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INTRODUCTION

Every scientific endeavour consists of (at least) two components: A hypothesis on the one hand
and data on the other. There is always a more or less abstract level - some theory, a set of
concepts, certain relations of ideas - and a concrete level, i.e., empirical evidence, experiments or
some observations which constitute matters of fact.

The focus of this contribution is on elementary models connecting both levels that have been
very popular in the social sciences - statistical tests. Going from simple to complex we will
examine four paradigms of statistical testing (Fisher, Likelihood, Bayes, Neyman & Pearson)
and an elegant contemporary treatment.

In a nutshell, testing is an easy problem that has a straightforward mathematical solution.
However, it is rather surprising that the statistical mainstream has pursued a different line of
argument. The application of the latter theory in psychology and other fields has brought some
progress but has also impaired scientific thinking.

FISHER: ONE HYPOTHESIS

Every experiment may be said to exist only to give the facts a chance of disproving
the null hypothesis. (Fisher (1935), p. 16)

The simplest and oldest formal model is Fisher’s test of significance. There is just one distri-
bution, called the “hypothesis” H (or PH), and a sample from this population. Formally, the
random variables X,X1, . . . , Xn are iid, X ∼ PH , and Xi = xi are the observations subsequently
encountered (i = 1, . . . , n). Thus x = (x1, . . . , xn) is the vector of data at hand.

In the continuous case, X has a density f(x), whereas in the discrete case, X assumes values
x1, x2, . . . with corresponding probabilities p1, p2, . . . Information theory often restricts attention
to random variables assuming values in a finite alphabet X = {x1, . . . , xk}. In the following, in
order to keep technical issues to a minimum, a random variable will be discrete if not otherwise
stated.
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Given this setting, suppose one observes a single x for which p = PH(X = x) = 0. That is, this
observation should not have occurred since the hypothesis does not account for it. It is simply
impossible to see x if PH is the case. In other words, this concrete observation x falsifies the
hypothesis PH , it is a counterexample to the law PH . In philosophical jargon, this is a strict,
logical conclusion (the modus tollens). One concludes without any doubt, although formalized
by the probability statement (p = 0), that the hypothesis in question is not the case.

Now, what if p is “small”? Obviously, no matter how small the probability, as long as p > 0, the
observation x is possible and we cannot infer with rigour that X ∼ PH did not produce it. All
one may say is that

Either an exceptionally rare chance has occurred, or the theory [hypothesis] of random
distribution is not true. (Fisher (1956/73), p. 42, emphasis in the original)

Of course, such an “inductive statistic” (IS) argument is much weaker than “deductive nomo-
logical” (DN) conclusions, like the one considered before, and consequently a lot of discussion
has been spawned by Fisher’s dichotomy (see, e.g., Salmon (1989), Fetzer (2001)). More impor-
tant to our reasoning is the observation that no general statistical theory evolved from Fisher’s
dichotomy. Here are two reasons why: First, if X assumes k distinct values x1, . . . , xk with
probabilities p1, . . . , pk, “small” crucially depends on the number of possible observations k. (A
probability of p = 1/100 is small if k = 10, however the same probability is rather large if k = 106

or k = 1020, say.) Second, if PH is the uniform distribution, we have no reason whatsoever to
discard the hypothesis no matter which value occurs. Each and every xj is equally (un)likely, but
possible nonetheless. If PH has a geometric distribution, i.e., if X assumes the natural number
j (j ≥ 1) with probability 2−j it would be very difficult to tell beyond which number j0 the
probability pj0 could be said to be “small”. Finally, for any continuous distribution, in particular
the standard normal, we have P (X = x) = 0 for every x. However, since some realization must
show up, some x will occur nevertheless.

Perhaps for reasons such as these, Fisher came up with a more sophisticated idea. Typically, most
values observed are rather “moderate”, and only a few are “extreme” outliers (very large or very
small). Suppose large values of X are suspicious. Then, having encountered x, it is straightforward
to calculate p = PH(X ≥ x), the probability of observing a value at least as large as x. If this
so-called p-value is small, we have reason to reject the hypothesis. Of course, if small values of X
are suspicious, it is PH(X ≤ x) that should be considered, and in the case of outliers to the left
and to the right of the origin, P (X ≥ |x|) is of interest. Thus we have a general rule: Calculate
the probability of the value observed and of all “more extreme” events. This kind of evaluation
may be crude, but it is also a straightforward way to quantify the evidence in the data x about
the hypothesis PH .

In the earliest test of this kind recorded, Arbuthnot (1710) looked at London births. His hy-
pothesis was that it is equally likely to have a boy or a girl. (Why should one of the sexes be
preferred?) Considering a moderate number n of years altogether, it would not be astonishing if
the boys outnumbered the girls in about n/2 years, but by the laws of probability it would also
not be surprising if there were more girls in perhaps 20 out of 30 years. However, it would be
very surprising if, over a longer period of time, one sex outnumbered the other permanently. As
a matter of fact, Arbuthnot checked n = 82 successive years and learned that in each and every
year more boys than girls were born. If PH(boy) = PH(girl) = 1/2, the probability of the event
“boys always outnumbering girls” happening by chance is 2−82. Thus he concluded that some
force “made” more boys than girls.
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Suppose Arbuthnot had found eighty years with more boys than girls. Then Fisher’s advice is to
calculate

p = PH(X ≥ 80) = PH(X = 82) + PH(X = 81) + PH(X = 80) (1)

=

(
82

82

)
2−82 +

(
82

81

)
2−82 +

(
82

80

)
2−82 =

1 + 82 + 3321

282
=

3404

282
≈ 7 · 10−22.

