

Causes and Contaminants of Soils and Water in the Niger Delta Region of Nigeria: A Systematic Review

Dada Ayomikun Emmanuel

Institute of Natural Resources, Environment and Sustainable Development,
University of Port Harcourt, Nigeria

Emoyoma Ogheneovoh Udi

African Center of Excellence for Public Health and Toxicological Research,
University of Port Harcourt, Nigeria

Maureen C. Orji

Institute of Natural Resources, Environment and Sustainable Development,
University of Port Harcourt, Nigeria

ABSTRACT

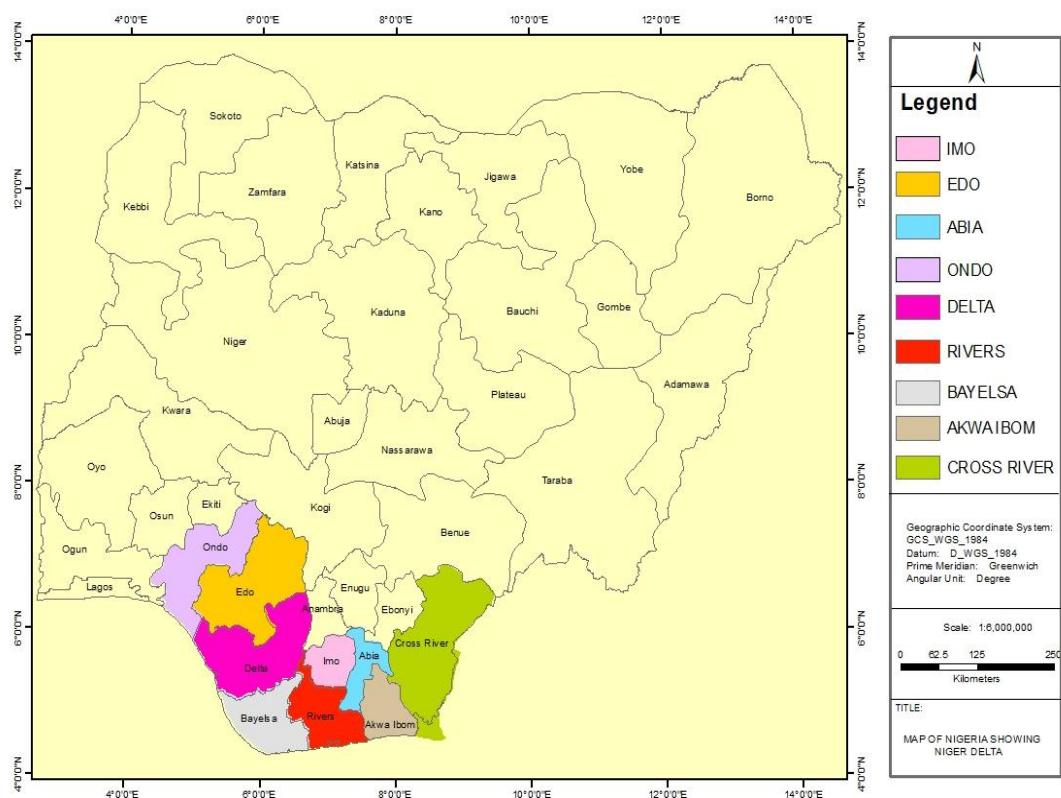
Contaminants of various sources and types constitute a great environmental nuisance to many oil producing regions of the world, and the Niger Delta region of Nigeria is no exception from this menace. This has negatively impacted the region, posing a lot of health and environmental risks to the inhabitants. Hence, in the quest to ascertain the causes and common contaminants of soils and water in the region, a systematic review was conducted across three academic databases (PubMed, Scopus and Web of Science) by two independent reviewers within a five-year period (2020-2025). Keywords, synonyms, Boolean search strings as applicable and the Preferred Reporting Items for Systematic Review and Meta-analyses (PRISMA) was used. A total of 533 articles were obtained from the initial search which were later filtered down to 393 articles using specific inclusion criteria, language and journal publication filters. Further screening using additional keywords and abstract preview reduced the set to 131 and subsequently 23 articles included in this systematic review. The reviewed articles revealed that contaminants from the Niger Delta region could be classified into five categories which are heavy/trace metals (Cd, Pb, Cr, Ni, Cu, Zn, Fe, Mn, As and Ba), Petroleum-related hydrocarbons and Polycyclic Aromatic Hydrocarbons (PAHs), BTEX and Total Petroleum Hydrocarbons (TPHs), Persistent Organic Pesticides (POPs) and microbial contamination. Unfortunately, anthropogenic activities which include indiscriminate waste disposal, spills from oil and gas exploration activities, spillage from petroleum tankers and vandalised pipelines, waste and spent oil from mechanic workshops and agricultural runoffs were implicated as the causes of these pollution. Hence, this review recommends extensive enlightenment and mass awareness as a crucial part of addressing contaminations and environmental degradation within the Niger Delta region.

