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ABSTRACT	
In	agricultural	insurance	practice,	risk	and	indemnity	payment	are	often	incurred	from	
individual	 farmer’s	 yield.	 However,	 high	 administration	 cost	 and	 data	 scarcity	 are	
simultaneously	quite	often	seen,	which	form	huge	burdens	for	insurers	 to	adequately	
rate	insurance	products.	Under	this	circumstance,	some	methods	that	could	be	used	to	
estimate	farmers’	yields,	in	particular,	their	distributions,	are	urgently	needed.	Among	
these	methods,	 a	 so	 called	PERT	 fitting	 technique	often	prevails	 due	 to	 its	 simplicity	
which	 only	 requires	 very	 little	 knowledge	 about	 the	 yield	 history,	 that	 is	 frequently	
implemented	 by	 both	 academics	 and	 practitioners.	 However,	 the	 very	 limited	
information	used	would	sometimes	cause	severe	bias,	in	other	words,	the	reliability	of	
this	method	is	yet	to	be	examined.	In	this	paper,	I	used	Monte	Carlo	experiments	to	test	
the	robustness	of	PERT	fittings	under	Var	and	CTE	risk	measures	in	different	scenarios.	
The	result	proves	that	PERT	method	is	indeed	robust	and	trustworthy.	
	
Key	words:	PERT	fittings,	Monte	Carlo	simulations,	VaR,	CTE.	

	
INTRODUCTION	

The	main	purpose	of	this	research	is	to	figure	out	some	properties	in	fitting	distributions	for	
assumed	populations	with	conventional	PERT	techniques,	test	their	behaviors	under	different	
scenarios	 that	 are	 generated	 by	 controlling	 skewness	 and	 variance	 before	 evaluating	 their	
robustness	 in	 distribution	 fitting	 through	 properly	 designed	 experiments.	 In	 this	 research,	 I	
mainly	 focus	on	distributions	derived	 from	non-negative	 random	variables	and	 their	 fittings	
under	 actuarial	 context,	 which	 leads	 to	 the	 concentration	 to	 some	 particular	 risk	measures,	
such	as	 the	 left-tail	Value	at	Risk	and	the	 corresponding	Conditional	Tail	Expectation.	Monte	
Carlo	 simulations	will	 be	 the	 basic	 tool	 in	 random	 sampling	 from	 given	 distributions	 for	 its	
applicability	and	flexibility.	
	

PERT	DISTRIBUTION	
PERT	originally	refers	to	"Program	&	Project	Evaluation	and	Review	Technique",	which	is,	as	a	
management	tool,	developed	for	the	Program	Evaluation	Branch	of	the	Special	Projects	of	the	
Navy	 (U.S.	 Dept.	 of	 the	 Navy.(1958)).	 The	 entire	 process	 of	 conventional	 PERT	 includes	 a	
distribution	 fitting	 procedure	 that	 uses	 a	 special	 three-parameter	 general	 Beta	 distribution	
(Malcolm,D.G.	et	al.	[1]).	
	
In	general,	a	Beta	distribution	on	(0,1)	with	parameters	= > 0	and	c > 0	has	a	density	function	
defined	as		

ÇÆ%Øk(∞,±)(Z) =
Z∞M"(1 − Z)±M"

,(=, c)
,				åℎ(.(				,(=, c) =

Γ(=)Γ(c)
Γ(= + c)
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Γ(=) = ≥
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>
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Normally,	 if	a	random	variable	Ü ∼ ,(/J(=, c)	on	(0,1),	by	stretching	 its	range	with	the	 form	
Ö = J + (R − J)Ü,	 where	0 < J < R < ∞,	 a	 non-negative	 random	 variable	 is	 obtained	 as	 so	
called	general	Beta	distributed	on	(J, R).	By	transforming,	a	theoretic	general	Beta	distribution	
has	properties		
	

∏ = |-D + ∞
∞#±

(|JZ −|-D),																																																															(1.1)	

|[V( = |-D + ∞M"
∞#±M)

(|JZ −|-D),				Ç[.		= > 1, c > 1,											(1.2)						

								π) = ∞±
(∞#±)&(∞#±#")

.																																																																												(1.3)	
	
In	using	general	Beta	to	fit	distributions,	the	usual	methods	are	of	two	main	kinds,	maximum	
likelihood	 estimations	 (MLEs)	 and	 Moment/Quantile	 matchings.	 The	 former	 requires	 all	
information	 of	 each	 sample,	 whereas	 the	 latter	 requires	 some	 pre-chosen	 sample	 statistics.	
Under	 the	 circumstances	 where	 complete	 datasets	 (samples)	 are	 hard	 to	 acquire,	
moment/quantile	 matching	 methods	 seem	 to	 be	 more	 feasible	 due	 to	 its	 less	 stringent	
requirement	for	sample	information.	Moreover,	among	all	moments/quantiles,	∏,	|[V(	and	π)	
are	 the	most	easily	 captured	ones.	 In	 this	 case,	one	 is	 capable	of	using	any	 two	of	 the	above	

equations	to	solve	=̈	and	c∫ 	by	substituting	∏,	|[V(	and	π)	by	∏̂,	|º[V(	and	π̈)	respectively.	
	
Under	the	context	of	its	original	use,	PERT	tackles	to	a	triangular	estimation	problem,	in	which	
all	data	is	categorised	into	three	clusters,	|-D,	|JZ	and	|[V(.	The	motivation	is	to	transform	
uncertain	problem	into	relatively	certain	one	by	categorising	or	ranking,	instead	of	processing	
continuous	stochastic	information.	In	most	cases	where	PERT	is	implemented,	decision	makers	
want	 to	 obtain	 some	 distribution	 information	 of	 concerned	 variables	 based	 on	 very	 simple	
point	estimators	instead	of	those	for	continuous	behaviors.	For	instance,	if	an	insurer	needs	to	
know	what	 an	 individual	 farmer’s	 yield	 distribution	 looks	 like	with	 absence	 of	 the	 farmer’s	
historical	 yield	 data,	 he	 could	 ask	 the	 farmer	 for	 his	|º-D,	|º[V(	and	|ºJZ	before	 conducting	
PERT	fittings	on	them	to	reach	the	purpose.	In	this	case,	the	inputs	for	PERT	fitting	are	quite	
subjective	 and	 actually	 infers	 that:	 a	 continuous	 data	 set,	 without	 any	 loss	 of	 generality,	 is	
regarded	as	a	combination	of	three	clusters,	and	yields	a	sample	group	composed	of	only	three	
values	of	observations.	Indeed,	in	practice,	with	acquired	|º[V(,	|º-D,	|ºJZ	and	the	assumption	
that	the	possibility	for	occasions	that	|[V(	happening	is	4	times	than	that	of	|JZ	plus	|-D.	It	is	
often	estimated	that		
	

∏̂ = Ωºkl#dΩºmæ%#Ωºø¿
¡

,																														(1.4)	

π̈) = (ΩºklMΩºø¿
¡

)).																																					(1.5)	
	
Obviously,	 the	 above	 estimations	 closely	 relate	 to	 the	 assumption	 of	 “4	 times",	 and	 they	 are	
precise	 if	 population	 coincides	with	E(D(.JF		,(/J(4,4).	 Actually,	 it	 could	 be	 explained	 in	 an	
easier	way,	that	is,	with	the	assumption	of	two	independently	distributed	events	Üm¬ØøΩøØ√Ø< 	and	

Ü¬%√√øΩ%√Øø< 	with	symmetric	assumptions	“mode	happens	2	times	that	min"	and	“mode	happens	2	
times	than	max".	 Indeed,	 the	 constant	4	could	be	generalized	as	ƒ	if	 verification	 is	needed.	 In	
this	case,	the	choice	of	ƒ	becomes	quite	sensitive.	Moreover,	if	a	general	Beta	distribution	has	
identical	|(JD	and	|[V(,	which	 indicates	unskewness	and	yields	= = c,	 the	estimation	 (1.4)	
will	 be	 unbiased	 regardless	 of	ƒ ,	 whereas	 (1.5)	 being	 biased	 in	 many	 cases	 even	 if	 the	
distribution	 is	 unskewed.	 Moreover,	= ≠ c	could	 be	 used	 in	 conducting	 skewed	 fittings,	 for	
instance,	as	= + c = ƒ	suggested	by	Sasieni.	
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With	 the	 use	 of	 (1.2)	 and	 (1.4)	 or	 (1.2)	 and	 (1.5),	=̈	and	c∫ 	for	 PERT	 distribution	 could	 be	
obtained.	One	 should	 note	 that	 the	 original	 PERT	 is	 a	 very	 sophisticated	 process	 combining	
multiple	 phases,	 which	 is,	 in	most	 cases,	 information	 about	 the	 concerned	 variable,	 elapsed	
time,	 for	instance,	 is	simply	approximated	by	(1.4)	and	(1.5)	(U.S.	Dept.	of	 the	Navy.	(1958)),	
instead	 of	 the	 fitted	 PERT	 distribution.	 In	 this	 research,	 I	 just	 concentrate	 on	 the	 PERT	
distribution,	with	nothing	else	relates	to	the	whole	program	evaluation	and	review	procedure.	
	

