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ABSTRACT	

A	 complexity	 coefficient	 applied	 to	 acyclic	 networks	 for	 project	 management	
measuring	 network	 density,	 not	 its	 structure,	 is	 presented,	 analyzed	 and	 discussed.	
Both	 the	 Activity	 on	 Arc	 (AOA)	 and	 the	 Activity	 on	 Node	 (AON)	 paradigms	 are	
considered.	Based	on	the	restriction	that	the	project	network	needs	to	be	acyclic,	 it	 is	
possible	 to	 define	 strict	 bounds	 to	 the	 complexity	 coefficient.	 In	 this	 case,	 the	
complexity	 coefficient,	 named	 eta,	 varies	 between	 zero	 and	 one,	 and	 measures	 only	
network	density.	
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INTRODUCTION	
Activity	 networks	 in	 project	management	 need	 to	 satisfy	 the	 requirement	 that	 they	 are	 not	
cyclic.	That	is,	they	do	not	have	feedback	loops.	In	practice,	that	means	it	is	possible	to	number	
nodes	 in	 such	 way	 that	 all	 arrows	 always	 go	 from	 a	 lower	 numbered	 node	 to	 a	 higher	
numbered	 node.	 This	 requirement	 is	 independent	 of	 the	 way	 in	 which	 the	 activities	 are	
portrayed,	being	that	Activity	on	Arc	(AOA)	or	Activity	on	Node	(AON).	
	
The	 concept	 of	 network	 complexity	 tends	 to	 refer	 to	 the	 number	 of	 nodes	 compared	 to	 the	
number	of	alternative	paths	that	exist	 in	a	given	network.	The	emphasis	tends	to	be	towards	
characterizing	the	network	in	terms	not	only	of	its	density,	but	also	on	its	structure	(Emmert-
Streib	&	Dehmer,	2012;	Rigterink	&	Singer,	2014;	Zenil,	Kiani,	&	Tegnér,	2018).	Nevertheless,	
Kaimann	 defines	 the	 Coefficient	 of	 Network	 Complexity	 (CNC)	 based	 on	 the	 structural	
complexity	of	any	given	network	(Kaimann,1974).	In	some	cases,	the	complexity	coefficient	is	
aimed	at	measuring	properties	of	chemical	structures	(Dehmer,	Barbarini,	Varmuza,	&	Graber,	
2009;	Keller,	Berger,	Liepelt,	&	Lipowsky,	2013).	
	
The	 complexity	 coefficient	 presented	 in	 this	 paper	 intuitively	 measures	 network	 density	
regardless	 of	 other	 structure	properties	 such	 as	 randomness.	 It	 provides	 a	 single	 coefficient	
called	eta	(h)	that	indicates	with	a	value	between	zero	and	one	(which	can	also	be	translated	
into	a	percentage	 for	network	complexity),	how	fully	connected	 the	network	 is.	Such	kind	of	
approach	 to	 complexity	 measurement	 is	 novel,	 because	 it	 does	 not	 consider	 network	
properties,	only	its	density.	Also,	the	coefficient	is	restricted	to	the	case	of	acyclic	networks	in	
project	management.	

	
PROJECT	COMPLEXITY	

The	 complexity	 of	 a	 project	 is	 measured	 by	 the	 complexity	 of	 the	 activity	 network	 used	 to	
represent	the	activity	precedence	relationships	for	any	given	project.	The	network	complexity	
parameter	 eta	 (h)	 indicates	 how	 complex	 is	 any	 given	 project.	 A	 value	 for	h	 equal	 to	 zero	
indicates	that	the	project	is	minimally	connected,	that	is,	it	has	the	minimum	possible	number	
of	 precedence	 relationships	 that	 actually	 connects	 all	 activities	 in	 the	 project.	 A	 value	 for	h	
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equal	to	one	indicates	that	the	project	is	fully	connected,	that	is,	it	has	the	maximum	number	of	
allowed	 precedence	 relationships	 such	 that	 they	 do	 not	 violate	 the	 acyclicity	 of	 the	 activity	
network.	 Keep	 in	mind	 that	 valid	 activity	 networks	 are	 acyclic,	 that	 is,	 they	 do	 not	 contain	
feedback	loops	in	the	network.	
	