Keywords: Contaminants, Niger Delta; PAHs, BTEX, Total Petroleum Hydrocarbons, Persistent Organic Pesticides.

INTRODUCTION

For several years, the Niger Delta region of Nigeria had experienced continuous and frequent pollution emanating majorly from oil spills from oil mining and processing. This had negatively impacted the region, posing a lot of health and environmental risks to the inhabitants [1]. Moreover, other studies by Ekhator et al. [3] and Numbere et al. [4] had reported persistent vegetation deterioration, surface and ground water contamination, soil degradation and air pollution [3,4]. Globally, massive agricultural activities, urbanisation, and increasing industrialisation and several anthropogenic activities had been implicated in the pollution of both terrestrial and aquatic ecosystems via the emission of harmful pollutants like heavy metals, pesticides, persistent organic pollutants (POPs) and pharmaceutical residues which accumulate in the ecosystem portending a long-term health and ecological risks to humans [5]. Similarly, in the Niger Delta region of Nigeria, crude exploration activities, mining, maritime and shipping operations had all been linked with environmental pollution posing health risk to one of the largest economic hubs of Nigeria [6]. While remediative processes like phytoremediation, chemical remediation and bioremediation had gained prominence with emerging and more sophisticated processes like advanced oxidation processes (AOPs), membrane filtration, activated carbon adsorption and lately nanotechnology [5], the Niger Delta region of Nigeria, suffers from ineffective remediation, monitoring and management, this makes the region a subject of several environmental issues [1].

The consequences of these environmental pollutions are enormous, these range from ecological destruction, abject poverty, depletion and extinction of biodiversity [7], hydrocarbons in soils had been linked to contamination of agricultural produce [10-12] which poses huge challenges to availability and safety of food. Long and short-term health consequences like neuro-behavioural disorder, inflammation of joints, bronchitis, dermatitis, renal dysfunctions, cancer, high blood pressure and gastro-intestinal disorder had been linked with heavy metals contaminants which are common pollutants in the Niger Delta region of Nigeria [13-15]. Although oil spills had been mainly documented as the major source of pollution, it is pertinent to understand that other sources of pollutants in the region are often under looked hence this study stems to present a thorough systematic review of the causes and common contaminants of soils and water in the Niger Delta region of Nigeria. In the quest to provide actionable plans towards reduction and total eradication of environmental pollution in the region.


MATERIALS AND METHODS

Search for articles

In this systematic review, extensive literature search was done by two independent reviewers on three reliable databases which include PubMed, Scopus and Web of Science. The reporting standard deployed for this study is the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) 2020. Keywords and synonyms, including Boolean search strings were used. The search synonyms terms are "Pollution" OR "Contamination" OR "Environmental degradation", "Soil" OR "Land", "Impacts" OR "Effects" or "Consequences" or "Outcome" or "Repercussion", "Niger Delta" or "South-south", while the used Boolean Strings are: ("Soil pollution" OR "Soil contamination" OR "Water pollution" OR "Water contamination" OR "Environmental degradation") AND ("Impacts" OR "Effects" OR "Consequences" or "Outcomes") AND ("Niger Delta" OR "Rivers" OR "Bayelsa" OR "Delta" OR "Akwa Ibom" OR "Cross River" OR "Abia" OR "Edo" OR "Ondo" OR "Imo").