POPULATION	ASSUMPTIONS	
In	actuarial	and	risk	assessment	practices,	the	most	commonly	treated	data	is	that	generated	
from	 the	 class	 of	 non-negative	 random	 variables.	 For	 example	 life	 durations,	 farming	 yields	
and	all	sorts	of	claim	payments	etc.	 In	 this	research,	 in	a	general	way,	 I	use	random	samples	
drawn	 from	 predetermined	 parametric	 populations	 as	 representations	 for	 non-negative	
datasets	 in	 real	 life	 applications.	The	 reason	 for	 that	 is	 quite	 natural,	 because	 I	 can’t	 simply	
deny	 the	 fact	 that	 a	 dataset	 comes	 from	 a	parametric	 population,	despite	 not	 knowing	 from	
what	distribution	exactly.	As	the	fact,	the	choice	of	population	distribution	becomes	essential	
under	this	context.	I	believe	that	a	good	choice	must	at	least	have	the	following	properties:	

1.			It	must	be	adequately	representative	to	reality,	its	range,	shape	and	other	properties	has	
to	suit	the	research	purposes.	

2.	 	 It	must	 be	 of	 great	 flexibility	 as	 it	 could	 be	 adjusted	 into	multiple	 cases	which	 are	 of	
concerns.	

3.	 	 It	 must	 be	 easily	 operate,	 the	 relations	 of	 its	 parameters	 toward	 its	 moments	 and	
quantiles	should	be	as	simple	and	clear	as	possible.	

	
By	considering	those	in	mind,	I	find	modified	Gamma	distribution	might	be	the	best	choice	as	it	
attains	all	the	desired	properties.	Moreover,	despite	the	fact	that	Gamma	distribution	is	always	
right-skewed,	 a	 mirror	 image	 operation	 could	 be	 used	 to	 solve	 this	 problem,	 that	 is,	 by	
|-D(Z) + |-D(Z) − Z	where	Z	is	a	vector	of	samples	from	right	skewed	Gamma	distributions.	
The	 converted	 samples	 have	 identical	 variance	 but	 opposite	 skewness	 against	 the	 original	
ones.	 Meanwhile,	 general	 Beta	 distribution	 seems	 to	 be	 an	 alternmative,	 but	 it	 is	 hard	 to	
operate	as	the	relations	of	its	moments	and	mode	toward	its	parameters	are	of	comparatively	
more	 sophisticated	 forms,	 besides,	 general	 Beta	 distribution	 requires	 a	 predetermined	 fixed	
range,	which	may	lack	variability	to	some	extent.	
	
In	 general,	 a	modified	 Gamma	 distribution	| + Ü	where	|	is	 a	 non-negative	 constant,	Ü	is	 a	
Gamma	distributed	 random	variable	with	 shape	parameter	U > 0	and	 scale	parameter	∆ > 0,	
posses	a	density	function		
	

	 									Ç«kΩΩk(»,…)(Z) =
"

 (»)…À
Z»M"(M

\
Ã,																																																																											

	 									å-/ℎ				|(JD = U∆ + |,				ÅJ.-JDX( = U∆),				~ƒ(åD(~~ = )

√»
.	

	
In	 this	 research,	 I	 assume	 that	 the	population	coincides	with	modified	Gamma	distributions,	
and	 I	 are	 concern	 about	 different	 scenarios	 generated	 from	 them	 by	 controlling	 population	
mean,	 variance	 and	 skewness.	 Kurtosis	 is	 not	 considered	 because	 it	 will	make	 the	 research	
much	more	redundant,	other	information	about	the	population	will	be	ignored	as	well,	as	they	
are	relatively	less	important	than	moments	of	the	first	three	orders.	
	

VaR	AND	CTE	
Under	actuarial	context,	censored	data,	such	as	claim	payment,	is	usually	of	primary	concerns	
to	many	practitioners.	Because	 in	many	cases,	 tail	 information	 is	of	 greater	 importance	 than	
that	 of	 center.	 In	 this	 research,	 I	 am	 going	 to	 tackle	 to	 both	 censored	 and	 uncensored	 data,	
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which	means	they	could	either	be	realized	loss	or	risk	sets	where	loss	comes	from.	In	the	first	
case,	 PERT	 method	 is	 simply	 implemented	 to	 loss	 data,	 whereas	 in	 the	 second	 case,	 data	
derived	 from	risk	 sets	with	potential	 loss	 contained	 in	 is	 fitted.	 In	 this	 case,	 some	additional	
methods	 should	 be	 undertook	 in	 order	 to	 separate	 actual	 loss	 from	 populations.	 Hence,	 I	
consider	two	widely	used	risk	measures,	Value	at	Risk	(VaR)	and	Conditional	Tail	Expectation	
(CTE)	to	reach	the	purpose.	
	
Unlike	traditional	definition	on	the	right	tail,	I	use	a	left	tail	definition	of	VaR,	which	is		
	

{Ju¬(Ü) = inf{Z: w.[R(Ü ≤ Z) ≥ a} = y(a) = z(M")(a),	
	
where	p	is	the	left	tail	probability	(significance	level),	Q(p)	as	the	p-quantile	and	z(M")(a)	being	
the	pseudo	inverse	of	F.		
And	corresponding	left	tail	CTE	defined	as		

vt;(a) = ;[Ü|Ü ≤ {Ju¬(Z)].	
With	these	definitions,	if	population	is	regarded	as	a	risk	set	with	loss	triggered	in	percentiles	
to	its	left	tail,	VaR,	as	an	threshold,	could	be	used	as	an	indication	of	the	severity	to	this	risk,	
because	 claims	 will	 only	 occur	 with	 values	 less	 than	 it.	 Consequently,	 CTE	 infers	 to	 the	
expected	loss	of	the	given	population.	
	

PERT	FITTINGS	
Population	Distribution	Fitting	
Here	 I	 implement	 PERT	 and	 general	 Beta	 fittings	 on	 populations	 with	 modified	 Gamma	
distributions	 under	 different	 combinations	 of	 skewness	 and	 variance.	 The	 experiments	 are	
conducted	to	use	them	fitting	dataset	composed	of	10000	random	samples	drawn	from	a	given	
modified	Gamma	populations.	As	the	value	|º[V(	has	to	be	estimated	from	the	samples	(with	
equally	

"
">>>>

	empirical	frequency	each	value),	it	has	to	be	certain	where	the	density	reaches	its	

peak.	I	use	kernel	density	estimation	(KDE)	(Rosenblatt,M.	[2],	Parzen,E.[3])	to	figure	that,	with	
the	help	of	some	R	(a	statistical	software)	packages.	
	
