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ABSTRACT	

Suppose	a	game	is	played	repeatedly	by	a	finite	collection	of	players.	At	every	step,	each	
player	 plays	 his	 optimal	 strategy	 given	 the	 observed	 probabilities	 of	 play	 for	 the	
strategies	 used	 by	 the	 other	 players.	 This	 generates	 a	 (time-dependent)	 map	 of	 the	
joint	 strategy	 space	 into	 itself	 known	 as	 ‘fictitious	 play’(FP).	 This	 map	 can	 be	
approximated	by	 a	 discontinuous	 vector	 field.	 ‘Weak’	 solutions	 for	 this	 dynamics	 are	
defined,	 and	 shown	 to	 exist	 and	 be	 unique	 under	 certain	 generic	 conditions.	 These	
weak	solutions	are	also	shown	to	be	limits	of	the	original	discrete	dynamics	as	the	step	
size	 approaches	 zero.	 It	 is	 shown	 that	 this	 process	 lends	 itself	 to	 a	 reasonable	
interpretation	of	bounded	rationality	in	the	appropriate	context.	
	
Keywords:	Games,	Dynamic	Systems,	Complexity,	Bounded	Rationality.	

	
INTRODUCTION	

By	embedding	game	theory	in	a	dynamical	context,	one	may	hope	to	find	a	basis	of	attraction	
for	 various	Nash	 equilibria,	 thereby	 interpreting	 the	 choices	 of	 a	 particular	 equilibrium	as	 a	
consequence	 of	 the	 boundary	 conditions	 of	 the	 dynamical	 game.	 Further,	 a	 complicated	
dynamics	 which	 fails	 to	 converge	 to	 a	 Nash	 equilibrium	 may	 indicate	 a	 fundamental	
inconsistency	 in	 the	game	or	a	breakdown	of	von	Neumann	rationality.	Beyond	the	technical	
results	 proposed	 below	 the	 linkage	 between	 fictitious	 play	 games	 and	 dynamical	 systems	
suggests	on	some	scale	interesting	features	of	social	and	economic	dynamics	toward	equilibria	
states.	
	
Within	 different	 dynamical	 contexts,	 the	 same	 game	 may	 display	 very	 different	 features.	 A	
given	dynamics	provides	 its	 own	notion	of	 a	 solution	 concept,	 one	which	may	be	 inherently	
limited	by	the	possibility	of	exotic	behaviour.	
	
An	example	of	embedding	a	game	in	a	dynamical	context	is	the	game	of	fictitious	play,	as	well	
as	similar	cases	of	evolutionary	type	games	(Binmore,	1987).	
	
Consider	 the	repeated	play	of	a	game	G.	At	each	stage,	 there	are	empirically	observed	mixed	
strategies	for	each	player	given	by	xj(i)(t)	(number	of	times	the	i-th	player	has	used	strategy	j).	
Now	suppose	that	each	player	plays	his	optimal	strategy	given	 the	currently	observed	mixed	
strategies	 x(1)(t).…,x(n)(t).	 Since	 the	 payoffs	 are	 multilinear	 functions	 of	 the	 observed	 mixed	
strategies,	 the	optimal	strategy	will	be	a	pure	strategy.	 (Ties	can	be	broken	arbitrarily.)	This	
generates	a	discrete-time	dynamics	on	strategy	space	given	by	
	

xj(i)(t+1)=txj(i)(t)+	Гj(i)(x)(t))/t+1.	
	
where	Гj(i)(x)=1	if	the	optimal	strategy	for	the	i-th	player	given	the	joint	mixed	strategy	choice	x	
is	j,	and	0	otherwise.	
The	 simplicity	 of	 this	 dynamics	 allows	 a	 crucial	 simplification.	 Instead	 of	 working	 with	 all	
possible	 histories	 of	 strategies,	we	 need	 only	 consider	 average	 tendencies	 to	 use	 strategies.	
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Instead	 of	 an	 unwieldy	 discrete	 strategy	 space,	 we	 have	 a	 convenient	 continuous	 strategy	
space.	In	effect,	the	decision	to	throw	out	detailed	knowledge	of	the	particular	order	in	which	
strategies	are	played	in	favour	of	overall	tendencies	is	a	kind	of	bounded	rationality,	where	the	
players	use	simple	playing	habits	 to	confront	potentially	complex	situations	(Megiddo,	1986,	
Kalai,	1988),	see	also	Gottinger(1990).	
	
Brown	(1951)	and	Robinson	(1951)	introduced	this	‘fictitious	play’	dynamics	and	were	able	to	
prove	 it	converges	 to	 the	von	Neumann	equilibrium	for	 the	 two-player,	zero-sum	case.	Later	
Shapley	 (1964)	 gave	 an	 example	 where	 fictitious	 play	 leads	 to	 oscillatory	 dynamics.	 In	 the	
context	 of	 bounded	 rationality	 fictitious	 play	 is	 mentioned	 by	 Kreps	 (1990)	 and	 further	
pursued	by	Fudenberg	and	Kreps	(1993).	
	
Later	on,	there	has	been	an	overwhelming	interest	in	fictitious-play	dynamics	(FPD).	
	
We	 study	 a	 continuous-time	 analogue	 of	 fictitious	 play	 by	 using	 concepts	 and	 tools	 of	
dynamical	systems	(Smale,	1980a).	Alternative	models	of	continuous	fictitious	play	(CFP)	have	
been	proposed	by	Gaunersdorfer	and	Hofbauer	(1995)	and	Monderer	et	al.	(1996).	
	