Eligibility Criteria

To arrive at more recent research findings, this study was limited to research articles published in the last five years (2020-2025), in addition, only original quantitative studies, published in English and studies that investigated soil and/or water pollution within the Niger Delta region were included. Niger Delta in this review refers to 9 states which encapsulate the political and geographical definition of Niger Delta state. The states include Abia, Akwa Ibom, Bayelsa, Cross River, Delta, Edo, Imo, Ondo and Rivers. This describes the area that surrounds the Niger River's Delta, where it meets the Atlantic Ocean, Spanning the River states officially designated by the Niger Delta Development Commission (NDDC). It is located in the southern region of Nigeria bordering the Atlantic Ocean; it spans about 2000km of swampy mangrove, creeks, rivers fresh water swamp, and lowland forest (figure 1). Classified as a tropical rain forest (4°N - 10°N of the equator), the region has an altitude less than 1km with high annual rainfall of about 2400mm [7,8]. It is home to diverse flora and fauna and also 75% of Nigeria petroleum products. Fishing and Agricultural activities are the major source of livelihood indicating the core dependence of the inhabitants on the ecosystem for survival [7,9].

Figure 1: Map of the Niger Delta region of Nigeria

RESULTS

Selection of Studies

The initial search using the keywords and Boolean search strings yielded 533 articles, 140 of these were eliminated when systematic review, conference papers, book chapters, letters, data paper and editorial were excluded. The remaining 393 were reduced to 255 as they were either unrelated to the review's focus or published in other languages. Further screening based on keywords and field of studies excluded 131 articles. The remaining 124 articles were pruned

down to 23 by examining the complete texts, the topics, abstract and locations and how they align with the focus of the study eliminating 101 articles. The PRISMA flow chart is shown in figure 2, and an overview of the reviewed articles is presented in table 1.