In	KDE,	 the	 choice	of	 kernel	 function	 and	 bandwidth	will	 both	 cause	 influence	 to	 the	 result.	
According	to	Wand,M.P.	and	Jones,M.C.[4],	the	loss	of	efficiency	in	estimation	is	small	with	the	
use	 of	 different	 kernel	 functions,	 but	 huge	 in	 distinct	 bandwidth	 selections.	 So	 in	 the	 latter	
sections,	I	will	consistently	use	Gaussian	kernel	for	its	convenience	and	usability.	Meanwhile,	
there	are	many	commonly	used	methods	in	optimal	bandwidth	selection	and	their	efficiencies	
are	shown	for	a	small-sample	case	with	60	samples	drawn	from	a	Gamma	population.	

	

	 		
”J||J(1,50).	
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As	 shown	 in	 the	 figure,	 the	 method	 “WXÅ",	 which	 refers	 to	 “unbiased	 cross	 validation"	
(Bowman,A.W.	(1984),	Hall,P.	 et	al.	 (1992))	seems	to	be	the	best	 in	capturing	changes	of	 the	
empirical	density	to	a	small-size	sample	group,	and	it	is	a	suitable	method	for	a	wide	variety	of	
sample	 groups.	 Therefore,	 I	 will	 use	 it	 to	 extract	|º[V(	in	 the	 latter.	 The	 empirical	 density	
estimated	by	KDE	is	a	smoothed	curve,	without	simple	closed	form	expressions	in	most	cases,	
but	 estimations	 for	 any	 values	within	 the	 range	 could	 be	 conducted.	 In	 this	 case,	 I	 take	 512	
equally-distant	 points	 from	(~J|aF((|-D), ~J|aF((|JZ)) ,	 obtain	 512	 estimations	 for	 the	
empirical	density	and	get	the	|º[V(	by	picking	the	largest	from	them.	
	
For	PERT	fitting,	I	use	∏̂	derived	from	(1.4),	combining	with	(1.1)	and	(1.2),	I	have		
	
Ωºmæ%MΩºø¿
ΩºklMΩºø¿

= ∞ºM"
∞º#±úM)

,									 (2.1)	

		
ΩºklM‘Ωºø¿#dΩºmæ%

¡(ΩºklMΩºø¿)
= ’ºMΩºø¿

ΩºklMΩºø¿
= ∞º

∞º#±ú
,																										(2.2)	

yields		

	 6( ’ºMΩºø¿
ΩºklMΩºø¿

) = =̈,																																							

	 6( ΩºklM’º
ΩºklMΩºø¿

) = c∫,																																							
and		

	 =̈ + c∫ = 6.															
	
This	is	exactly	the	case	where	ƒ = 6	as	in	Sasieni	(1986),	and	coincides	with	the	method	many	
statistical	softwares	implement	(@Risk	etc).	The	reason	not	to	use	(1.5)	is	intuitively	because	
that	it	actually	causes	double	bias	as	it	is	derived	based	on	estimation	(1.4).	
	
In	 comparison,	 I	 also	 implement	 general	 Beta	 fitting	 and	 use	 (1.1)	 and	 (1.2)	 to	 solve	 the	
parameters.	By	this,	I	assume	that	the	population	mean	is	known,	or	perfectly	estimated	with	
∏̂ = ∏.	The	reason	for	that	is	quite	natural,	because	no	matter	how	I	modify	the	parameters	in	
PERT	distribution,	 it	 is	 still	 a	 special	 form	of	 general	Beta	distributions.	 In	 result,	 somehow,	
this	sort	of	general	Beta	 fitting	may	be	regarded	as	 the	“best"	case	of	PERT	fittings,	which	to	
some	 extent	 allows	 us	 to	 compare	 robustness	 among	different	 PERT	methods.	 In	 addition,	 I	
also	assume	that	|º-D	and	|ºJZ	equal	to	|-D	and	|JZ	in	all	cases.	
	
By	 controlling	 U ,	 ∆ 	and	 | ,	 I	 generate	 four	 populations	 ”J||J(2,25) + 303 ,	
”J||J(100,3.53) ,	 ”J||J(2,10) + 333 	and	 ”J||J(100,1.41) + 212 	which	 all	 have	 the	
same	mean	 (353)	 but	 distinct	 skewness	 and	 variance,	 as	 the	 representations	 of	 four	 typical	
scenarios.	 However,	 population	 with	 negative	 skewness	 is	 spared	 because	 the	 fittings	 are	
symmetric	(the	right	skewed	estimation	 is	symmetric	 in	shape	of	 the	left	skewed	case)	as	all	
the	fittings	are	of	Beta	forms.	
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Figure		2:	Densities	of	PERT	and	GB	fittings	in	different	scenarios.	

		
The	 figure	 shows	 that	 in	 the	 right	 skewed	 cases,	 GB	 fittings	 present	 much	 more	 accurate	
results	than	PERT,	as	they	precisely	capture	the	peaks	and	tails	of	the	empirical	distributions	
while	PERT	fittings	exhibit	 longer	and	heavier	 tails.	The	analogous	results	could	be	expected	
for	 left	 skewed	 cases.	 In	 the	 unskewed	 cases,	 where	 theoretic	 population	 skewness	 I	

implement	( )
√">>

= 0.2)	is	used	to	approximate	unskewness,	the	results	from	Figure	2	seem	to	
reveal	 some	 different	 patterns.	 Theoretically,	 if	 the	 sample	 group	 is	 identically	 unskewed	

(when	D → ∞	and	U → ∞),	∏̂ 	would	 equal	 to	|º[V( ,	 and	 yield	=̈ = c∫ 	to	 both	 GB	 and	 PERT	
distributions.	 Moreover,	 under	 this	 circumstance,	 PERT	 would	 indeed	 become	”,(3,3)	
distribution	 with	 relation	=̈ + c∫ = 6,	 but	 GB	 fittings	 would	 be	 infeasible	 as	 (1.1)	 and	 (1.2)	
would	be	equivalent	and	only	result	in	=̈ = c∫ .	Therefore	more	information,	such	as	π̈),	must	be	
added	 in	 order	 to	 solve	 the	 parameters.	 Meanwhile,	 in	 GB	 fittings	 on	(|-D,|JZ) ,	 the	
parameters	estimated	from	(1.1)	and	(1.2)	are	
	

=̈ = (’ºMΩø¿)()Ωºmæ%MΩklMΩø¿)
Ωºmæ%M’º

,	 (2.3)	

	c∫ = ∞º(ΩklM’º)
’ºMΩø¿

.																																																					(2.4)	
	
Theoretically,	in	GB	distributions,	I	have		
	
	 Cƒ(åD(~~ > 0 ⇒ |[V( < ∏				JDV				2|[V( < |-D +|JZ ⇒ = > 0,													
	 Cƒ(åD(~~ < 0 ⇒ |[V( > ∏				JDV				2|[V( > |-D +|JZ ⇒ = > 0,													

																					Cƒ(åD(~~ = 0 ⇒ |[V( = ∏ =
|-D + |JZ

2
⇒ = = c > 0.																							

													
These	 relations	guarantee	 the	positiveness	 (regularization	properties)	of	parameters	=	and	c	
in	GB	distributions.	But	when	using	 it	 to	conduct	 fittings,	very	often,	 the	|º[V(	and	∏̂	derived	
from	 datasets	 would	 fail	 to	 follow	 those	 relations,	 thus	 leading	 to	 negative	=̈ 	and	c∫ 	and	
resulting	in	invalidness.	The	same	analysis	could	be	applied	to	modified	Gamma	fitting	which	is	

widely	used	 in	actuarial	practices.	Because	 in	modified	Gamma	 fittings,	 relations	Ü∆ò + |º = ∏̂	
and	(Ü − 1)∆ò + |º = |º[V(	are	 used,	 yield	Ü = ’ºMΩº

’ºMΩºmæ%
	and	∆ò = ∏̂ − |º[V(	when	Ü ≥ 1 ,	 which	

guarantees	 the	 positiveness	 of	 these	 two	parameters	 and	may	 fail	 if	 datasets	 don’t	 coincide	
with	the	requirement	that	∏̂ > |ºV[(.	Besides,	more	information	is	needed	in	estimating	|º .	It	
should	be	emphasized	that	these	failures	are	irrelative	with	the	size	of	datasets,	but	relating	to	
the	underlying	parametric	assumptions,	which	cannot	be	eliminated	as	 long	as	 I	still	use	the	
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“∏		&		|[V(		|(/ℎ[V".	However,	PERT	fitting	is	feasible	almost	everywhere	as	it	only	requires	
|-D < |[V( < |JZ,	which	states	that	it	has	greater	universality.	
	