In	Gaunersdorfer	 and	Hofbauer	 (1995),	 existence	 can	be	 settled	by	 general	 results	 from	 the	
theory	 of	 differential	 inclusions.	 Uniqueness	 is	 discussed	 in	 Hofbauer	 (1995)	 where	 in	
particular	 examples	 of	 non-uniquess	 are	 discussed.	 CFP	 has	 been	 initialized	 earlier	 by	
Rosenmüller	(1971),	but	convergence	results	of	2x2	games	using	best-response	dynamics	has	
only	later	been	proved	by	Metrick	and	Polak	(1994).	It	can	also	be	mentioned	that,	except	for	a	
scaling	 of	 time	 (which	 does	 not	 affect	 the	 orbits),	 CFP	 is	 equivalent	 to	 the	 best	 response	
dynamics	(Matsui,	1992).	We	obtain	an	approximation	result	 for	CFP	by	the	original	discrete	
fictitious	 play	 (DFP)	 with	 small	 step	 size.	 We	 show	 that	 if	 the	 trajectory	 crosses	 the	
hyperplanes	 which	 separate	 best	 response	 regions	 only	 a	 finite	 number	 of	 times,	 DFP	
approximates	 CFP.	 The	 result	 covers	 the	 cases	 (a)	 for	 a	 bounded	 interval	 of	 time,	 or	 (b)	
convergence	to	a	pure	strategy	equilibrium.	Another	interesting	problem	concerns	the	general	
behaviour	of	DFP	and	CFP,	allowing	convergence	to	mixed	strategy	equilibrium	(Metrick	and	
Polak,	1994)	but	this	issue	is	not	further	resolved.	
	
The	model	of	FP,	described	in	Section	2,	is	an	appealing	and	simple	embodiment	of	a	process	in	
which	boundedly	rational	players	react	to	each	other’s	play,	creating	a	dynamical	system	with	
the	state	space	being	the	set	of	mixed	strategy	profiles.	A	difficulty	with	the	model	 is	 that	 its	
associated	gradient	field	is	discontinuous	at	strategy	profiles	on	boundaries	between	different	
best	 response	 regions.	 Because	 of	 this,	 standard	 existence	 and	 uniqueness	 theorems	 for	
dynamic	systems	do	not	apply.	
	
The	paper	 addresses	 this	 gap.	 Essentially,	we	define	 a	non-degeneracy	 condition	 so	 that	 the	
dynamical	 system	 passes	 through	 the	 (typically	 lower	 dimension)	 regions	 of	 discontinuity	
rather	 than	 travelling	within	one	of	 these	 troubling	regions.	 In	Section	3	we	show	(Theorem	
3.3)	that	a	sufficient	condition	for	this	non-degeneracy	in	2	player	games	is	that	for	each	pure	
strategy	 for	player	2,	player	1	 is	not	 indifferent	between	any	 two	of	his	pure	 strategies,	 and	
vice	 versa.	 So	 for	 2	 person	 games	 ‘mostly’	 this	 non-degeneracy	 is	 satisfied.	 The	 core	 of	 the	
paper	in	Section	4	are	Theorems	4.1	and	4.2.	Theorem	4.1	says	that	as	long	as	the	path	avoids	
points	of	degeneracy,	it	is	unique.	Theorem	4.2	says	that	solutions	exist.	
These	theorems	are	for	continuous	time,	 in	Section	5	conditions	are	established	under	which	
the	discrete	 time	 solution	approximates	 the	 continuous	 time	 solution	as	 the	 step	 size	 grows	
smaller.	
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In	Section	6,	a	specific	FP	dynamics	is	given,	and	vector	fields	corresponding	to	two	strategy	vs.	
two	strategy	games	are	classified.	Section	7	concludes	the	paper.	
	

THE	DISCRETE	FICTITIOUS	PLAY	MODEL	
Following	 Robinson	 (1951)	 let	 us	 formalize	 the	 notion	 of	 discrete	 fictitious	 play.	 For	 our	
purposes,	we	can	take	a	restricted	notion	of	a	‘game’.1	
	
Definition.	A	game	G	is	a	triple	(N,Ŝ,Pp )	where	N	Î	Z+	is	a	positive	integer,	Ŝ	=	(Ŝ(1),…,Ŝ(N))	is	an	N-
tuple	of	finite	sets	Ŝ(i)={e1(i),…,en(i)}	and	Pp 	=	(Pp (1),…,Pp (N))	is	an	N-tuple	of	maps	
	

Pp (i)	:	Ŝ(1)x..x	Ŝ(N)®Â.	
	
Here	N	is	the	number	of	players,	Ŝ(i)	is	the	collection	of	strategies	for	the	i-th	player,	Pp (i)		is	the	
payoff	for	the	i-th	player,	and	Â	the	real	line.	assignment	of	a	non-negative	probability	xj(i)	to	
each	possible	‘pure’	strategy	ej(i)	Î	Ŝ(i)	in	the	original	game.	
	
Definition.	 A	 strategy	 space	 S(i)	 corresponding	 to	 the	 ordered	 finite	 set	 of	 strategies	
Ŝ(i)={e1(1),…,en(i)}	for	the	i-th	player	is	the	set	of	convex	formal	sums	
	
A	mixed	strategy	is	just	an		

	
	

We	identify	it	with	the	(ni	-	1)	dimensional	simplex	opq
rs
	Ì		ÂN

pSuv
-s
ÌÂx

u	by	
	

	
	
Under	this	identification,	we	have	

	
where	ej	is	just	the	j-th	standard	basis	vector	in	Âpy .	The	strategy	space	S	of	a	game	G=(N,Ŝ,Pp )	is	
	

	
	
As	a	notational	convention,	we	write	an	element	x	Î	S	as	
	

x=(x(1),…,x(N)),	
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Definition.	The	payoff	to	the	i-th	player	for	a	given	point	x	in	strategy	space	is:	
	

	
	
The	payoff	is	clearly	a	multilinear	function	of	the	N	arguments	x(1),…,x(N).	
	
The	payoff	to	the	i-th	player	for	using	the	j-th	strategy	is:	
	

Ej(i)(x)	=	P(i)(x1,…,x(i-1),ej(i),x(i+1),…,x(N))	
	
This	payoff	is	independent	of	x(i)	itself.	
	