Since all probabilities sum up to one, this seems to be a small “probability value”, and thus a
remarkable result. Fisher (1929), p. 191, writes:

It is a common practice to judge a result significant, if it is of such a magnitude that it
would have been produced by chance not more frequently than once in twenty trials.
This is an arbitrary, but convenient, level of significance for the practical investigator
[. . .]

Today, the standard levels of significance are 5%, 1%, and 0.1%. Although, “surely God loves the
0.06 nearly as much as the 0.05?” (Rosnow und Rosenthal 1989)

Objections

Despite the above rather natural derivation, problems with p-values and their proper interpreta-
tion turned out to be almost endless:

The smaller the p-value, the larger the evidence against some hypothesis H, an idea already
stated explicitly in Berkson (1942). Thus one should be able to compare p-values or combine
p-values of different studies. Unfortunately, if two experiments produce the same p-value, they
do not provide the same amount of evidence, since other factors, in particular the total number
of observations n, also play a considerable role (Cornfield 1966: 19).

Johnstone (1986), p. 496, elaborates: “Thus, as Jeffreys explained in 1939, if the sample is very
large, the level of significance P tends to exaggerate the evidence against the null hypothesis, i.e.
P tends to be smaller than it ought to be. But in practice, if the sample is very large, a good
orthodox statistician will ‘deflate’ intuitively the level of significance P accordingly.”McPherson
(1989) comments on this: “This is very likely true, but it is an inadequate base for presenting
the p value approach to scientists.”

The best one can do seems to be rules of thumb. For example, Efron und Gous (2001), p. 212,
consider the normal distribution and sample size n in order to translate p-values into evidence.
However, Royall (1986) demonstrates that contradictory statements are possible: “A given P -
value in a large trial is usually stronger evidence that the treatments really differ than the same
P -value in a small trial of the same treatments would be” (Peto et al. (1976), p. 593). But
also “The rejection of the null hypothesis when the number of cases is small speaks for a more
dramatic effect [. . .] if the p-value is the same, the probability of committing a Type I error
remains the same. Thus one can be more confident with a small N than a large N” (Bakan
(1970), p. 241) is a reasonable line of argument.

In a nutshell, it is very difficult to interpret and combine p-values in a logically satisfactory way
(see Greenland et al. (2016), Hubbard and Lindsay (2008) for recent overviews). Schmidt (1996),
p. 126, also collects common ideas, in particular,

If my findings are not significant, then I know that they probably just occurred by
chance and that the true difference is probably zero. If the result is significant, then I
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know I have a reliable finding. The p values from the significance test tell me whether
the relationship in my data are large enough to be important or not. I can also
determine from the p value what the chances are that these findings would replicate
if I conducted a new study

and then concludes that “every one of these thoughts about the benefits of significance testing
is false.” The most devastating point, however, seems to be the following consideration.

The Observed and the Unobserved

The distinction between the observed and the unobserved is fundamental to science. Science is
built on facts, not speculation. Why have eminent statisticians confounded these two areas?

It is not difficult to see how ‘Student’ and Fisher found themselves defending the
use of the P integral. For if one accepts that it is possible to test a null hypothesis
without specifying an alternative, and that the test must be based on the value
of a test statistic in conjunction with its known sampling distribution on the null
hypothesis, then the integral of the distribution between specified limits is the only
measure which is invariant to transformation of the statistic. It follows that one is
virtually forced to consider the area between the realized value of the statistic and a
boundary as the rejection area - the P integral, in fact. (Edwards (1992), p. 178)

In other words, although the last paragraph can be interpreted as an invariance argument in
favour of p-values (even if the measuring process is rather arbitrary, and only the ordering of
the values recorded corresponds to something real, the p-value makes sense, since P (X ≥ x) =
P (f(X) ≥ f(x)) for any monotone transformation f); Fisher, considering a single hypothesis,
simply had no other choice but to calculate P integrals such as (1). He knew that this way to
proceed was not really sound:

Objection has sometimes been made that the method of calculating confidence limits
by setting an assigned value such as 1% on the frequency of observing 3 or less [. . .] is
unrealistic treating values less than 3, which have not been observed, in exactly the
same manner as 3, which is the one that has been observed. This feature is indeed
not very defensible save as an approximation. (Fisher (1956/73), p. 71)

However, a rather straightforward example illustrates that even the roundabout idea of “approx-
imation” is difficult to defend. Suppose PH(X < x) = 0.01 and PH(X = x) = 0.02, small values
of X being suspicious. If x is observed, the one-sided test may reject PH since PH(X ≤ x) = 0.03.
Now look at the (modified) hypothesis K where PK(X = x) = 0.02, but PK(X < x) = 0.4. In
this case PK(X ≤ x) = 0.42 and no test would reject K. Yet the probability of the observed
value x is the same for both hypotheses! The conclusion differs tremendously just because of
values that were not observed:

An hypothesis that may be true is rejected because it has failed to predict observable
results that have not occurred. This seems a remarkable procedure. On the face of
it, the evidence might more reasonably be taken as evidence for the hypothesis, not
against it. (Jeffreys (1939), p. 316)
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Altogether, Fisher’s paradigm seems to be too coarse. What is needed are more elaborated models,
able to distinguish between observed and merely possible values, and explicitly formalizing other
relevant aspects, such as the probability of committing an error or the strength of some effect.