On	 the	other	hand,	under	 some	circumstances	where	datasets	are	 closely	unskewed,	 that	 is,	

when	|∏̂ − |º[V(|	is	very	small.	By	(2.3),	it	is	obvious	that	the	estimations	=̈	and	c∫ 	in	GB	fittings	
would	be	highly	unstable	as	they	are	sensitive	to	any	tiny	change	of	the	difference.	Again	I	use	
dozens	 of	 homogeneous	 datasets,	 each	 contains	 10000	 random	 samples	 drawn	 from	
”J||J(100,3.53)	which	has	~ƒ(åD(~~ = 0.2,	implement	GB	and	PERT	fittings	on	them	to	test	
their	robustness.	Some	typical	results	are	displayed	in	Figure	3.	
	

	 		
Figure		3:	Densities	of	PERT	and	GB	fittings	under	Ÿ⁄€€⁄(‹››,fi. flfi)	populations.	

		
The	 results	 prove	 that	 even	 under	 large	 and	 homogenous	 datasets,	 any	 tiny	 change	 in	|∏̂ −
|º[V(|	will	 be	 amplified	 in	 estimating	=̈	and	c∫ 	in	 GB	 distributions,	 hence	 producing	 entirely	
distinct	shapes,	while	some	of	them	may	cause	devastating	impact	under	actuarial	context	due	
to	their	significant	underestimations	to	the	empirical	tails.	However,	in	highly	skewed	datasets,	

as	|∏̂ − |º[V(|	increases,	 the	 sensitivities	 of	=̈ 	and	c∫ 	towards	 it	 will	 decline,	 therefore	 GB	
fittings	 under	 this	 circumstance	 will	 be	 more	 robust.	 So	 far,	 all	 the	 results	 I	 have	 obtained	
indicate	that	PERT	seems	to	prevail	in	population	distribution	fitting	under	limited	information	
of	∏̂	and	|º[V(	for	its	robustness	and	universality.	
	
Additionally,	 the	 impact	of	variance	towards	 fittings	 is	quite	clear,	which	 is,	smaller	variance	
shrinks	 the	 range	 of	 all	 empirical	 and	 fitted	 distributions,	 without	 changing	 the	 patterns	 of	
shapes	and	reciprocal	positions	of	them.	Consequently,	in	the	latter,	I	will	also	treat	population	
variance	as	a	controlled	variable.	
 
VaR	and	CTE	Distribution	Fittings.	
In	 actuarial	 practice,	 if	 the	 task	 is	 to	 use	 PERT	 to	 fit	 some	 certain	 kind	 of	 populations,	 for	
instance,	loss	or	claim	payment,	though	robust,	the	result	may	be	relatively	unacceptable	as	I	
have	 seen.	But	 in	other	 cases	that	 the	population	 to	be	 fitted	 is	some	kind	of	risk	set,	which	
means,	 I	 don’t	 care	 about	 all	 its	 information	 but	 only	 the	 tail-related	 one,	 the	 situation	 in	
consideration	 would	 be	 totally	 different.	 Contemporarily,	 I	 assume	 that	 loss	 is	 triggered	 at	
certain	 predetermined	 percentiles,	 which	 is	 indeed	 the	 case	 in	 many	 actuarial	 uses,	 then	
without	 any	 loss	 of	 generality,	 I	 could	 use	 the	 left	 tail	 VaR	 and	 CTE,	 which	 are	 defined	
previously,	to	examine	the	behaviors	of	“severity	of	loss"	and	“expected	loss"	in	PERT	fittings	
under	different	scenarios.	
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The	 idea	 is	 to	 firstly	 construct	 some	 situations	 close	 to	 reality.	 For	 this	 purpose,	 I	 build	 a	
collection	composed	of	2000	independent	risk	sets,	(e.g,	it	could	be	a	group	of	2000	individuals	
facing	 potential	 loss	 in	 the	 left	 tail)	 who	 have	 identical	 underlying	 population	 distributions	
(modified	 Gamma	 distributions),	 which	 infers	 that	 all	 risk	 sets	 in	 this	 collection	 are	 highly	
homogenous.	 Then	 I	 use	 unbiased	 Monte	 Carlo	 method	 (By	 resetting	 the	 pseudo	 random	
number	generator	in	each	time	of	sampling	to	avoid	circulations	in	long	sequence)	to	draw	60	
random	 samples	 from	 every	 risk	 set,	 which	 is	 to	 simulate	 the	 historical	 behaviors	 of	 each	
individual.	 At	 this	 stage,	 the	 sample	 quantity	 “60"	 is	 carefully	 selected	 for	 the	 reason	 that	 I	
hope	 to	obtain	a	 sample	group	with	 significant	variabilities,	 simultaneously	 I	don’t	want	 the	
assumed	 underlying	 distribution	 causes	 too	 much	 influence	 to	 the	 samples	 drawn	 from	 it.	
Ideally,	 our	 main	 purpose	 is	 to	 control	 skewness	 and	 variance	 to	 the	 whole	 collection	 in	
general	 manners,	 instead	 of	 making	 each	 sample	 set	 present	 obvious	 features	 of	 Gamma	
distribution.	Then	 I	 implement	PERT	 fittings	 to	every	 risk	 set’s	60	samples,	by	 this,	 together	
with	some	calculations,	I	obtain	two	sets	of	2-tuples		
	

{({Juø%Ω¬ø‡ø<k·, {Juø‚„‰Â), - = 1: 2000},	{(vt;ø%Ω¬ø‡ø<k· , vt;ø‚„‰Â), - = 1: 2000},	and	integrate	
them	 in	 two	 distributions.	 I	 use	 p-quantile	 to	 calculate	 VaR	 by	 implementing	 a	 continuous	
median-unbiased	 quantile	 estimation	 method	 suggested	 by	 Hyndman,R,J.	 and	 Yanan	 Fan	
(1996).	Meanwhile,	under	the	assumption	that	every	sample	set	posses	a	continuous	density,	
CTE	is	equivalent	to	Tail	Value	at	Risk	(TVaR),	which	is	
	

t{Ju¬(Ü) =
"
¬
∫
¬
> {JuÁ(Ü)VË,										0 < a < 1.						(2.5)	

	
In	 order	 to	 reduce	 estimation	 error,	 I	 calculate	 CTE	 (TVaR)	 by	 implementing	 a	 numeric	
integration	 technique	 based	 on	 quadratic	 approximation	 procedure(Piessens,R.	 et	 al.	 [5]),	
combined	with	the	quantile	function	estimation	method	as	above.	
	
As	the	same	as	in	the	previous	section,	I	adjust	U,	∆	and	|	in	the	underlying	modified	Gamma	
populations	to	obtain	scenarios	with	fixed	variance	and	different	skewness.	Moreover,	I	could	
calculate	VaR	and	CTE	in	the	left	skewed	cases	either	with	samples	generated	by	mirror	image	
operation	 from	right	skewed	populations	or	simply	calculating	them	on	the	right	tail	of	right	
skewed	populations.	Moreover,	I	also	add	some	comparisons	between	a = 0.05	and	a = 0.15.	
	

	
Figure		4:	Densities	of	VaR	and	CTE	fittings	under	population	skeness=1,41,	variance=1250.	
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Figure		5:	Densities	of	VaR	and	CTE	fittings	under	population	skeness=0.2,	variance=1250.	

	

	 		
Figure		6:	Densities	of	VaR	and	CTE	fittings	under	population	skeness=-1,41,	variance=1250.	