Definition.	 The	 optimal	 strategy	 set	 for	 the	 i-th	 player	 is	 the	 set	 of	 pure	 strategies	 with	
maximum	payoff:	

OPT(i)(x)={ea(i)|maxßEß(i)(x)	=	Ea(i)(x)}.	
	
Robinson	 left	 the	choice	of	strategy	arbitrary	 in	 the	case	of	 ties.	We	specify	 it	 for	 the	sake	of	
concreteness	by	choosing	the	optimal	strategy	with	the	smallest	index.	
	
Definition.	The	optimal	strategy	for	the	discrete	dynamics	is	
	

Г(i)(x)	=	ea(i),	
a	=	min{b	|	eß(i)	Î	OPT(i)(x)}.	

	
With	these	definitions	in	place,	we	can	finally	discuss	the	fictitious	play	dynamics.	
	
Definition.	The	discrete	fictitious	play	dynamics	with	step	size	h	>	0	associated	with	a	game	G	=	
(N,Ŝ,Pp )	is	the	map:	

ψ:	SxT	→	SxT,	
(x,t)→	(tx+hГ(x)/t+h,t+h),	 (2.1)	

	
where	T	=	{	nh	|	n	³	n0	³	0	}.	The	dynamics	also	require	an	initial	condition	(x,t0),t0	=	n0h.	
	
The	dynamics	is	clearly	well	defined	for	all	t	Î	T.	The	dynamics	is	1-1	but	not	onto.	The	first	
component	ψ	represents	a	running	time	average	of	the	strategy	choices	of	the	players;	 it	 is	a	
vector	 of	 empirically	 observed	 probabilities	 for	 the	 various	 strategies	 of	 each	 player.	 The	
following	result	is	immediate:	
	
Theorem	2.1.	Suppose	Г(ψ(t))	remains	constant	for	t0	 £	t	£	t1	=	t0	+	nh.	
Then	

Ψ(t1)	=	t0Ψ(t0)	+	(t1	-	t0)Г(Ψ(t0))/t1.	
	

THE	CONTINUOUS	FICTITIOUS	PLAY	MODEL	
We	 now	 introduce	 a	 continuous-time	 version	 of	 the	 fictitious	 play	 dynamics	 (Robinson	
discusses	only	the	discrete	h	=	1	case).	Letting	h→0	in	(2.1),	we	obtain:	
	

limh→0ψ(x,t)	-	(x,t)/h	=	limh→0	(tx	+	hГ(x)/h(t	+	h)	-	x/h,1)	=	(Г(x)	-	x/t,1).	
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Consider	the	flow	defined	by:	
dx/dt	=	Г(x)	-	x/t,	t	Î	[t0,t1),	t0	>	0.	

	
Whenever	OPT(i)(x)	 contains	 two	or	more	points	 there	 is	a	potential	discontinuity	 in	 the	 i-th	
component	of	 the	vector	 field.	For	such	x,	 there	 is	no	reason	for	the	 i-th	player	to	prefer	one	
optimal	 strategy	 over	 another.	 We	 can	 define	 a	 (discontinuous)	 vector	 field	 by	 leaving	 the	
vector	field	undefined	on	the	ambiguous	set.	Since	traditional	existence-uniqueness	theorems	
do	not	apply	to	such	situations,	we	will	have	to	build	some	new	ones,	starting	from	a	notion	of	
“weak	solution”	of	the	vector	field.	
	
Definition.	The	region	of	discontinuity	for	the	i-th	player	is	
	

D(i)	=	{	x|card	(OPT(i)(x))	³	2	}.	
	
It	 is	 the	 set	 of	 points	where	 the	 i-th	player	has	 an	 indeterminate	 choice	of	 optimal	 strategy.	
Since	OPT(i)(x)	is	independent	of	x(i),	we	have	
	
D(i)	»S(i)	x	F,	
F	 Ì	S(1)	x…S(i-1)	x	S(i+1)	x…S(N),	
where	 the	 homeomorphism	 involves	 a	 simple	 relabelling	 of	 players.	 Generically,	 D(i)	 is	 of	
codimension	1	in	S.	
	
Theorem	3.1.	D(i)	is	closed	for	i=1,…,N.	
	
Proof.	From	the	definition	of	OPT(i)	(x),	we	have	
	

	
	
Let	fjk(x)	=	Ej(i)(x)	-	Ek(i)(x).	Then	D(i)	is	the	finite	union	of	fjk1(0).	Since	each	fjk	is	continuous,	in	
fact	a	multilinear	 function	of	x(1),…,x(i-1),x(i+1),…x(N),	 each	 fjk1(0)	 is	closed.	Thus	D(i)	 is	 the	 finite	
union	of	closed	sets	and	is	itself	closed.	
	
For	later	use,	we	will	need	the	following	two	definitions.	
	
Definition.	For	n³2,	we	define	the	region	of	n-fold	intersection	as	
	

Dn	=	{x| $i	card	(OPT(i)(x))	³	n}.	
Clearly,	D2	=	ÈNj=1	D(i).	
	
Definition.	The	region	of	full	discontinuity	is	

	
	
This	 is	a	set	of	points	where	 there	are	simultaneously	ambiguous	optimal	choices	 for	 two	or	
more	players.	Generically,	D22	is	of	codimension	2	in	S	(being	a	finite	union	of	intersections	of	
two	sets	of	codimension	1).	
	
We	can	now	define	the	vector	field.	
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Definition.	The	continuous	fictitious	play	dynamics	is	defined	by	
	

	
t	Î	[t0,t1),	t0	>	0.	
	