TWO HYPOTHESES
In order to keep things as simple as possible, E. S. Pearson (1938), p. 242, proposed the following
move:

[. . .] the only valid reason for rejecting a statistical hypothesis is that some alternative
hypothesis explains the observed events with a greater degree of probability.1

Given (at least) two hypotheses H and K, it is of fundamental importance to understand that
there are two completely different ways to generalize Fisher’s approach. Either one sticks with
integrals, which is the main feature of the Neyman-Pearson theory, or one directly compares
PH(x) with PK(x). We will start with the latter idea:

Likelihood Ratio Tests

Given two hypotheses, it is perhaps most obvious to study the ratio PK(x)/PH(x). In particular,
since “. . . a proper measure of strength of evidence should not depend on probabilities of unob-
served values” (Royall (1997), p. 69). Obviously, a ratio larger than one is evidence in favour of
K, and a ratio that is smaller than one provides evidence in favour of H.

With successive observations x1, x2, . . . evidence for (and against) some hypothesis should build
up. Mathematically, it is straightforward to consider the likelihood ratio, i.e., the product

rn = rn(x1, . . . , xn) =
n∏
i=1

PK(xi)

PH(xi)
. (2)

With every observation, the odds change in favour of one of the hypotheses (and thus, simul-
taneously, against the other). Let PXn be the empirical distribution of a sample of size n. Due
to the law of large numbers, PXn(x) → PH(x) for every x ∈ X almost surely, if PH is the true
distribution. This basic result almost immediately implies the likelihood convergence theorem:
That is, (2) converges almost surely to zero if H is true, and to +∞ if K is true. (See Royall
(1997), p. 32, for discrete probability distributions and Chow and Teicher (1997), p. 257, for
densities.)

It thus seems to be justified to decide in favour of K if the likelihood ratio exceeds some pre-
assigned threshold s (s > 1). As Robbins (1970) showed, if H is correct, the probability that the
ratio at one point of time exceeds s is just 1/s. Formally:

P

(
n∏
i=1

PK(Xi)

PH(Xi)
≥ s for some n = 1, 2, . . .

)
≤ 1

s

Notice that even “if an unscrupulous researcher sets out deliberately to find evidence supporting
his favourite hypothesis [K] over his rival’s [H], which happens to be correct, by a factor of at
least [s], then the chances are good that he will be eternally frustrated” (Royall (1997), p. 7).

1As early as 1926, Gosset wrote to E.S. Pearson: “[. . .] if there is any alternative hypothesis [. . .] you will be
much more inclined to consider that the original hypothesis is not true [. . .]” (See Royall (1997), p. 68, and the
discussion in Hodges (1990), pp. 76.) It may be mentioned that Laplace had improved upon Arbuthnot in the
1770s, i.e., he had compared sex ratios at birth of several cities (cf. Stigler (1986), pp. 134).
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Since the normal distribution is particularly important, Royall (1997), p. 52, considers it in
much detail and finds that s = 8 and s = 16, or s = 1/8 = 0.125 and s = 1/16 = 0.0625,
respectively, are reasonable choices. For more details see Royall (2000), Goodman und Royall
(1988), and Bookstein (2014), p. 194, who reproduces Jeffreys’ rule of thumb: rn > 1 supports
K, 1 > rn > 0.3 supports H, “but not worth more than a bare comment.” However, the evidence
in favour of H (and thus, equivalently, against K) is

substantial if 0.3 > rn > 0.1 very strong if 0.03 > rn > 0.01
strong if 0.1 > rn > 0.03 decisive if 0.01 > rn

Bayesian Tests

The likelihood ratio may serve as the core piece of a Bayesian analysis. To this end let πH be the
prior probability of the first hypothesis, and πK = 1 − πH the prior probability of the second.
Having observed x = (x1, . . . , xn), Bayes’ theorem states that the odds ratio of the posterior
probabilities of the hypotheses is

π(K|x1, . . . , xn)

π(H|x1, . . . , xn)
= rn(x1, . . . , xn) · πK

πH
=

n∏
i=1

PK(xi)

PH(xi)
· πK
πH

. (3)

If 0 < πH < 1, i.e., if both hypotheses are considered possible at the beginning, there are
convergence results of a very general nature that guarantee that the true hypothesis will be
found almost surely (e.g., Walker (2003, 2004)).

Moreover, it is possible to emulate Fisher’s idea of a single explicit hypothesis. (For an example,
see Bookstein (2014), pp. 197.)

Neyman and Pearson

Mathematicians J. Neyman and E.S. Pearson also improved upon Fisher’s initial idea. In theory
as well as in applications, their line of reasoning has become standard. Like Fisher, they used
integrals, i.e., probabilities like P (X ≥ x). However, in order to avoid confounding the observed
with the unobserved, they insisted that such probabilities be computed in advance, i.e., before
recording empirical data.

