of the derived pattern 
In Section 4.2 we described how a typical pattern for a diseased subject can be extracted from the tree 
as a linear combination of the principal component images (Figure 6(a)). For comparison, Figure 6(b) 
shows the reference pattern created using the method of Teune et al. [22]. This reference pattern is 
again a linear combination of the principal component images, with the weights being computed 
according to the Akaike information criterion. The structural similarities between the two images are 
immediately apparent, and show that the decision tree has indeed captured some knowledge regarding 
the typical pattern of brain activity in MSA subjects. 

We can perform a more quantitative validation of this claim by treating the derived pattern as a new 
subject and projecting it onto the reference image along with the rest of the subjects. This is shown in 
Figure 8(a) with the derived pattern marked in red. It can be seen that the derived MSA pattern does 
indeed have a strong expression of the reference pattern (actually stronger than most of the individual 
subjects) and in this sense it can be considered representative of what a typical MSA subject would look 
like. We can also apply the same principle to the PSP and PD trees from [2] and observe that the PSP 
derived pattern is stronger than any of the individual PSP subjects whereas the PD result is less striking. 
This corresponds with the relative performance of the trees given by Mudali et al. [2].  

6.2 Clinical feedback 
Although the presented results serve to validate the behavior of the tree in a quantitative fashion, for 
the purpose of this work we are actually more interested in understanding and maximizing the benefits 
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of the visualization. Our key claim is that the depiction of the decision tree given in Figure 3 is more 
useful to neuroscientists than the depiction given in Figure 1. To verify this claim we presented the 

visualization to neuroscientists at the University Medical Center Groningen, The Netherlands. 

The evaluation was relatively informal and involved identifying interesting subjects in the tree (e.g. 
those with extreme values, those near thresholds, and the misclassified subject) and then analyzing the 
corresponding subject scans or clinical diagnosis. Information about the distribution and classification of  
 

individual subjects was not provided by the original decision tree in Figure 1, so any insight gained in this 
process is the result of the additional visualizations added by Figure 3. Note that we are not trying to 
prove any clinical hypothesis at this point as we have insufficient data for that purpose, but instead we 
simply wish to demonstrate that the tree can guide the user to additional insight. 

During the evaluation the following key observations were made: 

o The principal components images do indeed show activity patterns which are meaningful to 
neuroscientists. For example, the first principal component image shows relatively high activity 
in the cerebellum and low activity in the basal ganglia. However, these patterns can be difficult 
to identify in the thumbnail images (Figure 9(a)) as it is often necessary to scroll through all the 
slices of the volume. 

o The scatterplots show an interesting distribution of values, particularly for the first principal 
component (shown enlarged in Figure 9(b)). It can be clearly seen that a highly positive 
expression of this principal component is indicative of a diseased subject, while the inverse is 
not true. Indeed, a highly negative expression can be associated with both healthy and diseased 
groups. This characteristic is already known to neuroscientists though its explanation remains 
unclear. There is speculation that it is related to different subgroups of MSA (MSA-P vs MSA-C) 
but we do not have enough data to support this. 

o The same scatterplot also makes it easy to identify the extreme cases and look for common 
traits. For example, the two highest-scoring subjects (32 and 36) are both males of the same age 

Figure 9: Enlarged image and scatterplot for the first principal component (the root node of the tree). This is 
the same data as Figure 4 but with the markers replaced by subject numbers as described in Section 4.1. 

  
(a) (b) 
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and exhibit similar clinical symptoms. Conversely, the two lowest-scoring subjects (30 and 34) 
are both younger females and have symptoms not present in the high scoring subjects (criteria 
autonomic dysfunction, orthostatic fall in blood pressure). Such traits are relatively easy to  

o identify when using the decision tree visualization in conjunction with the existing patient 
diagnosis. 

o A new examination of subject 14 has still found no clinical signs of MSA, despite being 
misclassified as MSA by the decision tree (see Figures 3 and 5). However, it was observed that 
this subject was originally scanned because it was the sibling of a sufferer of Huntington’s 
disease (a neurodegenerative genetic disorder). Unfortunately no further information is 
available on their present situation. 

o Subjects 9, 10, 14, and 37 were the most difficult to classify with the decision tree, as they 
passed through to the final node and still ended up near the threshold (as shown previously in 
Figure 5(a)). Cross referencing the medical records revealed that subject 37 was a particularly 
difficult case due to a hypometabolic defect laterally to the right side of the striatum. The 
assessment of the nuclear medicine physician was that this was not a clear case of MSA and 
could instead be a result of corticobasal degeneration or a local defect such as stroke or trauma. 

o There were some concerns over the quality of the input data as the healthy controls are actually 
taken from two separate studies and have some unknown reconstruction parameters. This can 
have an impact on the resulting images and, in turn, the principal components. There is on-going 
work to obtain a larger and cleaner dataset for a more thorough evaluation. 

Overall, feedback from neuroscientists was positive and they agreed that the tree led to interesting 
observations about the input data. This validates our claim that the visualization is useful for gaining 
insight, but we cannot draw strong clinical conclusions at this point. 

7 Conclusion 
In this paper we have shown how additional visualizations can improve a user’s understanding of the 
classification process, and provide insight into the knowledge which has been learned by a decision tree. 
We have focused on understanding the diagnosis of Parkinsonian syndromes, but it is likely that similar 
ideas can be applied to other problem domains (particularly those involving the classification of images). 
Informal feedback has been very positive and the system shows strong potential for aiding the 
diagnostic process. 

While using the static decision tree we have encountered a few areas of potential improvement. Most 
importantly, the layout of the subject numbers in the scatter plots should be improved to prevent them 
from overlapping with each other, as this makes some numbers difficult to read. We currently apply a 
random horizontal offset to each subject number at the moment it is drawn to the tree, but a better 
algorithm could wait until the set of all subject numbers is known before computing an optimal layout. 

Furthermore, the decision tree gives a binary classification at each node but it may be desirable to also 
compute a confidence measure for each classification. The exact approach will be subject to further 
consideration, but it would seem appropriate to use the distance from the threshold(s) or the amount of 
information gain as an initial metric. This level of confidence should then also be shown visually on the 
tree. 
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Future improvements to the interactive visualization are likely to focus on the workflow, and particularly 
on allowing data and selections to be passed between the different nodes of the Orange pipeline. For 
example, selecting a node in the decision tree will currently display the corresponding data in the image 
viewer, but the reverse is not possible as data only flows left-to-right. The interactive system is currently 
at the prototype stage so there are many opportunities to improve this kind of workflow issue. 
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