Since	the	vector	field	is	not	everywhere	defined,	we	cannot	demand	of	a	solution	that	it	can	be	
everywhere	 differentiable.	 However,	we	 can	 demand	 that	 it	 be	 differentiable	where	 defined	
and	continuous	elsewhere.	For	the	definition	to	be	useful,	it	must	also	treat	an	exceptional	case	
(the	region	of	full	discontinuity)	carefully.	
	
Definition.	A	weak	solution	to	(3.1)	is	a	map	

	
which	satisfies:	
(1)	f	is	continuous.	
(2)	df(i)/dt	=	Г(i)(f(t))-f(i)(t)/t	for	f(t)	Î	S\(D(i)	ÈD22).	
(3)	f(t)	Î	D22	→	f(t)	-	f(t)	for	t	>	t.	
	
Condition	(3)	is	chosen	to	handle	the	anomalous	condition	of	full	discontinuity.	It	allows	Nash	
equilibria	to	be	dynamical	equilibria,	as	we	shall	see	in	Section	6,	(Recently,	related	conditions	
for	 slightly	different	processes	have	been	suggested	by	Hofbauer	 (1995)	and	Monderer	et	 al	
(1996)).	
	
Theorem	3.2.	Suppose	f(t)	Î	S\D2	for	t0	£	t	£	t1.	Then	
	

f(t1)	=	t0f(t0)	+	(t1	-	t0)Г(f(t0))/t1.	
	
Proof.	Straightforward	integration	of	the	vector	field,	using	the	constancy	of	Г(f(t)).	
	
Remarkably,	 the	 result	 is	 the	 same	 as	 for	 the	 discrete	 dynamics	 (2.1)	 which	 is	 the	 basis	 of	
similar	results	by	Monderer	et	al	(1996).	
	
The	following	two	examples	illustrate	two	different	kinds	of	pathological	dynamics.	
	
Example	1.	Consider	a	two	player	game	where	each	player	has	two	strategies	(N	=	2,n1	=	n2	=	
2).	Let	

	
	
Then	D(l)	=	D(2)	=	S.	Hence	 for	any	starting	f(t0)	Î	S,	we	have	f(t0)	Î	D22,	 and	we	obtain	 the	
unique	(trivial)	solution	f(t)	=	f(t0)	for	t	є	[t0,t1).	
	
Example	2.	Now	consider	the	two	player	two	strategy	game	with	
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Then	D(1)	=	{x|x1(2)	=	0},	D(2)	=	ø,D22	=	D(1)	∩	D(2)	=	ø.	Since	Г(2)(x)	=	e2(2)	 for	  "x	є	S,	we	have	
 df1(2)/dt	=	-f1(2)/t	=	"t	є	[t0,t1).	If	f1(2)(t0)	=	0,	then	f2(2)(t)	=	0,	"t	є	[t0,t1).	Since	f(t)	Î	D(1)	"t,	
we	see	that	condition	(2)	of	
	
equation	(3.1)	is	never	satisfied.	So	(f(1)(t)	,e2(2))	is	a	weak	solution	for	any	continuous	map	
f(1):[t0,t1)	→	S(1).	
	
To	avoid	the	extreme	non-uniqueness	evidenced	by	the	second	example,	we	need	to	impose	a	
non-degeneracy	 condition	 on	 games.	 Suppose	 that	 x(i)	 Î	 D(i).	 We	 need	 to	 ensure	 that	 the	
movement	 of	 the	 remaining	N	 -	 1	 players	 will	 pull	 the	 i-th	 player	 away	 from	 the	 region	 of	
discontinuity	D(i).	We	are	led	to	the	following	definition.	
	
Definition.	The	degenerate	 set	Z	 for	a	game	G	 is	 the	 set	of	points	x	Î	S	 satisfying	 these	 two	
conditions:	
(1)	x	Î	D(i)\D22.	
(2)	We	have	OPT(i)(x)	=	AÈB	with	card	(A)	³	2	and	 $l0	>	0	such	that	
"lÎ[0,l0]	"ea(i),eb(i)ÎA,a	¹	b	Ea(i)((1	-	l)x	+	lГ(x))	-	Eb(i)((1	-	l)x	+	lГ(x))	=	0,	
"lÎ(0,l0]	"ea(i)ÎA,eb(i)	Î	B	Ea(i)((1	-	l)x	+	lГ(x))	-	Eb(i)((1	-	l)x	+	lГ(x))	>	0	
Condition	(2)	is	precisely	the	condition	for	a	solution	to	remain	in	D(i)	 for	a	whole	interval	of	
time.	
	
Theorem	3.3.	Let	(N,Ŝ,Pp )	be	a	two-player	game.	Then	Z	is	empty	if	
	

P(1)(ea(1),ej(2))	¹	P(1)(eb(1),ej(2))	for	1	£	j	£	n2,1	£	a	<	b	£	n1,	
P(2)(ej(1),ea(2))	¹	P(2)(ej(1),eb(2))	for	1	£	j	£	n1,1	£	a	<	b	£	n2.	

	
Proof.	Suppose	x	Î	D(1)\D22	and	x	Î	Z.	By	the	definition	of	Z,	we	can	find	1	£	a	<	b	£	n2,l	>	0	
with	
(1)	Ea(1)(x)	-	Ea(1)(x)	=	0.	
(2)	Ea(1)((1	-	l)x	+	lГ(x))	-	Eb(1)((1	-	l)x	+	lГ(x))	=	0.	
	
Set	Г(2)(x)	=	ej(2).	Since	N	=	2,	Ek(i)	is	linear	in	x.	Using	(1),	we	see	that	(2)	reduces	to:	
(2')	P(1)(ea(1),ej(2))	-	P(1)(eb(1),ej(2))	=	0.	
	
However,	this	contradicts	our	assumption.	A	similar	contradiction	occurs	if	x	Î	D(2)\D22	and	x	Î	
Z.	Hence	Z	=	ø	as	asserted.	
	
The	pathological	dynamics	for	the	second	example	above	occur	on	the	degenerate	set,	as	can	
easily	be	checked.	
	