Their paradigm situation is as follows: Denote by N(µ, σ) the normal distribution with expected
value µ and standard deviation σ. Let PH ∼ N(µH , σ), PK ∼ N(µK , σ), and suppose without loss
of generality that the absolute effect size η = µK −µH is non-negative. Since for both hypothesis
and each x the densities ϕH(x) and ϕK(x) are positive, we can never be sure which hypothesis
is the case. All we can do is try to minimize the error of the first kind (a decision in favour of K,
although H is true) and the error of the second kind (a decision in favour of H, although K is
true).

Given populationH orK, the mean X̄n =
∑
Xj/n of the observations is also normally distributed

with parameters µ
′
, the correct hypothesis’ expected value, and standard deviation σ/

√
n. (Thus,

the larger the sample, the smaller the mean’s standard deviation.) A rather straightforward
treatment of this situation would look for the point m where ϕH(x) = ϕK(x) which, due to
symmetry, is just m = (µH + µK)/2, and decide in favour of H if x < m, and in favour of K if
x ≥ m. This leads to the total probability of error

Pe(n) = αn + βn = P (X̄n ≥ m|H) + P (X̄n < m|K) (4)
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which can be made arbitrarily small with growing n, for any fixed η = µK − µH > 0.

However, perhaps since the errors of the first and of the second kind have different consequences,
Neyman and Pearson decided to treat the null hypothesis H (typically representing arbitrary
fluctuations, i.e., “no effect”) and the alternative K (representing a substantial effect) asymmet-
rically. With n and the effect size η thus given, Neyman und Pearson (1933), pp. 79, advised as
follows:

From the point of view of mathematical theory all that we can do is to show how the
risk of the errors [α, β] may be controlled and minimized. The use of these statistical
tools in any given case, in determining just how the balance [between the two kinds
of errors] should be struck, must be left to the investigator.

They also fixed α (i.e, the level of error of the first kind, meaning that an effect is detected
although there is none). Now they could look for the optimum decision procedure, minimizing
β, which they determined in Neyman und Pearson (1933).

Knowing the best test, one can also control for the errors (e.g., by fixing α to 0.01, and assuming
β = 0.3, say), and set out to detect an effect of a certain size η with the minimum number of
observations n necessary. E. S. Pearson (1955), p. 207, explains:

The appropriate test is one which, while involving (through the choice of its sig-
nificance level [α]) only a very small risk of discarding my working hypothesis [H]
prematurely will enable me to demonstrate with assurance [1− β] (but without any
unnecessary amount of experimentation) the reality of the influences which I suspect
may be present [K].

In this view, every observation comes with a cost and a major goal of the statistical design of
experiments is to make just enough observations in order to convincingly demonstrate a certain
effect - n is just as large as necessary, not as large as possible.

SOME CONSEQUENCES

The standard style of inference

Suppose there is an effect η of a certain size, and the sample size n is fixed. Then the investigation
hinges strongly on the asymmetry between α and β, being treated differently. Cornfield (1966),
p. 21, wasn’t the only one to question this choice:

It is clear that the entire basis for sequential analysis [and much of received testing
theory] depends upon nothing more profound than a preference for minimizing β
for given α rather than minimizing their linear combination. Rarely has so mighty
a structure and one so surprising to scientific common sense, rested on so frail a
distinction and so delicate a preference.

In practice, researchers did not use the additional degree of freedom introduced by Neyman
und Pearson (1933) either. Despite their and Fisher’s advice, rather coarse standards such as
α = 0.05, or Cohen’s (1988, 1992) classification of effects (small, medium, large) caught on, until
testing became a “ritual” (Gigerenzer et al. 2004).
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With all parameters set in advance, a test is indeed a strict decision procedure, and “the basic
objection to this program is that it is too rigid. . .” (Lehmann (1993), p. 70). In fact, all one gets
is an (asymmetric) dichotomous decision against or in favour of K, and the procedure is so tight
that it cannot be extended at all. Cornfield (1966), p. 19, writes (see also Royall (1997), p. 111
on these matters):

An experimenter, having made n observations in the expectation that they would
permit the rejection of a particular hypothesis, at some predesignated significance
level, say .05, finds that he has not quite attained his critical level. He still believes
that the hypothesis is false and asks how many more observations would be required
to have reasonable certainty of rejecting the hypothesis [. . .]

Under these circumstances it is evident that there is no amount of additional infor-
mation, no matter how large, which would permit rejection at the .05 level. If the
hypothesis being tested is true, there is a .05 of its having been rejected after the first
round of observations. To this chance must be added the probability of rejecting after
the second round, given failure to reject after the first, and this increases the total
chance of erroneous rejection to above .05 [. . .] Thus no amount of additional evidence
can be collected which would provide evidence against the hypothesis equivalent to
rejection at the P = 0.05 level [. . .]