		
The	 results	 show	 that	 under	 all	 considered	 circumstances,	 PERT	 fittings	 in	 VaR	 and	 CTE	
present	 some	 overestimating	 patterns	 toward	 the	 empirical,	 and	 compared	with	 population	
fittings,	the	fitted	VaR	and	CTE	distributions	seem	to	be	relatively	closer	to	the	empirical	ones.	
This	is	due	to	the	narrowing	discrepancies	as	VaR	and	CTE	only	take	information	form	left	part	
of	 the	 original	 population	 distributions.	 Apparently,	 in	 every	 scenario,	 PERT	 fittings	 in	 both	
VaR	 and	 CTE	 display	 analogous	 shape	 toward	 the	 empirical	 ones,	 additionally	 with	 similar	
range	 and	 peak.	 Indeed,	 by	 (2.5),	 CTE	 is	 the	 direct	 result	of	 VaR,	 consequently,	 its	 behavior	
would	be	determined	by	corresponding	VaR	fittings	under	0 < Ë < a.	
	
The	results	also	reveal	a	phenomenon	that	both	empirical	and	PERT	fittings	 in	VaR	and	CTE	
tend	 to	 concentrate	 in	 distribution	 with	 increasing	 skewness.	 Intuitively,	 as	 skewness	
descending,	left	tail	information	obtained	from	every	risk	set	within	the	collection,	specifically	
under	small	significance	level	a,	would	be	of	greater	variability	due	to	the	nature	that	samples	
are	 less	gathering	 in	 the	left	 tail	when	such	tail	 is	 long	and	heavy.	 In	result,	 this	would	cause	
larger	 range	 and	 variance	with	 lower	peak	 and	 kurtosis	 in	 both	 empirical	 and	PERT	 fittings	
under	VaR	and	CTE	risk	measures.	
	
However,	 in	 the	 cases	 that	~ƒ(åD(~~ = 0.2	and	~ƒ(åD(~~ = −1.41,	 PERT	 fittings	 in	 VaR	 and	
CTE	tend	to	converge	to	the	empirical	as	a	increasing	 from	0.05	to	0.15,	while	diverge	 in	 the	
case	with	~ƒ(åD(~~ = 1.41.	 For	detailed	 comparisons,	 I	 illustrate	 theoretic	CDFs	of	modified	
Gamma	 populations	 together	 with	 those	 for	 corresponding	 PERT	 distributions	 under	 right,	
unskewed	 and	 left	 skewed	 cases	 where	 they	 are	 generated	 from	”J||J(2,25) + 303 ,	
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”J||J(100,3.53)	and	the	left	skewed	version	of	”J||J(2,25) + 303	respectively.	Note	that	
the	 theoretic	PERT	distributions	are	established	by	a	group	of	100,000	samples	drawn	 from	
modified	Gamma	populations	in	order	to	guarantee	finite	range.	For	this	research,	a = 0.4	will	
be	fairly	enough	so	that	result	is	shown	in	Figure	7	with	0 < a < 0.4.	
	

	 		
Figure		7:	Theoretic	CDFs	of	population	and	PERT	distribution.	

		
Figure	7	 explains	why	PERT	 fittings	diverge	 from	a = 0.05	to	a = 0.15	in	 right	 skewed	 cases	
while	converge	 in	 the	rest	by	the	nature	of	theoretic	CDFs.	However,	 the	theoretic	reciprocal	
position	 between	 population	 and	 PERT	 distribution	 contradicts	 with	 the	 previous	 fitting	
results	 that	 PERT	 overestimates	 VaR	 and	 CTE	 towards	 empirical	 under	 all	 skewness.	 This	
actually	give	rise	to	another	question,	that	is,	How	will	sample	size	affect	empirical	and	PERT	
distributions?	
	
Obviously,	as	sample	size	 increasing,	more	samples	are	collected	which	will	affect	|º[V(,	|-D	
and	|JZ.	Let	Ü¿	be	a	sample	group	drwan	from	a	modified	Gamma	population	which	has	size	
D,	clearly,	|JZ(Ü¿)	is	non-decreasing	with	D,	while	|-D(Ü¿)	is	non-increasing	with	D.	Let	ΔÍ	be	
the	absolute	increment	of	a	variable	Í	caused	by	increment	of	sample	size	ΔD,	denote	|-D(Ü¿)	
and	|JZ(Ü¿) 	by	|-D 	and	|JZ .	 Theoretically,	 I	 have	 Δ|JZ ⩾ Δ|-D 	under	 right	 skewed	
populations,	and	vice	versa.	Meanwhile,	I	implement	some	random	sampling	simulations	on	a	
D × 2000	data	 collection	 with	 sample	 size	D	of	 each	 risk	 set	 varies	 from	 60	 to	 510	 with	 50	
increment	 each	 time	 (ΔD = 50),	 typical	 results	 under	 two	 populations	”J||J(2,25) + 303	
and	”J||J(100,3.53)	are	shown	in	Figure	8.	I	find	that,	in	average,	indeed	Δ|JZ ⩾ Δ|-D	and	
all	Δ|JZ,	Δ|-D	and	Δ|º[V(	will	 approach	 to	0	as	D	increasing.	Besides,	 sample	 size	will	 cause	
slightly	systematic	impact	on	|º[V(	for	populations	with	~ƒ(åD(~~ ≠ 0,	which	is,	a	pattern	that	
|~̂ƒ(åD(~~|	tends	 to	 be	 smaller	 than	|~ƒ(åD(~~|	and	 gradually	 converge	 to	 it.	 Meanwhile,	 I	
need	 to	 elaborate	 that	|º[V(	is	 actually	 extracted	 with	 KDE	 method,	 instead	 coming	 from	
empirical	dataset	which	is	discrete.	
	

	
Figure		8:	Ï€⁄Ì,	Ï€ÓÔ	and	Ï€º ÒÚ	generated	by	ÏÔ.	
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Moreover,	I	simulate	a	density	comparison	among	four	sample	sets,	which	contain	60,	200,	400	
and	 600	 samples	 respectively	 from	 a	 ”J||J(2,25) + 303 	population,	 and	 implement	
corresponding	 PERT	 fittings	 toward	 them,	 results	 are	 shown	 in	 Figure	 9	 (Note	 that	 PERT	
densities	 are	 extracted	 from	 2000	 random	 samples	 from	 corresponding	 fitted	 PERT	
distributions).	I	find	that,	the	results	coincide	with	the	findings	displayed	in	Figure	8,	with	an	
obvious	pattern	that	samples	from	small-sized	dataset	are	less	gathered	in	both	right	and	left	
tails,	 while	 the	 peak	 (|º[V()	deviate	 from	 the	 theoretic	 value	 which	 is	 larger.	 This	 is	 quite	
understandable,	because	under	small	sample	size,	samples	are	 insufficiently	clustering	 in	the	
tails	 (presents	 shorter	 tails	 and	 enlarge	 the	 empirical	 densities	 in	 tails)	 where	 theoretic	
densities	Ç(Z)	are	 very	 low	 (approaching	 0),	 whereas	 over-clustering	 on	 the	 right	 side	 of	
theoretic	|[V( 	where	 the	 theoretic	 probability	∫

Ωkl
Ωmæ% Ç(Z)VZ 	is	 larger	 than	∫

Ωmæ%
Ωø¿ Ç(Z)VZ .	

Meanwhile,	 PERT	 fittings	 under	 small-sized	 samples	 tend	 to	 be	 more	 steep,	 which	 will	 be	
discussed	later.	If	I	carefully	observe	the	trends	in	Figure	9,	I	may	find	that	the	reciprocal	tail	
position	that	PERT	lies	below	the	empirical	distributions	in	both	tails	might	be	the	prior	cause	
which	would	 lead	 PERT	 overestimate	 the	 empirical	 VaR	 and	 CTE	 in	 small-sized	 sample	 set.	
(Similar	trend	could	be	found	in	low-skewed	and	left	skewed	populations).	
	

	 	
Figure		9:	Density	comparison	between	population	and	PERT	distribution.	