EXISTENCE	AND	UNIQUENESS	THEOREMS	
We	are	now	ready	 to	prove	something	definitive	about	 the	uniqueness	of	weak	solutions	(in	
forward	time).	
	
Theorem	4.1.	Uniqueness	and	Forward	Time.	Suppose	that	f1(t)	is	a	weak	solution	of	(3.1)	
defined	 on	 some	 interval	 [t0,t1).	 Suppose	 that	"t	Î	 [t0,t1),	f1(t)Ï	 Z.	 Then	 any	weak	 solution	
f2(t)	of	(3.1)	defined	on	such	that	[t0,t1).	Such	that	f1(t0)	=	f2(t0)	must	satisfy	f1(t)	=	f2(t)	"t	Î	
[t0,t1).	
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Proof.	Assume	otherwise.	Then	$t	Î	[t0,t1)	such	that	f1(t)	¹	f2(t).	Set	
	

t	=	¥	{t|f1(t)¹f2(t)	&	t	Î	[t0,t1)}.	
	
By	the	continuity	of	f1	and	f2,	we	must	have	that	f1(t)	=	f2(t).	Then	one	of	the	following	must	
hold:	
Case	1.	f1(t)	Ï	D(i)	for	i	=	1,…,N.	
	
Then	the	vector	field	is	C1	in	a	neighbourhood	of	f1(t)	for	t	Î	[t,t1)	for	some	t1	>	t.	By	the	local	
uniqueness	 theorem	 for	 smooth	 vector	 fields,	 f1(t)	 is	 unique	 on	 [t,t1).	 This	 contradicts	 the	
definition	of	 .	
	
Case	2.	f1(t)	Î	D22.	
By	condition	(3)	of	the	definition	of	a	weak	solution	to	(3.1),	we	must	have	1(t)	=	2(t)	=	1(t)	for	t	
Î	[t,t1)	for	some	t1	>	t.	This	again	contradicts	the	definition	of	 .	
	
Case	3.	f1(t)	Î	D(i)	for	some	i	and	f1(t)	Ï	D(j)	for	j	¹	i.	
Since	D(j)	is	closed	for	each	j	=	1,…,N	and	f1	is	continuous,	we	can	find	some	t1	>	t	so	that	
	

fj(t)	Ï	D(j)	for	j	¹	i,	t	Ï	[t,t1).	
	
Hence,	Г(j)(f1(t))	=	Г(j)(f1(t))	for	t	Î	[t,t1).	By	theorem	3.2,	we	have	
	
f1(j)(t)=(1	-	l(t))f1(j)(t)+l(t)Г(j)(f1(t))	for	j	¹	i,	t	Î	[t,t1).	
	
l(t)	=	t-t/t.	
	
Since	Ea(i)	is	independent	of	x(i),	we	have	
	

Ea(i)(f1(t))	=	Ea(i)((1-l(t))f1(t)+l(t)Г(f1(t)))	for	t	Î	[t,t1).	
	
The	condition	that	f1(t)	Ï	Z	guarantees	that	
$t2,t	<	t2£t1,	$a"b	with	Ea(i)(f1(t))	>	Eb(i)(f1(t))	for	b	¹	a,	t	Î	[t,t2).	
	
So	for	t	Î	(t,t2)	we	have	f1(t)	Ï	D2.	Since	f1(t)	=	f2(t),	we	can	apply	the	standard	uniqueness	
result	to	obtain	f1(t)	=	f2(t)	for	t	Î	[t,t2).	This	contradicts	the	definition	of	 ,	so	we	are	done.	
	
To	complement	the	uniqueness	result,	we	have	the	following	existence	theorem.	
	
Theorem	4.2.	Existence	 in	Forward	Time.	 Suppose	G	 is	 a	 fixed	 game.	Then	"x	Î	S,"t0	>0	
there	is	a	weak	solution	defined	on	[t0,¥)	which	satisfies	the	initial	condition	f(t0)	=	x.	
	
Proof.	 It	 is	 clear	 from	 the	uniqueness	 theorem	 that	 if	f(t)	Ï	D22	 it	 is	possible	 to	 extend	 the	
weak	solution	f	to	a	solution	on	[t0,t/)	with	r/	>	t	and	f(t/)	Î	D2.	If	f(t)	Î	D22	then	we	can	take	
f(t)=f(t)	for	t	Î	[t,¥).	
	
One	 possibility	 remains.	 Suppose	 the	 extensions	 to	 larger	 t	 are	 bounded	 above.	 Let	 the	
extensions	be	to	{tn}h=1¥.	Let	t	=	limn→¥tn.	By	the	continuity	of	f,	f(t)	=	limn®¥f(tn).	Since	it	is	
impossible	 to	 have	 infinitely	 many	 consecutive	 intersections	 with	 the	 same	D(i),	 it	 must	 be	
possible	to	find	i	¹	j	and	subsequences	



Gottinger,	H.	W.	(2018).	Game	Dynamics	and	Bounded	Rationality.	Advances	in	Social	Sciences	Research	Journal,	5(6)	110-123	

	

	
	

118	 URL:	http://dx.doi.org/10.14738/assrj.56.4682.	 	

	
	
Since	D(i)	and	D(j)	are	closed,	we	have	that	f(t)	Î	D(i)	and	f(t)	Î	D(j).	Hence	f(t)	Î	D22,	and	we	
can	take	f(t)	=	f(t)	for	t	Î	[t,¥),	as	before.	
	

APPROXIMATING	THE	CONTINUOUS	DYNAMICS	WITH	THE	DISCRETE	DYNAMICS	
Despite	 the	 discontinuous	 nature	 of	 the	 vector	 field	 (3.1),	 it	 seems	 plausible	 that	 it	 can	 be	
approximated	arbitrarily	well	as	h	®	0	by	the	discrete	fictitious	play	dynamics	(2.1).	For	the	
approximation	to	go	through,	there	must	be	only	finitely	many	intersections	of	the	continuous	
solutions	with	the	regions	of	discontinuity	D(i).	In	addition,	each	intersection	must	be	generic,	
in	a	sense	to	be	made	precise	below.	
	