In other words: In this perspective, α is a limited, non-renewable resource. “Once we have spent
this error rate, it is gone” (Tukey (1991), pp. 104). Thus it has to be used with great care: “[. . .]
a very few prespecified comparisons will be allowed to eat up the available error rate, and the
remaining comparisons have the logical status of hints, no matter what statistical techniques
may be used to study them.” (Tukey (1991), pp. 104)

In order to avoid an “inflation” of error, it seems wise to distribute the error rate of 5% say,
among all tests planned. The standard technique is to adjust α, a priori, by some scheme taking
the whole family of tests into account. Salsburg (1985), p. 221, reports the consequences of such
a consistent attitude:

Finally, we should consider the subclass of practitioners who are ‘more holy than
the Pope,’ so to speak. To these practitioners, the whole purpose of the religion of
Statistics is to maintain the sanctity of the alpha level (which is another name for
0.05). No activity that appears to involve looking at data for sensible combinations
of interesting effects is allowed. It is forbidden, in fact, to do anything more than to
compute the p value using a method determined in advance of the experiment and
fully documented at that time.

Note also that if only a small proportion of α is spent in every test, the overall procedure becomes
very conservative: In the Neyman-Pearson framework, a very small α corresponds to an inflation
of β and thus deteriorating power 1−β. Since research in the social sciences is generally plagued
by low power, this attitude makes it even more difficult to detect effects. Ellis (2010), p. 79,
concludes:

Instead of dealing with the very credible threat of Type II errors, researchers have been
imposing increasingly stringent controls to deal with the relatively unlikely threat of
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Type I errors (Schmidt 1992). In view of these trade-offs, adjusting alpha may be a
bit like spending $1,000 to buy insurance for a $500 watch.

Royall (1991), p. 57, states another way to deal with the problem described by Tukey. Instead of
lowering α for each test, one simply restricts the number of planned tests:

. . .do not allow those who are conducting the trial to look at the results as they
accumulate. That is, [. . .] conceal the evidence from the physician until the trial is
completed.

Altogether, the Neyman-Pearson framework gives some justification for minimizing the amount
of information collected, and the number of looks at the data. This fits well with Popper’s ratio-
nalistic view, who always emphasized the role of theory and deduction in the guise of falsification,
downplaying the role of data, and rejecting induction firmly (Popper 1959, Popper and Miller
1983). However, scientific common sense and practice rather point in the opposite direction: If
we are to learn from experience, an open-minded attitude and any reasonable analysis, be it
hypothesis- or data-driven, should be encouraged. Keiding (1995), p. 242, admits that

[. . .] it is indeed unsatisfactory to have to defend, perhaps in the face of senior, highly
qualified substantive scientists, our mainstream statistical thinking which assumes
that you are not supposed to look at the data when searching for methods of optimal
analysis with the purpose of gaining new knowledge.

Confusion

Since there are several theories (at least two), each of them accompanied by a certain “logic”,
data analysis is a tricky business, and there is also lot of confusion.

In particular, despite their mathematical similarity, data-dependent p-values and error levels
set in advance are completely different. It is against the grain of the Neyman-Pearson theory to
calculate α-levels a posteriori (for example, one, two or three stars indicating that some empirical
result has been significant at the 0.05, 0.01 or the 0.001-level), to report p-values instead of
zero-one decisions, or to restrict attention to one hypothesis (typically the null, although two
hypotheses might be mentioned). Nevertheless, practice and textbooks use p-values and α-levels
almost interchangeably, thus creating an “alphabet soup” (Hubbard 2004).

On a less formal level, there is also much conceptual confusion, (inductive) evidence in Fisher’s
sense and (deductive) decisions in Neyman’s and Pearson’s being conflated:

This hybrid is essentially Fisherian in its logic, but it plays lip service to the Neyman-
Pearson theory of testing [. . .] Some researchers do use the Neyman-Pearson theory
of testing in a pure form, but they constitute a small minority [. . .] Regardless of their
terminology and verbal allegiance, most researchers in the fields mentioned above use
and/or accept as valid a pattern of inductive reasoning that is characteristic for the
Fisherian test of significance. (Spielman (1974), p. 211)

It is a crucial ingredient of the standard Neyman-Pearson theory to treat the hypotheses asym-
metrically. Typically, the null hypothesis represents the idea that pure chance produced the data
at hand, whereas its alternative claims that an interesting substantial effect has left its traces
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in the data. Obviously, any “logic of empirical science” demands that the more data there is,
the more difficult it should be for a substantial hypothesis to succeed: “. . . in physics and the
related disciplines the parent theory is subjected to ever more critical examination as measure-
ment techniques, in their broadest sense, improve. That is, as power increases the ‘observational
hurdle’ that the theory must clear becomes greater.” (Oakes (1986), pp. 40)

In other words, as information accrues, it becomes easier to detect if the data deviate from a
particular hypothesis. For example, suppose your hypothesis (derived from basic theory) claims
that about 6.6 · 1010 neutrinos should hit the surface of the earth per second and cm2. Then
measurements should confirm this guess, i.e., the number of neutrinos actually counted should
be close to 6.6 ·1010/s ·cm2. In the jargon of statistical tests this means that “[. . .] in the physical
sciences the substantive theory is associated with the null hypothesis and to the extent that it
defies rejection it commands respect” (cf. Oakes (1986), p. 41. For a contemporary example see
van Dyk (2014).)

However (Oakes (1986), pp. 40), “the opposite is the case in the social and behavioural sciences
[. . .] In psychology and the social sciences the substantive theory is associated with the alternative
hypothesis and is corroborated as the null hypothesis is rejected. In this sense the observational
hurdle which the theory must clear is lowered as power or experimental precision is increased.
This is the great weakness of identifying a theory with the alternative hypothesis”:

Putting it crudely, if you have enough cases and your measures are not totally un-
reliable, the null hypothesis will always be falsified, regardless of the truth of the
substantive theory (Meehl (1978), p. 822, emphasis in the original).