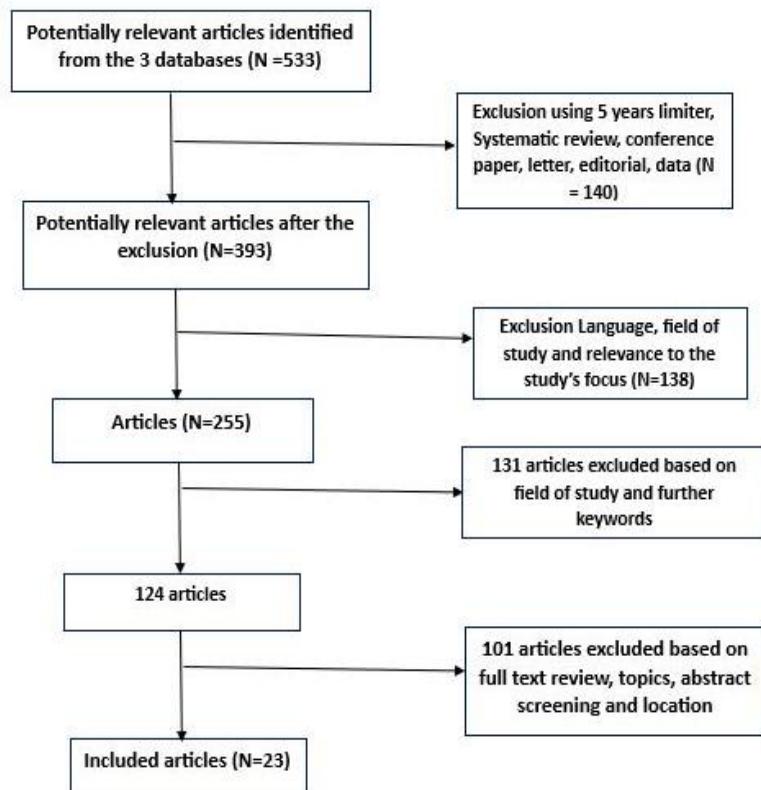


Figure 2: Prisma flow chart of Selected articles

Table 1: Overview of the reviewed articles

Sample	Location	Methods	Contaminants detected	Abnormally high (reported)	Identified causes	References
Soil	Akure, Ondo State	ICP-OES	Cu, Fe, Zn, Mn, Ti, Pb, Cd, Cr, Ni, Co, Al, Sn, Se, Ba, As, V, Sr, Mo, Sb	Cd (strong pollution)	Spent oil from auto-mechanic services, panel beating, repairs	16
Soil	Akure, Ondo State	2D Electrical resistivity	Zn, Cu, Pb, Cr, Cd	Cd, Cu, Pb, Zn exceeded background; Cd high ecological risk	Improper waste disposal, leachate percolation	17
Surface water, groundwater, leachates, rainwater	Cross River State	Chemical assays	TDS, TH, Na ⁺ , Ca ²⁺ , Mg ²⁺ , Cl ⁻ , HCO ³⁻ , SO ⁴²⁻ , NO ³⁻ , Al, Fe, Mn	Cd, Cr and Ni	Open waste disposal, water-rock interactions	18
Sediments	Bayelsa	AAS	Fe, Cu, Zn, Pb, Cd, Ni, Co	Cd, Pb and Ni exceeded	Agriculture, oil & gas exploration, mining, waste	19
Soil	Rivers State	AAS	Cr, Co, Cu, Ni, Mn, Cd, Pb, Zn	Cd above regulatory limits	Industrial emissions, road runoff	20

Soil	Port Harcourt	AAS	Fe, Cr, Cd, Cu, Zn, Ni, Pb	Cd significant contributor	Gas flaring, oil operations	21
Water	Cross River State	AAS	Cd, Pb, Fe, Mn, Zn, Ba	Mn high	Surface runoff, mining, geogenic sources	22
Soil	Ondo State	AAS	Fe, Zn, Pb	Elevated metals	Improper waste disposal, industrial activity	23
Soil	Rivers State	XRF	PAHs, Fe, Cr, Cu, Co, Zn, Mn, V, Pb, U	Cr, Ni high	Oil spills, operational failure, sabotage	24
Soil	Rivers State	ICP-MS, GC-MS	Cu, Cd, Ni, Pb, Cr, Fe, Mn, Zn, Co; 13 PAHs	Cu, Cd, Ni, Pb, B[a]P, Cr high	Oil spills, coal combustion, gas flaring	25
Water	Delta State	AAS	Fe, Zn, Pb, Ni, Cd, Cu, Cr	Fe, Zn high	Oil & gas exploration, dumping, agrochemicals	26
Soil & Plants	Cross River State	AAS	Fe, Zn, Mn, Ba, Pb, Cd	Cd exceeded	Barite mining, refuse disposal	27
Groundwater & Leachate	Rivers State	AAS	As, Cd, Zn, Ba, Mn, Cu, Co, Cr, Ni, Pb	Ni, Pb high	Landfill leachate	28
Soil	Delta State	GC-MS	16 PAHs	B[a]P high	Oil spillage, solvents, crankcase oil	29
Soil	Delta State	HS-GC-MS	BTEX, VOCs	BTEX high	Diesel generator emissions, fuel stations	30
Water	Niger Delta	GC-MS	OCPs (HCH, DDT, etc.)	gamma-HCH high	Pesticide use, runoff	31
Groundwater & Subsoil	Ondo State	AAS	Fe, Mn, Ni, Cd, Co, Zn, Pb, Cu	Cd, Cu, Zn high; Fe, Mn high	Anthropogenic activities	32
Water & Sediment	Niger Delta (Forcados River)	AAS	Pb, Zn, Cu, Cr, Ni, As, Ba, V; PAHs, BTEX, TPH	Cd, Pb, Ba high	Oil brine discharge, production waste	33
Soil & Water	Rivers State	PAH assays	16 PAHs	B[a]P high	Oil spillage, industrial activity	34
Water & Human blood	Bayelsa State	AAS, ELISA	Pb, Cd, As	Above WHO in water; serum markers elevated	Pipeline spillage, petroleum	35
Soil, Water & Crops	Edo State	AAS, XRF	Fe, Ni, Cd, Pb, Cr, Cu	Fe, Ni, Pb high	Dumpsites	36
Soil	Abia & Rivers states	AAS, chromatogram	Pb, Cr, Cd; PAHs; TPH	PAHs high; Pb, Cd exceeded	Indiscriminate waste disposal	37
Soil	Delta State	Spectrophotometry, bacteriology	Suspended solids, metals, coliforms	Faecal contamination	Open defaecation, wastewater	38