		
At	 this	phase,	 I	 attempt	 to	build	a	mathematical	 framework	 in	 illustrating	 the	effect	of	ΔD	to	
PERT	fitting.	Intuitively,	I	have	a	parametric	relation	=̈ + c∫ = 6	so	that	only	=̈	is	analysed,	and	
contemporarily	under	right	skewed	populations	with	

Ωmæ%MΩø¿
ΩklMΩø¿

∈ (0, "
)
).	Besides,	I	also	assume	

Ωºmæ%MΩø¿
ΩklMΩø¿

∈ (0, "
)
)	for	any	sample	group	generated	from	such	populations.	At	first,	by	(2.1)	and	

(2.2),	I	know	that		
	

	 	=̈ = )lßl&Ml&
lßMl&

,																																																																																											(2.6)	
where		

	 	Z" =
Ωºmæ%MΩø¿
ΩklMΩø¿

,																																																																																								(2.7)	

			Z) =
Ùıˆ˜ÙL\˜¯Ù̆]˙Y

˚ MΩø¿

ΩklMΩø¿
= ‘

¡
− )

H
(ΩklMΩºmæ%
ΩklMΩø¿

).															(2.8)	
	

Consequently,	I	have	0 < Z" < Z) <
"
)
,	so	that		

	
¸∞º
¸lß

= l&("M)l&)
(lßMl&)&

> 0,								 ¸∞º
¸l&

= lß()lßM")
(lßMl&)&

< 0.												(2.9)	
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Let	Z) = Z" + ˝	with	0 < ˝ < "
)
,	I	obtain		

	
¸∞º
¸lß

+ ¸∞º
¸l&

= M)˛&#("Mdlß)˛
˛&

,																																																													
	
therefore		

	
¸∞º
¸lß

+ ¸∞º
¸l&

< 0,						-Ç						Z" >
"
d
,						[.						Z" ⩽

"
d
,						"Mdlß

)
⩽ ˝ < "

)
,			(2.10)	

	
¸∞º
¸lß

+ ¸∞º
¸l&

⩾ 0,						-Ç						Z" ⩽
"
d
,						0 < ˝ < "Mdlß

)
.																																						(2.11)	

	

(2.9),	(2.10)	and	(2.11)	reveal	that,	under	cases	where	Z" ∈ ("
d
, "
)
)	with	Z) ∈ (Z",

"
)
)	or	Z" ∈ (0, "

d
]	

with	Z) ∈ ["M)lß
)

, "
)
),	 the	 impact	 of	 the	 decrement	 in	=̈	with	ΔZ)	outweighs	 the	 increment	 in	=̈	

with	ΔZ",	 whereas	 this	 impact	 is	 reversed	 under	 cases	where	Z" ∈ (0, "
d
]	with	Z) ∈ (Z",

"M)lß
)

).	
Moreover,		
	

	 !( ¸∞º
¸lß

+ ¸∞º
¸l&

)/!˝ = dlßM"
˛&

.																																																																																			(2.12)	
	

Combined	with	(2.10)	and	(2.11),	(2.12)	infers	that,	under	cases	Z" ∈ ("
d
, "
)
)	with	Z) ∈ (Z",

"
)
)	or	

Z" ∈ (0, "
d
]	with	Z) ∈ (Z",

"M)lß
)

),	the	absolute	difference	between	the	impacts	of	=̈	caused	by	ΔZ"	

and	ΔZ)	would	decline	along	with	˝,	whereas	ascend	with	it	if	Z" ∈ (0, "
d
],	Z) ∈ ["M)lß

)
, "
)
).	

	
Now,	 I	 consider	 the	 impacts	 of	ΔD	to	Z"	and	Z).	 In	 fact,	 there	 are	 no	 explicit	 mathematical	
expressions	 to	 measure	 the	 relations	 of	 sample	 size	D 	with	Z" 	and	Z) ,	 therefore	 I	 cannot	
straightly	put	partial	on	 them	because	 the	 relations	are	not	 continuous.	 In	general,	 I	 assume	
that	|-D	and	|º[V(	are	non-increasing	 functions	of	D,	while	|JZ	is	 a	non-decreasing	 function	
of	D,	 hence	Z"	and	Z)	are	 functions	 of	D.	 Moreover,	 for	 simplicity,	 I	 assume	 that	~̂ƒ(åD(~~ ↑
~ƒ(åD(~~	as	D → ∞,	which	will	lead	|º[V( ↓ |[V(	as	D → ∞.	Denote	¸lß

¸¿
	and	

¸l&
¸¿
	the	respective	

increment	of	Z"	and	Z)	generated	by	ΔD,	from	(2.7)	and	(2.8),	I	have		
	

	
¸lß
¸¿

= Ωºmæ%MΩø¿M($Ωºmæ%M$Ωø¿)
ΩklMΩø¿#$Ωkl#$Ωø¿

− Ωºmæ%MΩø¿
ΩklMΩø¿

,																												(2.13)	

	
¸l&
¸¿

= −)
H
(ΩklMΩºæm%#$Ωkl#$Ωºmæ%

ΩklMΩø¿#$Ωkl#$Ωø¿
) + )

H
(ΩklMΩºmæ%
ΩklMΩø¿

).					(2.14)	
	
	Therefore	the	difference	between	them	is		

	
¸lß
¸¿

− ¸l&
¸¿

= "
H
(Ωºmæ%MHΩø¿#)Ωkl#H$Ωø¿#)$ΩklM$Ωºmæ%

ΩklMΩø¿#$Ωkl#$Ωø¿
											(2.15)	

	 −Ωºmæ%MHΩø¿#)Ωkl
ΩklMΩø¿

).																																																							
	
In	 order	 to	 figure	 out	 whether	 this	 difference	 is	 positive	 or	 negative,	 I	 use	 a	 simple	
mathematical	relation,	which	is,	for	J, R, X, V > 0,		
	

	
k#%
<#æ

> k
<
,						-Ç				 k

<
< %

æ
,						JDV		Å-X(		Å(.~J.																																(2.16)	

	
	In	result,	if	Δ|JZ + Δ|-D ≠ 0,	from	(2.15)	and	(2.16),	it	is	equivalent	to	compare		
	

	
Ωºmæ%MHΩø¿#)Ωkl

ΩklMΩø¿
						å-/ℎ						 H$Ωø¿#)$ΩklM$Ωºmæ%

$Ωkl#$Ωø¿
.																							(2.17)	
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Simultaneously	the	terms	in	(2.17)	could	be	rewritten	as		
	

														2(ΩklMΩø¿
ΩklMΩø¿

) + Ωºmæ%MΩø¿
ΩklMΩø¿

						JDV						2($Ωkl#$Ωø¿
$Ωkl#$Ωø¿

) + $Ωø¿M$Ωºmæ%
$Ωkl#$Ωø¿

.														(2.18)	
	

Now	I	consider	whether	
¸lß
¸¿
	and	

¸l&
¸¿
	are	positive	or	negative,	from	(2.13),	(2.14)	and	(2.16),	this	

is	equivalent	to	compare	the	terms	within	two	pairs		
	
Ωºmæ%MΩø¿
ΩklMΩø¿

						å-/ℎ						 $Ωø¿M$Ωºmæ%
$Ωkl#$Ωø¿

,								ΩklMΩºmæ%
ΩklMΩø¿

						å-/ℎ						 $Ωkl#$Ωºmæ%
$Ωkl#$Ωø¿

.			(2.19)	
	
The	truth	is,	I	cannot	rigorously	prove	which	side	is	larger	in	these	pairs	due	to	the	absence	of	
corresponding	explicit	mathematical	expressions.	But	considering	this	in	a	practical	way,	I	may	
set	some	safe	and	reasonable	assumptions	that	if	0 < Δ|-D < Δ|JZ,	there	are	reltaions		
	

	
$Ωø¿

$Ωkl#$Ωø¿
< Ωºmæ%MΩø¿

ΩklMΩø¿
< "

)
,								"

)
< ΩklMΩºmæ%

ΩklMΩø¿
< $Ωkl

$Ωkl#$Ωø¿
.																(2.20)	