The	equations	for	calculating	h	greatly	depend	on	the	way	the	activity	network	is	represented.	
It	is	possible	to	use	an	Activity	on	Arc	(AOA)	notation	in	which	activities	are	denoted	using	the	
arcs	and	the	nodes	simply	indicate	a	precedence	relationship	between	activities.	However,	the	
AOA	 notation	 is	 not	 suitable	 for	 practical	 algorithmic	 representation,	 because	 of	 the	 need	
(sometimes)	 to	use	dummy	 activities.	Dummy	activities	are	artificial	activities	 that	have	zero	
duration	time	and	are	merely	used	in	order	not	to	violate	precedence	relationships	in	an	AOA	
notation.	Thus,	the	Activity	on	Node	(AON)	representation	is	used	instead.	AON	networks	are	
such	 that	 the	 nodes	 indicate	 the	 activities	 and	 the	 arrows	 or	 arcs	 indicate	 precedence	
relationships	between	activities.	AON	networks	are	easier	to	implement.	
	
The	 adjacency	 matrix	 (Elsayed	 &	 Boucher,	 1994)	 can	 be	 used	 not	 only	 to	 represent	 the	
precedence	relationships	of	any	given	project,	but	also	to	check	project	network	acyclicity	(or	
cyclicity).	 The	 adjacency	 matrix	 in	 an	 AOA	 representation	 uses	 nodes	 to	 indicate	 activity	
precedence	and	ones	in	the	matrix	to	indicate	the	existence	of	an	activity	such	that	node	(row)	
i	 indicates	 that	 node	 i	 precedes	 node	 (column)	 j.	 Conversely,	 an	 adjacency	 matrix	 in	 AON	
notation	 uses	 rows	 and	 columns	 to	 denote	 actual	 activities	 and	 the	 existence	 of	 a	 one	 for	
activity	(row)	i	and	activity	(column)	j	indicate	that	activity	i	precedes	activity	j.	

	
ACTIVITY	ON	ARC	(AOA)	NETWORK	COMPLEXITY	

Let	us	 first	 explore	 the	 issue	of	 acyclicity	 in	AOA	networks.	 Figure	1a	 shows	an	acyclic	AOA	
network	with	three	activities,	whereas	Figure	1b	illustrates	a	cyclic	AOA	network	also	having	
three	 activities.	 The	 inquisitive	 reader	 can	 check	 that	 the	 adjacency	 matrix	 of	 the	 acyclic	
network	 (Figure	 1a)	 allows	 a	 complete	 row/column	 cancellation,	 whereas	 the	 adjacency	
matrix	of	the	cyclic	network	(Figure	1b)	does	not	allow	a	single	row/column	cancellation.	
	
If	 some	 rows/columns	 cannot	 be	 cancelled,	 at	 least	 some	 of	 the	 activity	 network	 contains	
cyclicity.	The	nodes	are	numbered	from	1	to	3	and	the	activities	are	called	A,	B	and	C.	Notice	
that	 it	 is	 also	possible	 to	 call	 activities	not	only	with	a	name	such	as	A	or	B,	but	also	with	a	
number,	such	as	1	or	2.	We	use	numbers	for	nodes	and	letters	for	activities	to	make	it	easier	
not	to	confuse	them.	
	
Figure	1:	AOA	network	representations	of	acyclic	and	cyclic	illustrative	sample	projects.	

 
	
Let	n	denote	the	total	number	of	nodes	in	any	given	AOA	network	and	N	be	the	total	number	of	
activities	 in	 such	 AOA	 network.	 Notice	 in	 Figure	 1a	 that	 for	 all	 activities,	 i	 <	 j,	 that	 is,	 all	
activities	start	from	a	lower	numbered	node	and	end	in	a	higher	numbered	node.	Conversely,	
in	 Figure	1b	 that	 is	 not	 true,	 since	 activity	C	 start	 in	node	3	 and	 end	 in	node	1.	There	 is	 no	
suitable	arrangement,	no	matter	how	much	the	numbers	of	the	nodes	are	changed	(as	long	as	
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they	are	all	consecutive),	such	that	all	activities	satisfy	the	condition	that	i	<	j,	where	i	=	1,	…,	n-
1	and	j	=	2,	…,	n	for	Figure	1b.	Thus,	the	activity	network	in	Figure	1b	is	cyclic.	This	condition	is	
very	important	in	order	to	have	valid	(acyclic)	activity	networks.	
	
The	minimum	number	of	activities	in	a	network	with	n	nodes	is	n-1,	since	that	is	the	only	way	
in	which	all	activities	are	linked	in	the	simplest	sequence.	Equation	(1)	denotes	such	minimum.	
	