FINDINGS AND DISCUSSION

Contaminants across the Niger Delta

Environmental contamination still remains a vital issue of concern across Niger Delta States of Nigeria as indicated by the articles reviewed. The articles documented five categories of contaminants. This includes the heavy metals like Cd, Pb, Cr, Ni, Cu, Zn, Fe, Mn, As and Ba [16,17,19, 20-23,32-33,36-38], petroleum related hydrocarbons and PAHs [24-25,29-30,32-33,36-37], BTEX and TPH [24-25,29-30,33-34,37], Persistent organic pesticides [31] and microbial contamination [38]. Cadmium (Cd), Pb, Ni and Benzo(a)pyrene (B[a]P) whose values repeatedly exceeded regulatory thresholds in several of the articles [16-17,19-21,25,29,33-34,37]. This aligns with other findings from the Niger Delta which implicated oil explorations, spills, gas flaring and other anthropogenic activities as major causes of environmental contaminations [39-41]. Cadmium (Cd) appears as a major contaminant with repeated elevated risks across several of the review articles [16-17,19-22,27,32-33,37], while several of the papers deployed health risk indices like Potential Ecological Risk Index (PERI), Ecological Risk Index (ERI), Hazard Quotient (HQ) and Incremental Lifetime Cancer Risk (ILCR), Cd was constantly identified as dominant contributor to environmental risks [16-17,19,21]. This consistent implication of Cd aligns with other study which linked oil production waste, spent lubricants, residues from mechanic workshops and industrial effluents with abnormally high levels of Cd in soils and water sediments [42]. Lead (Pb) and Ni were also repeatedly detected at alarming levels from several of the reviewed articles [16-17,21,24-26,28,36-37]. Findings from [36] which reported Fe, Ni and Pb clearly exceeding the Standard Organisation of Nigeria (SON), Food and Agriculture Organisation (FAO), World Health Organisation (WHO) and National Agency for Food and Drug Administration and Control (NAFDAC) in food crops reflects the exposure pathways from soil, crops to humans. Similarly, [25,29,34] identified B[a]P and other high molecular weight PAHs as clearly above the threshold levels, this is vital in carcinogenic risk and consistent with PAH burdens reported by other study [41]. BTEX and TPH were also recognised as major contaminants [25,30,33-34,37], [33] which investigated sediments at oil discharge points which revealed high TPH and hydrocarbon loads, buttressing other research showing high levels of TPH near discharge spills and sites [40]. Organochlorine pesticides (OCPs) and Hexachlorocyclohexane (HCH) were documented by [31] in soils and sediments, this reflects historical and ongoing pesticides usage as reported by earlier study [43].

Exposure Pathways

Several of the reviewed articles revealed exposure to contaminants and the associated risks [18-19,22,25,29-30,35], notably is [20] which linked water and heavy metal contaminations with abnormally elevated serum biomarkers and enzymatic activities in the liver, this reflects the negative implications of ingestion or dermal exposures. In addition, [25,29-30] calculated ILC, Hazard Index (HI) and Carcinogenic Risks (RI) linked to ingestion and dermal exposures to PAHs, B[a]P and heavy metals (Cr, Cd, Ni). These risk assessments indicate how contaminations not only pose environmental issues but also constitute health risks when irrigation, ingestion or dermal pathways exists, which aligns with other studies [39, 40].

Anthropogenic Activities as Major Sources of Environmental Contaminants in the Niger Delta

All reviewed articles attributed the contaminations to localized anthropogenic activities although there unique and overlapping emphases across the articles. Oil and gas exploration,

spills and discharges from operational activities were repeatedly implicated [19-20,24-26,33-35], specifically with high TPH, PAHs and metals at discharge and spill points. This aligns with studies which previously documented that crude oil contamination remains a dominant driver of metals and hydrocarbon pollution in the Niger-Delta [39-40], while [21,25,29] pinpointed gas flaring and combustion emissions as sources of pyrogenic PAHs and other acidic depositions which support easy mobilisation of metals as buttressed by [45]. Mechanic workshops, spent oil and urban dumpsites were clearly reported as other anthropogenic sources of contaminants [16-17,23,27,36-37], these activities increase environmental pollutants from lubricants and metal wear products which increase the levels of Cd, Pb and Cu in soils. Studies from other mechanic workshop had also indicated similar potential toxic elements around mechanic workshops [46-47]. Agricultural pesticides usage and runoff reported by [31] accounts for OCPs and HCH isomers also attributed to anthropogenic and indiscriminate use of agricultural chemicals, these chemicals are vital for increased agricultural activities vis-a-vis food sustainability, their abilities to travel via run-off and atmospheric redistribution makes them contaminants of concerns across the world [43].

