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ABSTRACT	

The	 paper	 deals	with	 the	 goal	 of	 testing	 hypotheses	 about	 the	 slope	 parameters	 of	 a	
linear	regression	model	when	there	is	multicolinearity.	A	heteroscedastic	method	was	
recently	 derived	 based	 on	 a	 ridge	 estimator,	 but	 it	 does	 not	 guard	 against	 the	
deleterious	impact	of	outliers.	Several	robust	analogs	of	the	ridge	estimator	have	been	
proposed	 that	might	deal	with	 this	 concern.	The	goal	here	 is	 to	 find	a	 robust	method	
that	performs	reasonably	well	in	simulations.	
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INTRODUCTION	

For	the	random	variables	%, 8", … , 8:,	let	;(%|8", … , 8:)	denote	some	(conditional)	measure	of	
location	associated	the	distribution	of	%,	given	8",… , 8:.	Here	it	is	assumed	that	;(%|8", … , 8:)	
is	given	by	the	linear	regression	model	
	
																									% = ?# + ?"8" + ⋯+ ?:8: + B(8", …8:)C,	
	
where	?#, … , ?:	are	 unknown	 regression	 coefficients,	C	is	 a	 random	 random	 variable	 having	
measure	of	 location	;(C) = 0,	 and	B(8", …8:)	is	 some	unknown	 function	of	8",… , 8:	used	 to	
model	heteroscedasticity.	Consider	the	common	goal	of	testing	
	
																																																														D#:	?E=0																														(1)	
	
for	 each	F	(F = 1,… , G).	A	well	 known	concern	 is	 that	when	 there	 is	multicolinearity,	 roughly	
meaning	 a	 strong	 association	 among	 the	 explanatory	 variables	8",…8:,	 this	 can	 result	 in	
relatively	large	standard	errors	among	the	estimates	of	the	regression	coefficients.	
	
Hoerl	and	Kennard	(1970)	suggested	dealing	with	multicolinearity	by	replacing	 the	ordinary	
least	 squares	 (OLS)	 estimator	 with	 the	 so-called	 ridge	 estimator.	 Let	(%", 8H", … , 8H:)	(I =
1,… , J)	denote	a	 random	sample.	The	 ridge	estimator	 consists	of	 finding	values	 for	?#, … , ?:	
that	minimize	
	
																								∑ %H − ?# − ?E

:
EM" 8HE

N + O ?EN
:
EM" ,														(2)	

	
where	 the	 non-negative	 bias	 parameter	O	is	 to	 be	 determined.	 Let	?E (O)	denote	 the	 ridge	

estimate	of	?E .	 	So	?E (0)	corresponds	to	the	least	squares	estimator.	When	O > 0	and	there	is	

multicolinearity,	 the	 ridge	 estimator	 achieves	 a	 smaller	 standard	 error	 than	?E (0)	at	 the	
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expense	of	increased	bias	when	?E ≠ 0.	Generally,	when	?E ≠ 0,	| ?E (O)|	≤ |?E (0)|.		That	is,	the	
ridge	estimator	down	weights	the	least	squares	estimator	toward	zero	(e.g.,	Montgomery	et	al.,	
2012).	But	when	?E = 0,	?E (O),	is	unbiased	making	it	possible	to	test	(2).	
	
Denote	the	random	sample	8HE 	by	the	J×G	matrix	S	and	let	T = SUS.	Given	O,	and	when	there	is	
a	homoscedastic	error	term,	meaning	that	B(8", … , 8:) ≡ 1,	
	

W,X(Y (O)) = ZN(T + O[:)+"SUS(T + O[:)+".	
	
Estimating	ZN	with	ZN = ∑XHN/(J − G − 1),	 where	X", … , X]	are	 the	 usual	 residuals,	 yields	 an	
estimate	of	the	squared	standard	error	of	?E (O),	say	 Ê

N.	A	test	statistic	is	simply	

																																					_E` =
ab(`)

cb
,																																																					(3)	

	
where	 the	 null	 distribution	 is	 approximated	 by	 a	 Student’s	 t	 distribution	 with	J − G − 1	
degrees	of	freedom.	But	when	there	is	heteroscedasticity,	this	estimate	of	the	squared	standard	
error	is	incorrect.	
	
In	 the	 least	 squares	 regression	 literature,	 there	 are	 several	 heteroscedastic	 consistent	
estimates	of	the	standard	error	(e.g.,	Wilcox,	2017).	Wilcox	(2018)	found	that	in	the	context	of	
ridge	 regression,	 an	 extension	 of	 the	 HC3	 estimator	 studied	 by	 Long	 and	 Ervin	 (2000)	
performed	reasonably	well	in	simulations.	Let	d = eI,f(XHN/(1 − ℎHH))	(I = 1,… , J),	where	
	

ℎHH = hH(SUS)+"hHU	
	
and	hH 	is	the	Ith	row	of	S.	Given	O,	let	
	

i(O) = (T + O[:)+"SUdS(T + O[:)+".	
	
Then	 ÊE(O),	 the	Fth	diagonal	element	of	i(O),	 estimates	 the	 squared	standard	error	of	?E (O).	
Consequently,	Wilcox	(2018)	proposed	testing	(2)	with	
	

																																																							jE` =
ab(`)

cbb(`)
,																																			(4)	

	
where	the	null	distribution	 is	 taken	to	be	a	Student’s	 t	distribution	with	J − G − 1	degrees	of	
freedom.	The	bias	parameter	was	estimated	using	a	method	based	on	results	in	Kibria	(2003).	
This	will	be	called	method	RHC	henceforth.	
	