Min(N) = n-1 (1) 
	
What	is	the	maximum	number	of	activities	for	an	acyclic	activity	network	having	n	nodes?	In	
order	to	answer	such	question,	it	is	useful	to	use	an	example.	Suppose	an	activity	is	denoted	as	
(i)→(j),	indicating	that	the	activity	starts	from	node	i	and	ends	in	node	j,	where	it	must	always	
be	the	case	that	i	<	j.	Figure	2	shows	an	activity	network	having	AOA	notation	of	5	nodes	fully	
connected.	Table	1	 illustrates	 the	adjacency	matrix	 for	 the	activity	network	of	Figure	2,	with	
the	 exception	 that	 row	5	 and	 column	1	 are	not	 shown	 for	 not	 having	 any	ones	 (precedence	
relationships).	Notice	that	a	full	adjacency	matrix	would	have	row	n	(n	=	5	in	this	example)	and	
column	1,	which	would	actually	allow	to	cancel	all	rows/columns,	thus	demonstrating	that	this	
fully	connected	activity	network	is	acyclic.	
	
Observe	 that	 all	 nodes	 can	 be	 accommodated	 around	 a	 circle	 having	 equidistant	 distances	
between	them.	In	this	case,	n	=	5.	The	first	node	can	be	connected	with	the	second,	third,	fourth	
and	fifth,	that	is,	with	n-1	=	5-1	=	4	nodes.	The	second	node	can	be	connected	with	the	third,	
the	fourth	and	the	fifth,	that	is	n-2	=	5-2	=	3	nodes.	The	third	node	can	be	connected	with	the	
fourth	and	the	fifth	(n-3	=	5-3	=	2	nodes).	Finally,	the	fourth	node	can	only	be	connected	with	
the	 fifth	 node	 (n-4	 =	 5-4	 =	 1	 node).	 This	 is	 the	maximum	number	 of	 activities	 that	 an	 AOA	
network	with	5	nodes	can	have:	4+3+2+1	=	10	activities.	
	

Figure	2.	AOA	fully	connected	5	nodes	network.	
	

	
	
	
But,	 how	 do	 we	 generalize	 this	 result?	 Notice	 that	 for	 n	 nodes,	 the	 first	 node	 can	 have	 a	
maximum	of	 n-1	 connections	 or	 activities	with	 all	 other	 nodes,	 the	 second	 node	 can	 have	 a	
total	of	n-2	activities,	the	third	node	n-3	activities	and	so	on	until	the	penultimate	node	that	can	
have	only	one	activity.	Equation	(2)	indicates	this	sum.	
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Max(N)	=	(n-1)	+	(n-2)	+	(n-3)	+	…	+	1	 (2)	
In	order	 to	obtain	 the	value	of	 this	 sum,	 the	previous	 list,	but	 reversed	 in	order	 is	 shown	 in	
equation	(3).	

Max(N)	=	1	+	2	+	3	+	…	+	(n-1)	 (3)	
	
Adding	equations	(2)	and	(3)	yields	equation	(4),	which	is	two	times	the	value	of	Max(N).	

2	Max(N)	=	n	+	n	+	n	+…	+	n		 (4)	
	
Equation	(4)	has	number	n	added	n-1	times,	so	that	equation	(5)	must	hold.	

2	Max(N)	=	n(n-1)	 	 (5)	
	
From	equation	(5)	we	solve	for	Max(N)	as	indicated	in	equation	(6).	

Max(N)	=	n(n-1)/2	 	 (6)	
	

Table	1.	Adjacency	matrix	for	the	fully	connected	activity	network	of	5	nodes	in	Figure	4.	
Node	 2	 3	 4	 5	
Node	
1	 (1)→(2)	 (1)→(3)	 (1)→(4)	 (1)→(5)	
2	 	 (2)→(3)	 (2)→(4)	 (2)→(5)	
3	 	 	 (3)→(4)	 (3)→(5)	
4	 	 	 	 (4)→(5)	

	
Thus,	let	NMin	be	the	minimum	number	of	activities	in	the	least	complex	of	all	possible	activity	
networks	 as	 indicated	 by	 equation	 (1),	NMax	 be	 the	maximum	number	 of	 activities	 in	 a	 fully	
connected	AOA	network	as	 indicated	by	equation	(6),	N	the	actual	number	of	activities	some	
specific	activity	network	has	and	n	the	total	number	of	its	nodes,	then	the	network	complexity	
coefficient,	eta	(h),	is	given	according	to	equation	(7).	
	