	
In	 fact,	 regardless	of	 the	 change	 in	|º[V(,	 for	any	 right	skewed	parametric	population	which	
has	continuous	density	Ç,	mathematically	I	have	Ç(|-D) ↓ 0	and	Ç(|JZ) ↓ 0	as	D → ∞,	because	
empirical	distribution	will	converge	to	theoretic	population	as	more	samples	are	gathered	in.	
But	 it	 should	 be	 noted	 that,	 the	 convergent	 speed	 of	|-D	and	|JZ 	toward	 the	 theoretic	
minimum	 and	maximum	 varies,	 with	 larger	 skewness	 indicating	|-D	converging	 faster	 than	
|JZ,	for	the	reason	that	new	samples	ought	to	cluster	in	greater	proportion	on	the	left	tail	of	
the	empirical	distribution.	 Indeed,	 it	could	be	 interpreted	 in	another	way,	 that	 is,	under	a	 fix	
sample	size,	if	a	ΔD	triggers	the	change	of	|-D,	 it	should	also	trigger	the	change	of	|JZ,	while	
the	 opposite	 is	 not	necessarily	 true.	 Therefore,	 combined	with	 (2.13),	 (2.14)	 and	 (2.19),	 the	
extreme	situations	are		
	

	 $Ωø¿
$Ωkl#$Ωø¿

= 0, $Ωkl
$Ωkl#$Ωø¿

= 1,						Ç[.		ΔD, ~WXℎ		/ℎJ/		0 = Δ|-D < Δ|JZ,								(2.21)	

	 											¸lß
¸¿

= ¸l&
¸¿

= 0,																																																																																																													
Ç[.		ΔD, ~WXℎ		/ℎJ/		Δ|-D = Δ|JZ = 0.																																										(2.22)	
	
In	reality,	 (2.22)	 is	a	 trivial	case,	while	 for	ΔD	which	will	make	both	Δ|-D > 0	and	Δ|JZ > 0,	
which	is	indeed	the	case	under	small	sample	size,	it	is	hard	to	compare	the	terms	in	the	pairs	of	
(2.19).	But	it	may	be	derived	from	an	unskewed	population	where	theoretically	all	the	terms	in	

(2.20)	 should	 approximately	 equal	 to	
"
)
,	 so	 that	 assumption	 (2.20)	 is	 reliable	 in	 a	 general	

manner.	 Moreover,	 if	Δ|º[V(	is	 considered,	 undoubtedly	 I	 have	$Ωø¿M$Ωºmæ%
$Ωkl#$Ωø¿

< $Ωø¿
$Ωkl#$Ωø¿

	and	
$Ωkl

$Ωkl#$Ωø¿
< $Ωkl#$Ωºæm%

$Ωkl#$Ωø¿
,	so	that	with	(2.20),	if	0 < Δ|-D < Δ|JZ,	the	relations	in	(2.19)	will	

be		
	

	
Ωºmæ%MΩø¿
ΩklMΩø¿

> $Ωø¿M$Ωºmæ%
$Ωkl#$Ωø¿

,								ΩklMΩºmæ%
ΩklMΩø¿

< $Ωkl#$Ωºmæ%
$Ωkl#$Ωø¿

.																																		(2.23)	
	

Consequently,	 this	 indicates	
¸lß
¸¿

< 0	and	¸l&
¸¿

< 0,	 which	 means	 both	Z"	and	Z)	will	 decline	 as	
more	samples	are	drawn.	Additionally,	by	(2.21),	it	could	be	deduced	from	(2.15)	to	(2.18)	that	
¸lß
¸¿

− ¸l&
¸¿

< 0 ,	 which	 infers	 that	 the	 decrement	 ¸lß
¸¿
	is	 greater	 than	 the	 decrement	

¸l&
¸¿
.	

Simulations	designed	as	the	same	as	above	are	conducted	to	examine	these	deductions,	which	
are	exhibited	in	Figure	10.	
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Figure		10:	Increment	of	Ì‹	and	Ì&	generated	by	ÏÔ.	

		
The	 results	 in	 Figure	 10	 do	 support	 our	 deductions,	 the	 trend	 I	 depict	 in	 the	 previous	
discussion	is	very	clear	under	large	population	skewness,	while	some	fluctuations	occur	in	the	
low	skewness	case,	which	is	intuitively	caused	by	the	implementation	of	ΔD = 50	that	might	be	
insufficient	to	extract	the	pattern	when	population	is	closely	unskewed.	
	
Particularly,	I	use	a	total	differential	form	to	express	the	impact	of	ΔD	to	=̈,	which	is		
	 V=̈ = ¸∞º

¸lß

¸lß
¸¿

VD + ¸∞º
¸l&

¸l&
¸¿

VD.																																																																																																					
	

Hence,	 with	 the	 previous	 results	
¸lß
¸¿

< 0,	¸l&
¸¿

< 0	and	¸lß
¸¿

− ¸l&
¸¿

< 0,	 it	 is	 apparent	 that	˝	will	
ascend	with	ΔD,	together	with	(2.11),	I	obtain		
	

V=̈ = ¸∞º
¸lß

¸lß
¸¿

VD + ¸∞º
¸l&

¸l&
¸¿

VD < 0,						-Ç				Z" ⩽
"
d
,						0 < ˝ < "Mdlß

)
.												(2.24)	

	

Meanwhile,	 if	Z" >
"
d
,	 (2.24)	 would	 still	 hold	 because	 though	 both	

¸∞º
¸lß

¸lß
¸¿
	and	

¸∞º
¸l&

¸l&
¸¿
	are	

negative,	 the	 absolute	 discrepancies	 of	
¸∞º
¸lß
	and	

¸∞º
¸l&
	would	 be	 narrowing	 according	 to	 (2.12),	

while	 the	 discrepancies	 of	
¸lß
¸¿
	and	

¸l&
¸¿
	would	 consistently	 enlarge.	 However,	 in	 the	 case	 that	

Z" ⩽
"
d
	and	

"Mdlß
)

⩽ ˝ < "
)
,	 the	general	 impact	of	ΔD	towards	=̈	would	be	vague.	Because	 in	 this	

case,	 the	 above	 discrepancies	would	 all	 enlarge	 and	 I	 cannot	 be	 certain	which	 one	 is	more	
significant.	 But	 I	 should	 also	 notice	 that,	 for	 populations	which	 have	 long	 right	 tails,	Z"	will	
eventually	reach	to	a	very	low	level,	thus	widening	the	interval	["M)lß

)
, "
)
),	together	with	the	fact	

that	Z"	declines	faster	than	Z),	Z)	will	gradually	lies	into	[
"M)lß

)
, "
)
),	and	the	case	becomes	(2.24).	

So	 far,	 from	the	previous	deductions,	 I	believe	 that	 in	general,	=̈	in	PERT	 fittings	will	 tend	 to	
decrease	 as	 more	 samples	 are	 drawn.	 Moreover,	 this	 pattern	 will	 still	 be	 true	 for	 other	
parametric	underlying	populations	with	finite	range.	In	addition,	analogous	analysis	could	be	
implement	to	unskewed	or	left	skewed	populations.	Again	I	need	to	emphasize	that,	the	above	
mathematical	deductions	are	not	absolute,	 instead,	 I	only	use	them	as	tools	in	explaining	the	
phenomenons	of	interest.	Though	rough,	they	are	still	useful	in	illustrating	general	patterns.	
	
Some	 simulations	 are	 conducted	 as	 examinations	 for	 the	 deductions	 of	 the	 impact	 of	ΔD	
towards	=̈.	The	experimental	design	of	increasing	sample	size	of	each	risk	set	from	60	to	510	is	
continuously	used,	with	10	distinct	skewness	varies	 from	1.41	 to	0.14.	The	 results	 shown	 in	
Figure	11	provide	solid	evidence	for	our	analysis,	with	the	phenomenon	that	=̈	decreases	with	
ΔD	at	decelerating	speed.	
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Figure		11:	impact	of	ÏÔ	to	'º	under	different	population	skewness.	