CONCLUSION

With historical and continuous exploration of crude products across the Niger Delta region of Nigeria, contamination of both soil and water remain a crucial issue worthy of consideration by all stakeholders, this necessitated this systematic review. The 23 studies which met the inclusion criteria in the review jointly showed that soils, sediments and water across the Niger Delta region of Nigeria are contaminated with heavy metals, hydrocarbons and in some places OCPs and microbial pathogens. Anthropogenic activities which include oil and gas operations, mechanic and industrial emissions, waste disposal and agricultural practices are repeated primary causes of these pollutions. The evidences support targeted remediation, harmonised monitoring and integrative health studies to characterise exposure and also to reduce risk. In this vein, this review recommends extensive enlightenment and mass awareness as a crucial part of addressing contaminations and environmental degradation within the Niger Delta region.

References

- [1]. Adebangbe, S.A., et al., Evaluating contaminated land and the environmental impact of oil spills in the Niger Delta region: a remote sensing-based approach. *Environmental Monitoring and Assessment*, 2025. 197(10): p. 1-25.
- [2]. Maduka, O. and B. Ephraim-Emmanuel, The quality of public sources of drinking water in oil-bearing communities in the Niger Delta region of Nigeria. *AAS Open Research*, 2019. 2: p. 23.
- [3]. Ekhator, O.C., et al., Impact of black soot emissions on public health in Niger Delta, Nigeria: understanding the severity of the problem. *Inhalation Toxicology*, 2024. 36(5): p. 314-326.
- [4]. Numbere, A.O., T.N. Gbarakoro, and B.B. Babatunde, Environmental degradation in the Niger Delta ecosystem: the role of anthropogenic pollution. In *Sustainable utilization and conservation of Africa's biological resources and environment*, 2023. p. 411-439. Singapore: Springer Nature Singapore.
- [5]. Sharmila, P. and E. Karthikeyan, Emerging Nanomedical Techniques: Transforming Contaminant Management in Soil and Water. *Sustainable Chemistry for Climate Action*, 2025. p. 100116.
- [6]. Echendu, A.J., A Portrait of the Urban Demographic Profile of an African City—Port Harcourt, Nigeria. *Urban Science*, 2025. 9(5): p. 178.