η = SISTUV
STWXISTUV

= SI YI-
V VZ[

\ I YI-
= ] SIYP-

YI- YI]
,	n	>	2	 	 (7)	

A	 value	 of	h	 =	 0	 indicates	minimal	 density	 for	 AOA	 network	 complexity,	 and	 a	 value	h	 =	 1	
indicates	maximum	density	for	AOA	network	complexity.	To	illustrate	the	validity	of	equation	
(7),	consider	an	AOA	network	of	5	nodes.	If	N	=	NMin	=	5-1	=	4,	h	=	0	when	using	equation	(7)	
with	N	=	4	and	n	=	5,	and	if	N	=	NMax	=	10,	h	=	1	when	using	N	=	10	and	n	=	5	in	equation	(7).	
But,	what	about	intermediate	values?	The	minimum	of	activities	for	an	AOA	network	of	5	nodes	
is	4	and	the	maximum	is	10.	Between	4	and	10	there	are	 the	numbers	5,	6,	7,	8	and	9.	 If	we	
choose	the	middle	value	of	N	=	7,	it	should	give	us	a	density	of	0.5,	and	it	is	precisely	so,	since	
when	applying	equation	(7)	with	N	=	7	and	n	=	5,	we	get	h	=	0.5.	
	

ACTIVITY	ON	NODE	(AON)	NETWORK	COMPLEXITY	
The	 AOA	 network	 representation	 and	 the	 corresponding	 adjacency	 matrix	 make	 it	 easy	 to	
come	 up	with	 the	 network	 complexity	 coefficient	 eta	 (h).	 Nevertheless,	 it	 is	 algorithmically	
difficult	 to	 implement	 the	 Critical	 Path	 Method	 (CPM)	 using	 AOA.	 Thus,	 AON	 network	
representation	 is	 required.	However,	AON	requires	a	 somewhat	more	elaborated	 thinking	 in	
order	to	come	up	with	the	network	complexity	coefficient	eta	(h).	
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Table	2.	Fully	connected	AON	adjacency	matrix.	
Activity	 1	 2	 3	 …	 N-1	 N	 N+1	
Activity	
0	 1	 	 	 	 	 	 	
1	 	 1	 1	 …	 1	 1	 	
2	 	 	 1	 …	 1	 1	 	
3	 	 	 	 	 1	 1	 	
�	 	 	 	 	 	 �	 	
N-1	 	 	 	 	 	 1	 	
N	 	 	 	 	 	 	 1	

	
The	 first	 and	 most	 important	 thing	 to	 consider	 is	 the	 limitation	 on	 the	 adjacency	 matrix	
imposed	by	 the	acyclicity	 requirement	of	a	CPM	activity	network.	 In	AOA	representation	 the	
rows	 and	 columns	denote	precedence	 relationships	while	 the	 ones	 inside	 the	matrix	 denote	
activities.	 In	 the	AON	representation,	 the	nodes	 themselves	denote	activities	and	 the	ones	 in	
the	adjacency	matrix	denote	precedence	relationships.	However,	the	same	requirement	in	AON	
representation	exists,	that	is,	all	rows/columns	must	be	eliminated	in	order	to	prove	that	the	
network	is	acyclic.	Thus,	a	fully	connected	AON	adjacency	matrix	would	be	one	with	an	upper	
triangular	 matrix	 full	 of	 ones,	 while	 the	 rest	 remain	 zeroes.	 Let	 N	 be	 the	 total	 number	 of	
activities	 in	an	AON	network.	 In	such	case,	0	denotes	 the	starting	node	and	N+1	denotes	 the	
finishing	node.	The	 starting	and	 finishing	nodes	are	not	activities,	 since	 they	 simply	 indicate	
the	beginning	and	end	of	the	AON	network,	respectively.	
	
Schedule	 (www.schedulemanagement.net)	 does	 not	 allow	 precedence	 relationships	 between	
regular	activities	(numbered	from	1	to	N)	and	starting	(numbered	0)	or	finishing	(numbered	
N+1)	nodes.	Thus,	the	upper	triangular	matrix	can	only	include	activities	from	1	to	N.	Also,	it	is	
necessary	 to	 indicate	 a	 beginning	 activity	 and	 an	 ending	 activity.	 For	 simplicity,	 in	 a	 fully	
connected	AON	network	such	activities	are	the	first	and	last	ones.	Table	2	illustrate	such	fully	
connected	AON	adjacency	matrix.	
	