Perhaps it is quite telling that, although this phenomenon was described by an eminent psy-
chophysicist 50 years ago (Meehl 1967), and has been decried many times ever since (e.g., Meehl
(1990, 1997), Gelman et al. (2013), Bookstein (2014)), this kind of “mindless statistics” (Gigeren-
zer 2004) has thrived (Hubbard und Ryan 2000). Its “career” is quite similar and related to that
of p-values which, despite their major shortcomings, have also become standard in many sciences.

The scientific style of inference

Apart from the consequences already described, the standard treatment, i.e.,

1. considering intervals like PH(X ≤ x) instead of point probabilities,

2. dealing with the hypotheses (and thus, α, β) in an asymmetric manner, and

3. putting all parameters constituting a standard test on a par

has led to the following:

(a) 1 − β is identified with the importance or even with the “scientific power” of a certain
study.

(b) Power analysis. For example, upon designing a clinical trial, it is now mandatory to calculate
the number of patients n, given the level of significance α, power 1− β, and effect size η.

(c) The attitude that observations are “expensive” - since, given α, β and η, the above line of
thought supposes that a small sample is optimum.
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Alas, “inventing virtuous-sounding terms” (cf. Jaynes (2003), p. 514) like power does not solve
problems. Rather, emphasis on 1−β obscures the fact that the “real” impact of a trial consists in
its contribution to a series of experiments, all investigating the same phenomenon (Ottenbacher
1996). To this end, the effect size η is much more important:

. . .the emphasis on significance levels tends to obscure a fundamental distinction
between the size of an effect and its statistical significance. Regardless of sample size,
the size of an effect in one study is a reasonable estimate of the size of an effect in
replication (Tversky and Kahneman (1971), p. 110).

Guttman (1985), pp. 3, adds: “The emphasis on statistical significance over scientific significance
in education and research represents a corrupt form of the scientific method. . .”

A priori power analysis (Cohen 1988, Ellis 2010) hinges on the idea that α, 1− β, η and n “. . .
are so related that any one of them is a function of the other three, which means that when any
three of them are fixed, the fourth is completely determined” (Cohen (1988), p. 14). Although it
surely is a good idea to think hard about one’s hypotheses before collecting data, formulae such
as (4) indicate that α and β had better depend on n. In particular, α(n) should be a decreasing
function in n (see, e.g., subsection “objections,” Lindley (1957), Hurlbert and Lombardi (2009),
pp. 333, and Naaman (2016)).

Finally, and most importantly, since information accrues with data, the overall attitude toward
n should be quite the opposite to that of Pearson:

There are no inferential grounds whatsoever for preferring a small sample [. . .] the
larger the sample the better [. . .] The larger the sample size the more stable the
estimate of effect size; the better the information, the sounder the basis from which
to make a decision [. . .] (Oakes (1986), pp. 29, 32)

In everyday life, this often means collecting data until the evidence has accumulated sufficiently:

An experiment involving an image-producing apparatus often ends appropriately with
a ‘golden event’, that is, a picture or image of something whose existence has been
conjectured, but possibly questioned. An experiment involving a counting apparatus
often ends appropriately when a decision based on some probability model suggests
that enough counts have been taken for some purpose. (Ackermann (1989), p. 189)

If some insight thus occurs all of a sudden, the crucial last step, has, with a wink, been called the
interocular traumatic test: “You know what the data mean when the conclusion hits you between
the eyes” (Edwards et al. (1962), also see Bookstein (2014)).

Altogether, η and n seem to be much more important than α and β. It is also no coincidence
that any philosophy based on a suboptimal formal treatment yields opinions that are at variance
with common sense (Neyman 1977, Mayo 1996). For an important example see the next section.

A blurred view
Neyman und Pearson (1933), p. 74, state:

If x is a continuous variable . . . then any value of x is a singularity of relative proba-
bility equal to zero. We are inclined to think that as far as a particular hypothesis is
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concerned, no test based upon a theory of probability (Footnote: cases will of course,
arise where the verdict of a test is based on certainty. . .) can by itself provide any
valuable evidence of the truth or falsehood of that hypothesis.

In the light of the above discussion, this statement - still very popular today - permutes rule
and exception. It is much too pessimistic, since, owing to the (very) general convergence results,
no matter whether the variables are discrete or continuous, given enough observations, H and
K can be distinguished with hardly any doubt. For example, just a few throws suffice to decide
between a cube with the numbers {0, . . . , 5}, and a cube with the numbers {1, . . . , 6}. More
generally speaking, if the support of H and K is not the same (i.e., if there exists some x such
that PH(x) = 0 and PK(x) > 0, or vice versa), one is able to discriminate deterministically
between the hypotheses after just a finite number of observations.

Of course, for any continuous random variable X, and any realization x, P (X = x) = 0. There-
fore, given two hypotheses, one has to consider their densities, fH(x) and fK(x) say. In the case
of the normal family (and many others), the support of any two densities coincides. Thus, rather
trivially, no matter which x is observed, one cannot decide for sure if H or K is the case. However,
the ratio fK(x)/fH(x) gives valuable evidence and much more so will rn(x1, . . . , xn) if n is not
too small. Asymptotically, any doubt vanishes completely. Thus in a nutshell, a statistical test
is a powerful tool.