		
Theoretically,	the	excess	kurtosis	(standard	kurtosis	minus	3)	for	a	,(/J(=, c)	distribution	is		
	 (Z. jW./[~-~(,(/J(=, c)) = ¡((∞M±)&(∞#±#")M∞±(∞#±#)))

∞±(∞#±#))(∞#±#H)
.																																			

	

For	 PERT	 distributions	 with	=̈ + c∫ = 6,	 it	 is	 obvious	 that	 excess	 kurtosis	 is	 an	 increasing	
function	of	=̈	for	=̈ ⩽ 3	(right	skewed	cases),	while	decreasing	with	it	when	=̈ > 3	(left	skewed	
cases).	 Therefore,	 under	 right	 skewed	 cases,	 lower	=̈	will	 make	 PERT	 distribution	 present	
more	gentle	shape	in	its	tails	(technically,	with	less	outliers).	In	this	case,	VaR	and	CTE	fittings	
will	increase	with	more	samples	are	drawn	as	=̈	increasing	simultaneously.	On	the	other	hand,	
the	empirical	distribution	will	converge	to	the	theoretic	one	at	the	same	time.	In	the	previous	
result	(Figure	9),	I	find	that	empirical	densities	will	drop	in	tails,	and	become	more	concentrate	
around	the	|º[V(,	hence,	leading	empirical	VaR	and	CTE	increasing	as	well.	Therefore,	there	is	
no	absolute	and	certain	trend	of	the	dynamics	of	PERT	fittings	toward	empirical	VaR	and	CTE	
when	sample	size	enlarges.	In	fact,	as	sample	size	approaching	to	∞,	the	reciprocal	position	of	
an	 underlying	 population	 and	 the	 corresponding	 PERT	 fitting	 will	 be	 determined	 by	 their	
theoretic	levels	(e.g,	Figure	7).	
	
However,	 the	 most	 important	 property	 is,	 PERT	 fitting	 to	 the	 assumed	 modified	 Gamma	
population	in	VaR	and	CTE	risk	measures	is	very	robust	under	small	sample	size.	I	implement	
some	 simulations	 (Figure	 12)	 in	 illustrating	 this	 robustness	 on	 an	60 × 2000	data	 collection	
under	 population	 assumptions	”J||J(2,25) + 303,	”J||J(100,3.53)	and	 a	 mirror	 image	
version	 of	”J||J(2,25) + 303 ,	 which	 have	 skewness	 1.41,	 0.2	 and	 -1,41	 respectively.	
Moreover,	I	establish	two	sample	statistics	“Integrated	Discrepancy	(�Ä)"	and	“Overestimated	
Ratio	(Au)"	 for	 this	 purpose.	 Denote	{Ju(ø)	the	-/ℎ	ordered	 value	 of	 the	 distribution	 of	 VaR,	
and	�ø 	the	 indicator	 function	 for	�ø = 1,	 if	{Ju‚„‰Â

(ø) ⩾ {Ju%Ω¬ø‡ø<k·
(ø)

,	�ø = 0	otherwise.	 For	 VaR	
(Similarly	for	CTE),	�Ä	and	Au	are	defined	as		
	

�Ä*k‰(D) =
1
D
G
¿

øN"

+{Ju‚„‰Â(ø) − {Ju%Ω¬ø‡ø<k·
(ø) ,,																									

Au*k‰(D) =
∑¿
øN" �ø
D

.																																																																											
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Figure		12:	-.	and	/0	statistics	under	different	population	skewness.	

		
The	results	 in	Figure	12	reveal	 that	under	all	population	skewness,	PERT	fittings	of	VaR	and	
CTE	presents	overestimated	patterns	toward	the	empirical	with	significance	level	varies	from	
0.01	 to	 0.4.	 The	 general	 dynamic	 behaviors	 in	 discrepancies	 between	 empirical	 and	 fitted	
concords	with	the	theoretic	properties	(Figure	7).	Moreover,	the	discrepancies	will	grow	with	
skewness,	which	is	a	natural	fact	that	the	left	tail	distinction	of	empirical	and	PERT	would	be	
significantly	enlarge	with	descending	population	skewness.	In	fact,	theses	results	provide	very	
valuable	knowledge,	particularly	under	risk	assessment	and	actuarial	context.	Because	 it	will	
overestimate	the	risk	rather	than	underestimate	 it,	more	 importantly,	PERT	fittings	 in	small-
sized	samples	would	be	rather	better	than	large-sized	samples	as	it	is	more	robust,	in	this	case,	
always	 overestimates	whenever	 population	 skewness	 varies.	 This	 entirely	 different	 patterns	
against	theoretic	cases	(Figure	7)	could	somehow	be	regarded	as	“Skewness	free	property".	
	
Furthermore,	 all	 of	 the	 experiments	 are	 conducted	 on	 several	 assumed	 modified	 Gamma	
distributions,	in	this	sense,	I	want	to	know	if	the	properties	I	find	would	hold	for	wider	range	of	
population	distributions.	In	fact,	for	any	given	right	skewed	population	distribution,	if	sample	
size	is	relatively	low,	as	depicted	previously,	samples	would	insufficiently	cluster	in	the	left	tail,	
thus	 causing	 empirical	 left	 tail	 density	 larger	 than	 that	 of	 PERT,	 with	 PERT	 presents	 steep	
shape	 in	 this	 case	 (=̈	is	 relatively	 large).	 Therefore,	 for	 any	 underlying	 populations	 with	
arbitrary	 skewness,	 as	 long	as	 the	 sample	 size	 is	 relatively	 low,	 there	must	be	an	 interval	of	
significance	level	(Ë>, Ë")	such	that	if	a	lies	in	it,	the	fitted	{Ju¬	and	vt;¬	would	be	larger	than	
the	 empirical	{Ju¬	and	vt;¬	in	 general	 trend,	 whereas	 the	 interval	(Ë>, Ë")	depends	 on	 the	
underlying	population	distribution	and	the	sample	size.	
	

In	addition,	 the	assumption	 in	PERT	that	=̈ + c∫ = ƒ	would	 impact	 the	general	shape	of	PERT	
distributions,	 with	 larger	ƒ 	generating	 more	 dense	 sample	 clusters	 around	|[V( ,	 thus	
enlarging	the	kurtosis.	However,	the	choice	of	ƒ	is	a	quite	subjective	which	often	relies	on	the	
user’s	attitude	towards	the	extent	of	concentration	for	a	concerned	variable.	So	far,	there	is	no	
standardized	method	which	could	be	used	to	adjust	this	assumption.	In	practice,	the	common	
way	 is	 to	 ask	 the	 individual	 risk	 takers	 for	 their	 thoughts,	 and	 use	 them	 to	 moderate	 the	
assumption.	
 

CONCLUDING	REMARKS	
	1.	 PERT	 method	 is	 very	 useful	 in	 distribution	 fitting	 procedure,	 with	 very	 loose	

requirement	 for	 sample	 information.	 The	 underlying	 assumption	 of	 it	 guarantees	 its	
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universality	and	validness	for	almost	any	sample	set,	and	the	fitting	result	is	quite	stable	
regardless	of	the	underlying	population	distribution.		

2.		PERT	method	in	CTE	and	VaR	fittings	would	be	more	effective	than	straightly	implement	
to	a	given	sample	set.		

3.	 	 The	 parameter	=̈	and	c∫ 	would	 change	 as	 sample	 size	 growing,	 which	 would	 lead	 the	
distribution	consistently	becomes	more	gentle,	until	|-D	and	|JZ	stop	changing.		

4.			PERT	method	is	fairly	robustness	in	VaR	and	CTE	fittings	under	small-sized	sample	set,	
for	its	“skewness	free"	and	“distribution	free"	properties.	In	this	case,	it	would	be	a	very	
useful	tool	under	actuarial	context.		

5.		The	uncertainty	of	|º[V(	will	cause	some	mismatching	error	in	PERT	fittings,	but	it	could	
be	reduced	by	the	use	of	some	modifications	(e.g,	using	the	average	patterns	of	|º[V(	in	
the	whole	data	collection	to	adjust	individual’s	estimated	|º[V().	
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