Let	 p	 denote	 the	 number	 of	 precedence	 relationships	 a	 given	 AON	 representation	 has	 as	
indicated	 in	 its	 corresponding	 adjacency	matrix.	 The	 precedence	 relationships	 denoted	 by	 a	
one	 in	 bold	 typeset	 can	 be	 established	 by	 the	 user,	 whereas	 the	 precedence	 relationships	
denoted	by	a	gray	bold	one	in	italics	typeset	are	the	default	ones	created	by	the	system	in	order	
to	 link	 the	 starting	node	and	 the	 finishing	nodes.	Table	2	 indicates	 the	maximum	number	of	
precedence	 relationships	 or	 Max(p).	 In	 this	 case,	 it	 is	 easy	 to	 see	 that	 Max(p)	 is	 given	 by	
equation	(8).	
	

Max(p) = N(N-1)/2 + 2 (8) 
	
A	minimally	connected	AON	network	would	be	one	such	that	starting	node	0	is	connected	to	
activity	1,	activity	1	is	connected	to	activity	2,	activity	2	is	connected	to	activity	3,	and	so	on,	
until	activity	N	is	connected	to	finishing	node	N+1.	Table	3	illustrates	the	adjacency	matrix	for	
this	minimally	connected	AON	activity	network.	
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Table	3.	Minimally	connected	AON	adjacency	matrix.	
Activity	 1	 2	 3	 …	 N-1	 N	 N+1	

Activity	

0	 1	 	 	 	 	 	 	

1	 	 1	 	 	 	 	 	

2	 	 	 1	 	 	 	 	

3	 	 	 	 ⋱	 	 	 	

�	 	 	 	 	 ⋱	 	 	

N-1	 	 	 	 	 	 1	 	

N	 	 	 	 	 	 	 1	

	
A	minimally	connected	AON	network	would	be	one	such	that	starting	node	0	is	connected	to	
activity	1,	activity	1	is	connected	to	activity	2,	activity	2	is	connected	to	activity	3,	and	so	on,	
until	activity	N	is	connected	to	finishing	node	N+1.	Table	3	illustrates	the	adjacency	matrix	for	
this	minimally	connected	AON	activity	network.	
	
Once	 again,	 it	 is	 easy	 to	 see	 that	 the	 number	 of	 precedence	 relationships	 for	 a	 minimally	
connected	adjacency	matrix	is	given	by	equation	(9).	
  

Min(p) = N+1 (9) 
Let	pMax	be	the	maximum	number	of	precedence	relationships	as	indicated	by	equation	(8)	and	
pMin	be	 the	minimum	number	of	precedence	 relationships	as	 indicated	by	equation	 (9),	 then	
the	network	complexity	coefficient,	eta	(h),	is	given	by	equation	(10).	
	

η = @I@TUV
@TWXI@TUV

= @I SP-
_ _Z[

\ P]I SP-
= ] @ISI-

S SI- I] SP- P`
, N > 3 (10) 

The	 restriction	 that	 N	 >	 3	 in	 equation	 (10)	 comes	 from	 realizing	 that	 the	 denominator	 in	
equation	 (10)	 has	 to	 be	 different	 than	 zero.	 In	 an	 activity	 network	 with	 no	 precedence	
relationships,	 Schedule	 would	 create	 N+N	 links	 so	 that	 all	 activities	 are	 connected	 to	 the	
starting	 node	 and	 the	 finishing	 node.	 In	 the	 case	 of	 activities	 having	 no	 precedence	
relationships,	Schedule	would	create	a	precedence	relationship	with	the	starting	node	(node	0),	
whereas	 those	 activities	 that	 are	 no	 predecessors	 to	 any	 activity	 would	 have	 a	 link	 to	 the	
finishing	node	(node	N+1).	
	

RESULTS	
There	can	be	a	certain	number	of	nodes.	In	AOA	such	nodes	denote	precedence	relationships,	
while	 the	 arrows	 indicate	 activities.	 In	 AON	 the	 nodes	 indicate	 activities	 and	 the	 arrows	
precedence	 relationships.	 However,	 regardless	 of	 the	 notation	 selected,	 the	 network	 and	 its	
nodes	must	be	acyclic.	
	