TESTING NEED NOT BE COMPLICATED

Statisticians, philosophers and scientists have written much about (styles of) inference and statis-
tical philosophies (e.g., Neyman (1955, 1961, 1977), Jones (1986), Good (1988), Barnett (1999),
Fisher (2003), Jaynes (2003), Dienes (2011), Cumming (2014), Spanos (2014), Haig (2016)).
Instead of adding another opinion, it may be wiser to go back to the original issue:

First, since the basic problem is rather elementary, one expects an elegant, satisfactory answer.
Second, since Fisher’s treatment is too coarse and leads immediately to almost inextricable
problems, there is a consensus that two hypotheses should be considered. Third, the last section
shows that Neyman’s and Pearson’s treatment has led to disappointment. Why?

Looking at their model from a mathematical point of view, the P integral springs to mind.
Introduced by Fisher - faute de mieux - it is given the leading part in Neyman’s and Pearson’s
two-hypotheses setting, and is at the root of all subsequent trouble. More precisely: To keep
up the basic distinction between the observed and the unobserved, one has to stick to a strict
prior viewpoint. Since this is hardly possible and has curious consequences, it is no coincidence
that Neyman’s and Pearson’s stance has merged with Fisher’s position (and other ideas), almost
inevitably creating confusion and endless discussion.

The good news is that a large part of the scientific and philosophical turmoil is due to a particular
mathematical treatment - Neyman and Pearson have made testing more complicated than it
needed to have been. Therefore a better, more elegant treatment should be able to rectify most
of the defects since, due to the law of large numbers, testing is an easy problem:

If n is not too small, the empirical distribution of the data PXn is (in any reasonable sense)
close to the true distribution PH . The test of one hypothesis gives a formalized answer to the
simple question: Is the data I have observed compatible with my hypothesis? If there are two
or several hypotheses, the question becomes: Given my set of data, which hypothesis should I
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choose? Qualitatively speaking, it is reasonable to choose the hypothesis which is closest to the
data, and to reject a hypothesis if the data is “far away” from PH .

A contemporary treatment, focussing on information and (generalized) distance of distributions,
therefore starts with the likelihood ratio. Suppose there are two hypotheses H,K, represented
by their distributions PH , PK . Define their KL-divergence (Kullback and Leibler 1951):

D(PK ||PH) =
∑
x∈X

PK(x) log
PK(x)

PH(x)
,

where D(PK ||PH) <∞, and, for the sake of mathematical simplicity, X is a finite set. D(PK ||PH)
may be interpreted as a “generalized distance” between distributions. Since its introduction, it
has become a core concept of information theory and beyond (e.g., see Cover und Thomas (2006),
pp. 377, and their pointers to the literature).

The key result, connecting the likelihood ratio and KL-divergence is

log
PK(x1, . . . , xn)

PH(x1, . . . , xn)
=
∑
i

log
PK(xi)

PH(xi)
= n (D(PXn||PH)−D(PXn||PK)) , (5)

where PXn is the empirical distribution of the data.

In the most complete (i.e., Bayesian) setting, H and K are endowed with prior probabilities, πH
and πK , respectively. Given an iid sample x1, . . . , xn from either PH or PK , let An ⊆ Xn be the
acceptance region for H, depending on n. Thus one obtains the error probabilities αn = PH(Ān)
and βn = PK(An), where Ān denotes the complement of An, i.e., the acceptance region of K.
Finally, it is straightforward to minimize the total probability of error Pe(n) = πHαn + πKβn.

Given this symmetric treatment of the hypotheses, and error probabilities depending on n, it turns
out (Cover und Thomas (2006), p. 388) that “the optimum decision rule is to choose the hypothe-
sis with the maximum a posteriori probability,” which means to choose K if πKPK(X1, . . . , Xn) >
πHPH(X1, . . . , Xn), and H, if the inequality is in the other direction. Equivalently, the best strat-
egy is a decision in favour of K if

log
πK
πH

+
∑
i

log
PK(Xi)

PH(Xi)
> 0,

and in favour of H otherwise. Because of (5), the latter inequality is tantamount to a decision in
favour of K if and only if

nD(PXn||PH)− log πH > nD(PXn||PK)− log πK .

Without prior probabilities, it is best to decide in favour of K if the empirical distribution is
“closer” to PK , i.e., if D(PXn||PH) > D(PXn||PK). More generally speaking, because of (5), a
decision in favour of K if PK(x1, . . . , xn)/PH(x1, . . . , xn) ≥ s, i.e., if the likelihood ratio exceeds
a certain threshold (s ≥ 1), is equivalent to a decision in favour of K if D(PXn ||PH)− 1

n
log s ≥

D(PXn||PK). In other words, the likelihood ratio test advises choosing K if the divergence
D(PXn||PK) is smaller than D(PXn||PH) minus the asymptotically vanishing “safety margin”
(log s)/n ≥ 0. Moreover, if K is true,

lim
n→∞

1

n
log

PK(X1, . . . , Xn)

PH(X1, . . . , Xn)
→ D(PK ||PH) in probability.
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The test closest to Fisher’s original idea is Hoeffding’s “universal test”, which merely compares
the data with a fixed hypothesis. It decides in favour of H if the empirical distribution is within
a certain acceptance region An about PH , i.e., if

D(PXn||PH) ≤ cn.