- [7]. Abayomi, O., T.E. Olayemi, and T. Ogungbade, Environmental pollution and its ecological consequences on the Niger Delta: A review of the literature. *African Journal of Environment and Natural Science Research*, 2021. 4: p. 27-42.
- [8]. David, O.E., et al., Thornthwaite's Potential Evapotranspiration Rate Assessment and Implication on Rainfall Induced Floods in a Coastal Expanse of Nigeria. *Journal of Water Resource Engineering and Management*, 2023. 10(1): p. 15-24p.
- [9]. Solomon, L., O. George-West, and I.K. Alalibo, Environmental pollution in the Niger Delta and consequential challenges to sustainable development of the region: the role of an individual. *Researcher*, 2017. 9(8): p. 10-15.
- [10]. Adetunde, O.T., et al., Polycyclic aromatic hydrocarbon in vegetables grown on contaminated soils in a sub-saharan tropical environment-Lagos, Nigeria. *Polycyclic Aromatic Compounds*, 2020.
- [11]. Nwaichi, E.O., M.O. Wegwu, and U.L. Nwosu, Distribution of selected carcinogenic hydrocarbon and heavy metals in an oil-polluted agriculture zone. *Environmental Monitoring and Assessment*, 2014. 186(12): p. 8697-8706.
- [12]. Ogbogu, I. and I.B. Nwoke, Distribution of heavy metals and total petroleum hydrocarbons in soil and cassava (*manihot esculenta*) around Omoku, Rivers State, Nigeria. *Faculty of Natural and Applied Sciences. Journal of Applied Chemical Science Research*, 2024. 1(1): p. 14-22.
- [13]. Jiang, M. and H. Zhao, Joint association of heavy metals and polycyclic aromatic hydrocarbons exposure with depression in adults. *Environmental Research*, 2024. 242: p. 117807.
- [14]. Ali, H., E. Khan, and M.A. Sajad, Phytoremediation of heavy metals—concepts and applications. *Chemosphere*, 2013. 91(7): p. 869-881.
- [15]. Fang, L., et al., The combined effect of heavy metals and polycyclic aromatic hydrocarbons on arthritis, especially osteoarthritis, in the US adult population. *Chemosphere*, 2023. 316: p. 137870.
- [16]. Alabi, B.A., et al., Trace metal in soils of auto-mechanics workshops in Akure metropolis, Nigeria: assessment of environmental quality. *International Journal of Environmental Science and Technology*, 2025. p. 1-14.
- [17]. Adebayo, A.S., et al., Environmental impact assessment of active dumpsite in Ondo City, Nigeria: geochemical and geophysical approaches. *Environmental Monitoring and Assessment*, 2023. 195(6): p. 785.
- [18]. Edet, A., et al., Assessment of surface water and groundwater quality and their associated human health risks around dumpsites, Cross River State, Southern Nigeria. *Environmental Earth Sciences*, 2025. 84(9): p. 234.
- [19]. Izah, S.C., et al., Environmental health risks of trace elements in sediment using multivariate approaches and contamination indices. *International Journal of Environmental Science and Technology*, 2025. 22(7): p. 5791-5816.
- [20]. Ilechukwu, I., et al., Assessment of heavy metal pollution in soils and health risk consequences of human exposure within the vicinity of hot mix asphalt plants in Rivers State, Nigeria. *Environmental Monitoring and Assessment*, 2021. 193(8): p. 461.
- [21]. Ahmed, N.O., et al., Pollution assessment and index properties of Okpolor soils, Rivers State, Nigeria: geochemical characterization, geotechnical and geoenvironmental implications. *Discover Environment*, 2024. 2(1): p. 60.
- [22]. Omeka, M.E., et al., Modeling the vulnerability of water resources to pollution in a typical mining area, SE Nigeria using speciation, geospatial, and multi-path human health risk modeling approaches. *Modeling Earth Systems and Environment*, 2024. 10(5): p. 5923-5952.
- [23]. Ale, T.O., et al., Soil pollution status due to potentially toxic elements in active open dumpsites: insights from different Nigerian geological environments. *Environmental Earth Sciences*, 2024. 83(18): p. 535.

[24]. Muhammad, R., et al., Assessing the impacts of oil contamination on microbial communities in a Niger Delta soil. *Science of the Total Environment*, 2024. 926: p. 171813.

[25]. Ihenetu, S.C., Ecological and Human Health Risks Associated with Soil Pollution by PAHs and Heavy Metals in the Niger Delta. *Carpathian Journal of Earth and Environmental Sciences*, 2024. 19(1): p. 187-200.

[26]. Onyena, A.P., et al., Metal Pollution and Ecological Risk in Water from Chanomi Creek, Warri, Niger Delta, Nigeria. *Journal of Chemical Health Risks*, 2023. 13(4).

[27]. Omeka, M.E. and O. Igwe, Heavy metals concentration in soils and crop plants within the vicinity of abandoned mine sites in Nigeria: an integrated indexical and chemometric approach. *International Journal of Environmental Analytical Chemistry*, 2023. 103(16): p. 4111-4129.

[28]. Afolabi, O.O., et al., Potential environmental pollution and human health risk assessment due to leachate contamination of groundwater from anthropogenic impacted site. *Environmental Challenges*, 2022. 9: p. 100627.

[29]. Akporhonor, E.E., O.O. Emoyan, and P.O. Agbaire, Concentrations, origin, and human health risk of polycyclic aromatic hydrocarbons in anthropogenic impacted soils of the Niger Delta, Nigeria. *Environmental Forensics*, 2022. 23(1-2): p. 127-140.

[30]. Emoyan, O.O., P.O. Agbaire, E. Ohwo, and G.O. Tesi, Priority mono-aromatics measured in anthropogenic impacted soils from Delta, Nigeria: concentrations, origin, and human health risk. *Environmental Forensics*, 2022. 23(1-2): p. 141-152.