Notation.	We	 shall	write	 h(t)	 for	 the	 solution	 of	 (2.1)	with	 stepsize	h	 linearly	 interpolated	
between	steps.	Thus	
	

h(t)	=	(1-l) h(t)	+	l h(t	+	h),	
t	£	t	<	t	+	h,	l	=	t-t/h.	

	
Lemma	5.1.	Let	f(t)	be	a	weak	solution	of	(3.1)	for	t	Î	[t0,t1).	Suppose	f(t)	Ï	D2	for	t	Î	(t0,t1)	
and	f(t0)	Î	D22	ÈD3.	Let	 h	satisfy	(2.1)	on	[t0,t1).	Then	
"є>0,$h0>0,d>0;0<h<h0&	|	|	 h(t0)-f(t0)	|	|	<dÞ"tÎ[t0,t1)	|	|	 h(t)-f(t)	|	|	<є	
	
Proof.	We	begin	with	two	simple	estimates:	
(1)	$	K	>	0	such	that	"t2	>	t1	>	0,	"h	>	0	
	

|	|f(t2)	-	 h(t2)|	|	£	|	|f(t1)	-	 h(t1)|	|	+	K(t2	-	t1)				 (5.1)	
	
This	follows	from	the	boundedness	of	df/dt	and	d h/dt.	
(2)	Г(f(t))	=	Г( h(t))	=	Г0	&	f(t)ÎS\D2	for	t	Î	(t1,t2)	®	
	

"t2	>	t1	>	0,"h	>	0,	h	®	0	|	|	f(t2)	-	 h(t2)|	|	£	|	|f(t1)	-	 h(t1)|	|	(5.2)	
	
This	follows	from	theorems	(2.1)	and	(3.2)	on	the	solutions	to	(2.1)	and	(3.1)	for	constant	Г.	
Since	 f(t)	Ï	D2	 for	 t	Î	 (t0,t1),	 we	 have	 Г(f(t))	 =	 constant	 =	 Г1	 for	 t	Î	 (t0,t1).	 Since	 f(t0)	Ï	
D22ÈD3,$d0	such	that	|	|x	-	f(t0)	|	|	<	d0Þx	Ï	D22ÈD3.	Let	B	=	{x|	|	|x	-	f(t0)|	|	<	d0}.	Then	$Г2	
such	that	B	=	B1	È	B2,	B1	∩	B2	¹	ø,	
with	
Bi	=	({x	|	Г(x)	=	Гi}	∩	B			i	=	1,2.	
	
Now	define	
lt(x)	=	min	{t	-	t|t	>	t,f(t)	=	x,f(t)	Î	D2}	
	
l¢(x)	=	min	{t	-	t|t	>	t,	 h(t)	=	x,	 n(t)	Î	D2}	
Clearly	lt	and	l¢	are	continuous	on	B.	Now	choose	d1,d2	<	d0	such	that	
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From	theorems	(2.1)	and	(3.2),	we	can	also	find	h0	>	0	such	that	
"t	Î	(t0,t1)	0	<	h	<	h0	&	x	Î	B		| t(x)	-	lt(x)|	<	є/8K	
	
Now	consider	the	following	two	possibilities.	
	
Case	1.	 h(t0)	Î	B1.	Then	

	
	
Then	Г( h(t))	=	Г1	for	a	time	interval	of	size	³	(t1	-	t0)	-	є/4K.	
	
Case	2.	 h(t0)	Î	B2.	Then	

	
Now	applying	the	second	case,	we	find	that	Г( h(t))	=	Г1	for	an	interval	of	size	³(t1	-	t0)	-	є/2K.	
Now	set	 d	=	min	{є/2,d0,d1,d2}.	Applying	equations	(5.1)	and	(5.2)	together	with	the	preceding	
analysis,	we	find	that	
"t	Î	[t0,t1)	||f(t)	-	 h(t)||£||f(t0)||	-	 h(t0)||	+	K	×є/2K	<	є/2	+	є/2	=	є.	

	
This	is	the	required	result.	
	
Theorem	5.2.	Let	f(t)	be	a	weak	solution	of	(3.1)	for	t	є	[t0,t1).	Suppose	f(t)	Ï	D22	È	D3	for	t	є	
[t0,t1)	and	that	f(t)	є	D2	 for	finitely	many	t.	Let	 h	satisfy	(2.1)	on	[t0,t1)	and	suppose	 h(t0)	=	
f(t0).	Then	
	
"є	>	0,	$h	>	0,	"t	є	[t0,t1)	|| h(t)	-	f(t)||	<	є.	
	
Proof.	Fix	є	>	0.	Let	the	intersections	of	f(t)	with	D2	occur	at	t1	<	…	<	tn.	Let	t0	=	t0,	tn+1	=	t1,dn+1	
=	Î.	Using	the	previous	lemma,	we	can	successively	choose	(dn,hn),…,(d0,h0)	to	ensure	that	
	0	<	h	<	h	&	|	|	y(t)	-	f(t)|	|	<	d		Þ	"t	e	[t	,tt)	|	|	y(t)	-	f(t)|	|	<	d	
	
Choosing	h	=	min{h0,…,hn}	and	noting	that	||yh(t0)	-	f(t0)||	=	0	<	d0,	we	obtain	the	theorem.	
In	 removing	 the	 time	 dependence	we	 begin	with	 the	 vector	 field	 (3.1)	 and	 set	 t¢=	 lnt	-	 lnt0	
(which	is	well	defined	for	t	³	t0	>	0).	Then	
	

dx/dt	=	dx/dt	/	dt¢	/dt	=	Г(x)	-	x	 (5.3)	
	
This	equation	is	autonomous	and	simpler	to	work	with.	Conveniently,	in	the	new	time	variable,	
the	solution	is	defined	on	[0.¥).	
	