Because of the law of large numbers, the sequence cn decreases rapidly with increasing n. (For
details see Hoeffding (1965), theorems 7.1 and 5.1.)

DISCUSSION AND CONCLUSIONS

At first glance, it seems to be a drawback that KL-divergence is not a proper metric. In particular,
given two distributions PH and PK , in general, D(PH ||PK) 6= D(PK ||PH). However, in the case
of data and hypotheses this is an advantage, since there is a striking asymmetry between moving
from specific observations to general laws (induction) and the opposite direction (deduction).

Hoeffding’s test starts with a hypothesis H and asks if the data lies within a circle of radius
cn about PH . An even more straightforward way to proceed would be to start with data xn =
(x1, . . . , xn) and ask if PH lies within a circle of radius c

′
n about the empirical distribution. There is

a real difference: Hoeffeding looks for data compatible with some conjectured hypothesis, whereas
the second approach conditions on the data and looks for hypotheses that are compatible with
the observations.

At least from a mathematical point of view, asymptotically, these preferences do not matter,
since, if H is the true hypothesis, by the law of large numbers PXn(a)→ PH(a) for every a ∈ X
in probability (and almost surely). Thus, for every a with PH(a) > 0,

lim
n→∞

PXn(a)

PH(a)
= lim

n→∞

PH(a)

PXn(a)
= 1

which implies limn→∞D(PXn||PH) = D(PH ||PXn) = 0 with probability one.

In total generality, i.e., in philosophy, deduction is regarded as rather unproblematic. However,
the problem of induction has haunted statistics, philosophy, and perhaps also the sciences at least
since David Hume’s time (Howson 2003). A standard statistical test is a particularly simple model
to study these matters - a “test bed” if you allow the play on words. Any such test considers
hypotheses (typically two), collects an iid sample x1, . . . , xn, and finally decides in favour of or
against a hypothesis. Schematically,

PH Potential distributions (laws) PK
↖ ↗

Data (x1, . . . , xn)

Philosophers named this kind of reasoning “inference to the best explanation” (Lipton 2004), but
also leading statisticians have always been well aware of the basic issue involved. While Fisher
(1935, 1955) thought in terms of inductive inference, Neyman (1977) sided with the deductive
line of argument. Considering a single experiment, Fisher thus calculates the p-value, expressing
the evidence in the data against a hypothesis. Starting with hypotheses, instead, Neyman and
Pearson focus on probabilities of error and how to control them. (Quite similarly, Bayesians focus
on the data at hand, whereas orthodox theory is much more concerned with the process producing
the data.)
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In the end, the strong link between Neyman’s Frequentist school and Popper’s critical rationalism
strengthened both points of view, with the consequence that their positions succeeded after the
death of their major opponents (Fisher died in 1962, and Carnap in 1970). In particular, induction
was banned, and mathematical statistics superseded semantic reasoning to an extent that even
analyzing given sets of data became suspicious.

Since the 1970s, many statisticians, scientists and philosophers have worked on overcoming this
distorted view (e.g., Tukey (1977), Hedges und Olkin (1985), Ghosh (1988), Schmidt (1992,
1996), Berthold und Hand (2003), Jaynes (2003), Heckman (2005), Howson und Urbach (2006),
Rissanen (2007), Hurlbert and Lombardi (2009), Pearl (2009), Ellis (2010), Bookstein (2014)).
Perhaps since the “big questions” thus demanded much attention, rather elementary facts like
those pointed out in this contribution could be overlooked easily.

It is most significant that due to the law of large numbers, the distance between sample and
population shrinks (quickly) when n gets larger. This basic insight makes testing an easy prob-
lem: Given enough data - and thus information - the true distribution comes into focus al-
most inevitably. Therefore, mathematically, all approaches based on the straightforward ratio
PK(X = x)/PH(X = x) lead to unequivocal and strong convergence results. In other words,
sufficiently precise and distinct hypotheses can be tested efficiently, at least, if the hypotheses
are treated in a rather symmetric way (Royall 1997, Robert 2007).

On a larger scale, putting information first gives sound answers to quite a few questions. For
example, if there is an uncountable number of hypotheses, e.g., a parameterized family of distri-
butions Pθ(x), Fisher’s likelihood function Lx(θ) provides the key to an elegant solution, which
can be extended to an enormously general and powerful information-oriented approach that is
perfectly compatible with scientific common sense (e.g., Aldrich (1997), Burnham and Anderson
(2002), Li and Vitányi (2008)).

Finally, it should be mentioned that particular formal treatments are associated with certain
schools of thought - and it is rather the detailed treatment that triggers the overall attitude
than vice versa (methods first, philosophy second). Therefore, quite straightforwardly, an elegant
mathematical treatment comes with a “moderate” and reasonable standpoint, whereas question-
able decisions lead to rather “extremist” paradigms. The above exposition demonstrates that it
may take decades - filled with excessive discussions ranging from formal minutiae to philosophical
principles - to overcome popular, yet distorted, points of view.
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