[31]. Emoyan, O.O., et al., Occurrence, origin, ecological and human health risks of organochlorine pesticides in soils from selected urban, suburban and rural storm water reservoirs. *Soil and Sediment Contamination: An International Journal*, 2022. 31(2): p. 152-175.

[32]. Awoyemi, M.O., et al., Water and sub-soil contamination in the coastal aquifers of Arogbo, Ondo State, Nigeria. *Journal of Hydrology: Regional Studies*, 2021. 38: p. 100944.

[33]. Oyesanya, O.U. and O.V. Omonona, An assessment of the effects of oil field brine discharges on sediment and water of Forcados River, Niger Delta, Nigeria. *Arabian Journal of Geosciences*, 2021. 14(16): p. 1580.

[34]. Edet, A., et al., Evaluation and risk assessment of polycyclic aromatic hydrocarbons in groundwater and soil near a petroleum distribution pipeline spill site, Eleme, Nigeria. *Sustainable Water Resources Management*, 2021. 7(4): p. 50.

[35]. Thomas, C.C., et al., Hepato-renal toxicities associated with heavy metal contamination of water sources among residents of an oil contaminated area in Nigeria. *Ecotoxicology and Environmental Safety*, 2021. 212: p. 111988.

[36]. Omorogieva, O.M. and J.A. Tonjoh, Bioavailability of heavy metal load in soil, groundwater, and food crops manihot esculenta and carica papaya in dumpsite environment. *International Journal of Environmental Science and Technology*, 2020. 17(12): p. 4853-4864.

[37]. Muze, N.E., et al., Assessment of the geo-environmental effects of activities of auto-mechanic workshops at Alaoji Aba and Elekahia Port Harcourt, Niger Delta, Nigeria. *Environmental Analysis, Health and Toxicology*, 2020. 35(2): p. e2020005.

[38]. Asibor, G., O. Edjere, and C. Christopher, Status of discharged abattoir effluent and its effects on the physico-chemical characteristics of Orogodo River, Delta State, Nigeria. *Water Pollut XV*, 2020. 242: p. 51-60.

[39]. Lindén, O. and J. Pålsson, Oil contamination in ogoniland, Niger Delta. *Ambio*, 2013. 42(6): p. 685-701.

[40]. Anyanwu, I.N., et al., Pollution of the Niger Delta with total petroleum hydrocarbons, heavy metals and nutrients in relation to seasonal dynamics. *Scientific Reports*, 2023. 13(1): p. 14079.

[41]. Okoye, E.A., et al., Polycyclic Aromatic Hydrocarbons in Soil and Vegetation of Niger Delta, Nigeria: Ecological Risk Assessment. *J Toxicol*, 2023. 2023: p. 8036893.

[42]. Orisakwe, O.E., Crude oil and public health issues in Niger Delta, Nigeria: Much ado about the inevitable. *Environmental Research*, 2021. 194: p. 110725.

- [43]. Iwegbue, C.M., et al., Organochlorine pesticide contamination of soils and dust from an urban environment in the Niger Delta of Nigeria. *Science of the Total Environment*, 2024. 938: p. 172959.
- [44]. Samaila, B., Z.M. Kalgo, and B. Maidamma, Exposure to heavy metals in oil and gas wastes: A systematic review on health hazards assessment and mitigation in Nigeria. *Advanced Research in Medical and Health Sciences*, 2023. 1(1): p. 22-32.
- [45]. Seiyaboh, E.I. and S.C. Izah, A Review of impacts of gas flaring on vegetation and water resources in the Niger Delta region of Nigeria. *International Journal of Economy, Energy and Environment*, 2017. 2(4): p. 48-55.
- [46]. Ajeh, E.A., F.J. Modi, and I.P. Omoregie, Health risk estimations and geospatial mapping of trace metals in soil samples around automobile mechanic workshops in Benin city, Nigeria. *Toxicology Reports*, 2022. 9: p. 575-587.
- [47]. Duru, S.C., et al., Spatial variability of heavy metals concentrations in soil of auto-mechanic workshop clusters in Nsukka, Nigeria. *Scientific Reports*, 2024. 14(1): p. 9681.