Results	about	the	original	system	can	easily	be	recovered	by	setting	t	=	toe	t¢.	
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Theorem	5.3	Let	G	=	(N,Ŝ,Pp )	be	given.	Let	G*	=	(N,Ŝ,Pp *)	where	
	

Pp (i)*	=	Pp (i)	+	C(i),	i	=	1,…,N.	
	
and	C(i)	:	Ŝ(1)	x	…	x	Ŝ(N)	®	Â	is	independent	of	the	i-th	component.	Then	G	and	G*	have	the	same	
continuous	fictitious	play	dynamics	(5.3).	
	
Proof.	 Clearly,	 (5.3)	 depends	 on	 PÙ	 through	 Г(x),	 and	 Г(i)(x)	 depends	 on	 PÙ	 only	 through	
differences	 of	 the	 form	Ea(i)(x)	-	Ej(i)(x).	 Since	C(i)	 is	 independent	 of	 the	 i-th	 component,	 the	
theorem	follows.	
	

SPECIFIC	FICTITIOUS	PLAY	DYNAMICS:	EXAMPLE	
The	discontinuous	vector	field	(5.3)	defined	by	the	continuous	FP	dynamics	is	characterised	by	
a	division	of	phase	space	into	finitely	many	regions	within	which	the	dynamics	is	a	trivial	flow	
to	a	sink.	Each	x	є	S	can	be	associated	with	its	optimal	strategy	Г(x).	This	provides	a	useful	way	
of	following	dynamics.	Let	
	

L	=	{(a1,….,a	N)	[1	£	ai	£	ni}.	
	
We	have	the	labelling	map	

	
	
Thus	S	 is	divided	into	regions	R-1(a)	which	share	the	same	label	(and	have	the	same	optimal	
strategy).	We	can	associate	a	(possibly	infinite)	string	of	symbols	in	L	to	a	solution	f(t)	of	(5.3)	
by	listing	the	successive	regions	traversed	by	f(t).	
	
Definition.	 Let	f(t)	be	a	proper	weak	solution	of	 (5.3)	on	 [0.¥).	Then	 there	 is	 an	 increasing	
sequence	{ti}ni=1,	=	0	(possibly	infinite)	such	that:	
(1)	R(f(ti))	¹	R(f(ti+1))	for	1	£	i	£	n	-	1.e	
(2)	ti	<	t	<	ti+1	ÞR(f(t))	=	R(f(ti))	or	R(f(t))	=	R(f(ti+1)).	
(3)	If	n	is	finite,	t	>	tn	Þ	R(f(t))	=	R(f(tn)).	
	
The	specific	dynamics	for	f	is	given	by	 	

g:	f	®	R(f(t1))R(f(t2))…є	L¢.	
	
We	 write	 [g(f)]n	 for	 the	 n-th	 symbol	 in	 the	 sequence	 g(f).	 The	 specific	 dynamics	 is	 clearly	
independent	of	the	choice	of	sequence	{ti}	satisfying	the	conditions	above.	
	
Suppose	x(t)	ÎS\D2.	Let	R(x(t))	=	a.	Then	the	next	intersection	of	x(t)	with	D2	will	occur	at	(1	-	
l)x	+	lГ(x))	for	the	smallest	l	Î	(0,1]	such	that	
	

	
	
We	thus	obtain	the	next	intersection	map	I:	
I:	(x,t)	®	((1	-	l)x	+	lГ(x),t	+	t),	where	l	=	1	–	e-t.	
	
This	map	can	be	extended	to	x	Î	D2\(Z	È	D22)	by	the	uniqueness	theorem.	
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Example	
Let	G	be	a	two-player	game	with	n1	=	n2	=	2.	By	theorem	5.3,	we	can	add	a	constant	row	to	P(1)	
and	a	constant	column	to	P(2),	to	put	the	game	in	the	standard	form:	
	

	
	
Taking	A,B,C,D	¹	0	to	avoid	degeneracies,	we	see	that	if	sgn(A)	=	sgn(B),	the	first	player	has	a	
dominated	 strategy	 and	 if	 sgn(C)	 =	 sgn(D),	 the	 second	 player	 has	 a	 dominated	 strategy.	 In	
either	case,	the	dynamics	is	trivial.	Without	loss	of	generality,	we	can	take	
A	>	0	>	B.	We	see	that	D(1)	=	{x|x1(2)	=	B/B-A	=	X`		}	and	D(2)	=	{	x|x1(1)	=	D/D-C	=	Y`	}.	
	
Case	1.	 If	C	>	0	>	D,	 then	there	are	two	stable	equilibria	at	((1,0),(1,0))	and	((0,1),(0,1)).	The	
basics	 of	 attraction	 for	 these	 two	 equilibria	 are	 separated	 by	 the	 stable	 manifold	 of	 the	
unstable	equilibria	at	((X¢,	1	-	Xr ¢)	,(Y¢,	1	–	Y¢))	which	takes	the	form	of	two	line	segments.	
	
Case	2.	Let	us	use	the	coordinates	(X,Y)	defined	by	
x	=	(x(1),x(2))	=	((Xr ¢	+	X,	(1-Xr ¢)	-	X),	(Y¢+	Y,(1-Y¢)-Y)).	
	
Writing	 the	corresponding	symbolic	dynamics	on	the	 left,	we	have	the	 following	 intersection	
maps:	
(2,1)	→	(2,2)	,(X,0)		®	(0,X(1-Y¢)/X	+	Xr ¢)	
(2,2)	→	(1,2)	,(0,Y)	®	(-Y	X¢	/Y	+	Y¢,0),	
(1,2)	→	(1,1)	,(X,0)	®	(0,X	Y¢/-X	+	(1-Xr ¢)),	
(1,1)	→	(2,1)	,(0,Y)	®	(-Y(1	-	Xr 	¢)	/	-Y	+	(1	-	Y¢),0).	
	