Then,	given	a	certain	number	of	nodes	(going	from	3	for	AOA	and	4	for	AON),	all	the	possible	
number	of	precedence	relationships	is	considered	and	the	complexity	network	(h)	is	calculated	
for	each	case.	Figure	3	shows	the	results.	Notice	that	the	novelty	of	this	approach	is	that	it	only	
considers	network	density,	not	network	structure.	As	such,	it	is	able	to	produce	a	very	intuitive	
complexity	coefficient	called	eta	(h)	that	measures	how	close	to	the	maximum	network	density	
any	given	network	is,	where	0	≤	h	≤	1.	
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Figure	3.	Complexity	network	calculation	with	respect	to	the	total	number	of	activities	as	the	
number	of	activities	to	be	considered	increases.	

	
DISCUSSION	AND	CONCLUSION	

Thanks	 to	 the	 fact	 that	an	activity	network	 for	project	management	needs	 to	be	acyclic,	 it	 is	
possible	to	set	a	minimum	and	a	maximum	bound	for	the	number	of	precedence	relationships	
that	 exist	 within	 the	 network.	 This	 allows	 to	 define	 a	 complexity	 coefficient	 that	 focuses	
entirely	on	network	density.	 It	needs	not	consider	network	structure	because	the	network	 is	
restricted	 to	 be	 acyclic.	 Thus,	 the	 complexity	 coefficient	 defined	 is	 able	 to	 focus	 entirely	 on	
network	density,	 that	 is,	how	close	 to	 the	maximum	number	of	precedence	relationships	 the	
network	 is,	and,	as	such,	 is	able	 to	define	 the	complexity	coefficient	as	a	value	between	zero	
and	one.	
	
The	requirement	for	h	 in	the	case	of	AOA	is	that	n	>	2	and	for	AON	that	N	>	3.	The	gray	line	
indicates	an	AOA	network,	whereas	the	black	line	indicates	an	AON	network.	The	first	line	(in	
gray	 for	an	AOA	network)	 is	 for	 the	case	 in	which	n	>	2.	 In	 that	case,	 the	maximum	possible	
number	of	precedence	relationships	(activities),	 indicated	by	equation	(6),	 is	3,	so	that	N	=	2	
and	3.	Then	follows	a	black	line	for	an	AON	network	with	4	activities	(N	=	4),	with	a	minimum	
number	of	activities	of	5	and	a	maximum	number	of	activities	of	8.	Thus,	p	=	5,	6,	7,	and	8.	In	
each	 case,	h	 is	 calculated.	 The	 next	 line	 (gray)	 is	 for	 an	 AOA	 network	with	 a	 total	 of	 N	 =	 4	
activities.	In	that	case	the	minimum	number	of	activities	goes	from	4	to	6,	and	the	complexity	
coefficient	(h)	is	calculated	for	each	case.	All	the	cases	for	a	total	of	3	to	10	activities	in	the	case	
of	 an	 AOA	 network	 and	 for	 a	 total	 of	 4	 to	 10	 activities	 in	 the	 case	 of	 an	 AON	 network	 are	
illustrated	in	Figure	3.	As	it	can	be	seen,	the	relationship	between	the	number	of	activities	and	
the	complexity	coefficient	is	linear,	although	the	slope	changes	depending	on	how	many	nodes	
are	 considered.	 In	 the	 case	 of	 an	 AOA	 representation,	 the	 nodes	 indicate	 precedence	
relationships,	and	according	to	equations	(1)	and	(6)	the	minimum	and	maximum	number	of	
activities	 to	 be	 in	 the	 network	 is	 calculated.	 For	 AON	 representation,	 the	 nodes	 indicate	
activities,	 and	 the	maximum	and	minimum	possible	number	of	 activities,	 given	by	equations	
(8)	and	(9),	respectively,	 is	considered	and	the	complexity	coefficient	calculated	in	each	case.	

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100 120

h

Number of precedences

AOA AON



Copertari,	L.	F.	(2019).	The	complexity	coefficient	for	acyclic	networks	measuring	network	density:	Application	to	project	management.	Advances	in	
Social	Sciences	Research	Journal,	6(2)	319-326.	
	

	
	

334	 URL:	http://dx.doi.org/10.14738/assrj.62.6200.	 	

One	 straight	 line	 indicates	 how	 the	 complexity	 coefficient	 (h)	 changes	 as	 its	 connections	 to	
other	activities	within	a	given	activity	network	structure	increases.	
	
The	conclusion	is	that	the	complexity	coefficient	(h)	gives	a	very	intuitive	idea	of	how	close	to	
the	 maximum	 number	 of	 possible	 connections	 in	 the	 activity	 network	 each	 network	 being	
considered	is.	
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