If	we	 take	X	>	 0,Y	>	 0	 the	 symbolic	 dynamics	 for	 the	 corresponding	 trajectory	 is	 an	 infinite	
repetition	 of	 the	 fundamental	 cycle	 (2,1)(2,2)(1,2)(1,1).	 By	 composing	 the	 four	 next	
intersection	maps,	we	obtain	the	overall	map	around	the	fundamental	cycle:	
	
T:A	®A	where	A	=	{(X,0)]0	<	X	£	(1	-	X¢)}.	
	
(X,0)	®	(cX/(1-Y¢	X	+	c),0)	where	c	=	X¢(1	-	X¢)Y¢(1	-	Y¢).	
	
We	can	find	the	n-fold	iterate	of	T:	
Tn:	(X,0)	®	(cX/n(1	-	Y¢)X	+	c,0)	
	
The	time	t	taken	for	a	transition	satisfies	l	=	1-e(exp-t).	Hence,	for	a	series	of	transitions	with	
convex	combination	factors	l1,…,ln,	the	total	transition,	time	t	satisfies:	
	

	
	
Applying	this	relation	(which	still	holds	for	an	arbitrary	number	of	players	N),	the	time	t	taken	
to	traverse	the	fundamental	cycle	turns	out	to	satisfy:	
	
e	(exp-t)	=	c/(1	-	Y¢)(1	-	2X¢Y¢)X	+	c.	
	
So	there	are	no	periodic	orbits	for	2x2	games,	but	it	is	possible	for	trajectories	to	spiral	in	on	
the	Nash	equilibrium	(X¢,Y¢)	as	t	®	¥.	
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CONCLUSIONS	
In	economics,	it	has	become	standard	practice	to	assume	that	each	agent	anticipates	the	other	
agents’	 optimizing	 behaviour	 at	 all	meta-levels.	 This	 is	 known	 as	 rational	expectations.	 Each	
agent	 optimizes	 under	 the	 assumption	 that	 the	 other	 agents	 are	 optimizing	 under	 the	
assumption	each	agent	 is	optimizing	…	ad	 infinitum.	To	avoid	 this	 regress,	we	may	consider	
models	 with	 bounded	 rationality.	 In	 these	 models,	 the	 players	 are	 equipped	 with	 a	 set	 of	
relatively	simple	“habits	of	play”.	The	habit	of	play	in	the	discrete	fictitious	play	model	is	local	
greediness:	at	each	play	of	the	repeated	game,	each	player	simply	chooses	his	optimal	strategy	
relative	 to	 the	observed	strategy	used	 for	 the	other	players.	Habits	of	play	often	simplify	 the	
strategy	space	of	iterated	games	by	pruning	them	to	Markov	strategies	with	limited	memory	or	
to	average	value	strategies	that	depend	only	on	the	observed	probabilities	of	play.	
	
Each	 habit	 of	 play	 induces	 a	map	 from	 the	 set	 of	 (finite)	 games	 to	 the	 set	 of	maps	 or	 flows	
defined	on	a	suitable	strategy	space.	We	have	argued	that	insights	into	games	can	be	obtained	
by	embedding	them	in	dynamical	systems:	different	facets	of	game	will	be	revealed	in	different	
dynamical	contexts.	For	instance,	Smale	(1980b)	works	with	a	system	very	similar	to	discrete	
fictitious	play.	Related	approaches	to	bounded	rationality	using	dynamic	algebraic	systems,	i.e.	
automata,	have	been	described	by	Canning	(1988),	Gottinger	(1990),	Rubinstein	(1986).	
	
In	Smale’s	framework	each	player	has	access	to	the	average	payoffs	of	all	of	the	players,	and	he	
gives	 simple	 criteria	 for	 a	habit	 of	 play	 to	 guarantee	 for	 a	player	 almost	 the	 (C,	 C)	payoff	 in	
Prisoner’s	Dilemma	 (essentially	 just	 play	C(D)	 if	 the	player	 is	 doing	better	 (worse)	 than	 the	
other	 player).	 Fictitious	 play	 exposes	 the	 limitations	 of	 narrowly	 “rational”	 thinking	 in	
Prisoner’s	Dilemma;	the	approaches	of	Smale	and	Kreps	et	al.	(1982)	emphasize	the	possibility	
of	 cooperation	 emerging	 through	 appropriate	 signalling	 of	 intentions.	 In	 a	 sense,	 the	 game	
itself	is	indeterminate;	it	requires	a	dynamical	setting	to	be	completely	defined.	
	
A	 simple	 example	 would	 be	 the	 current	 budgetary	 game	 involving	 many	 government	
departments	where	managers	 devise	 ‘greedy’	 rules	 on	 the	 basis	 of	 (common)	 knowledge	 of	
average	allocations	to	other	departments	in	repeated	negotiated	rounds.	
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Footnote	
We	are	mostly	concerned	with	a	restricted	situation	of	the	following	type.	We	are	given	finitely	
many	 players	 labelled	 1,…N.	 Each	 player	 chooses	 a	 strategy	 S(1)	 from	 a	 finite	 collection	 of	
strategies	Ŝ(i)	which	 need	not	 be	 identical	 for	 the	 different	 players.	 The	 strategy	 choices	 are	
made	 completely	 independently;	 no	 communication	 is	 allowed	 (i.e.	 the	 game	 is	 non	
cooperative).	 The	 i-th	 player	 is	 then	 rewarded	with	 a	 payoff	Pp (i)(S(1),…,S(N)	Î	Â.	 Each	 player	
attempts	to	maximise	his	own	payoff	Pp (i).	
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