Simulations	 reported	 by	 Wilcox	 (2018)	 indicate	 that	 method	 RHC	 controls	 the	 Type	 error	
probability	 about	 as	well	 as	using	OLS,	which	 corresponds	 to	 setting	O = 0.	Moreover,	when	
there	is	no	association	among	the	dependent	variables,	there	is	very	little	difference	between	
the	power	of	RHC	and	simply	using	the	least	squares	estimator.	As	the	correlation	among	the	
independent	 variables	 increases,	 RHC	 provides	 better	 power,	 sometimes	 by	 a	 substantial	
amount.	
	
However,	it	is	well-known	that	the	ridge	estimator	can	be	overly	influenced	by	a	few	outliers	
among	 the	 dependent	 variable	%.	 Numerous	 methods	 have	 been	 proposed	 and	 compared	
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regarding	 how	 this	 issue	might	 be	 addressed	 (e.g.,	 Adegoke	 et	 al.	 2016;	 Arslan	Billor,	 2000;	
Ertaa	et	al.,	2017;	Kan	et	al.,	2013;	Lukman	et	al.,	2014;	Samkar	&	Alpu,	2010;	Kan	et	al.,	2013).	
The	 focus	 has	 been	 on	 minimizing	 mean	 squared	 error.	 Evidently	 there	 are	 no	 results	
regarding	how	these	robust	estimators	perform	when	testing	(1).		Another	concern	is	that	even	
a	slight	departure	from	normality	can	result	in	OLS	having	poor	power	relative	to	using	some	
robust	regression	estimator	(e.g.,	Wilcox,	2017),	which	suggests	 that	a	similar	concern	might	
arise	when	using	RHC.	
	
One	approach	toward	robust	analogs	of	the	ridge	estimator	is	as	follows.	Let	?E 	be	the	estimate	
of	?E 	based	 on	 some	 robust	 regression	 estimator,	 many	 of	 which	 have	 been	 derived	 (e.g.,	
Wilcox,	2017,	Chapter	10).	Robust	analogs	of	ridge	estimators	consist	of	weighting	?E 	based	on	
some	 function	 of	S	and	 the	 residuals,	 coupled	 with	 some	 estimate	 of	 the	 bias	 parameter	O,	
yielding	say	?E (O).	Here,	two	issues	are	addressed.	The	first	is	finding	a	method	that	performs	
reasonably	 in	terms	of	controlling	the	Type	I	error	probability	via	some	robust	analog	of	 the	
ridge	 estimator.	 The	 second	 is	 gaining	 some	 understanding	 of	 how	 the	 power	 of	 a	 method	
based	on	?E (0)	compares	to	the	power	of	a	method	based	on	?E (O)	when	O	is	estimated	via	a	
method	to	be	described.	In	particular,	how	do	these	methods	compare,	in	terms	of	both	Type	I	
errors	 and	 power,	 as	 a	 function	 of	 the	 strength	 of	 the	 association	 among	 the	 independent	
variables,	non-normality	and	heteroscedasticity?	
	
Extant	results	indicate	that	a	robust	regression	estimator	(O = 0),	combined	with	a	percentile	
bootstrap	method,	performs	relatively	well	in	terms	of	controlling	the	Type	I	error	probability	
(Wilcox,	2017).	This	suggests	that	for	O > 0,	a	percentile	bootstrap	method	might	continue	to	
perform	well.	Preliminary	simulations	indicate	that	this	 is	the	case	for	certain	estimators	but	
not	 others.	 Due	 to	 the	 high	 execution	 time	 associated	 with	 the	 simulations	 in	 section	 3,	
extensive	results	for	all	of	the	many	estimators	that	might	be	used	are	not	practical.	Here	the	
goal	is	to	report	simulation	results	when	using	the	Theil	(1950)	and	Sen	(1964)	estimator	that	
was	found	to	have	two	positive	features	compared	to	simply	using	O = 0.	Some	results	based	
on	 the	 least	 absolute	deviation	 (LAD)	estimator	 are	 reported	as	well.	 That	 is,	?E 	(F = 0,… , G)	
are	estimated	with	the	values	that	minimize	∑|XH|,	the	sum	of	the	absolute	residuals.	A	positive	
feature	of	the	LAD	estimator	is	that	it	guards	against	the	deleterious	impact	of	outliers	among	
the	dependent	variable.	A	negative	feature	is	the	possible	impact	of	 leverage	points,	meaning	
points	 (%H, 8H", … , 8H:)	 for	 which	8H", … , 8H:	is	 an	 outlier	 among	 the	 vectors	 of	 independent	
variables.	A	simple	way	of	dealing	with	this	issue	is	to	remove	any	leverage	points.	Simulations	
in	section	3	suggest	that	for	J	small	and	G = 2,	using	the	Theil–Sen	estimator	is	a	bit	better	in	
terms	of	both	Type	I	errors	and	power.	The	main	reason	for	including	the	LAD	estimator	is	that	
when	J	and	G	are	 large,	 execution	 time	 using	 the	 Theil–Sen	 estimator	 can	 be	 a	 practical	
concern.	Using	the	LAD	estimator	reduces	execution	time	substantially.	
	
Some	alternative	robust	ridge	estimators	were	found	to	be	reasonably	satisfactory	in	terms	of	
Type	 I	 errors	when	 the	 error	 term	has	 a	 normal	 distribution	 and	 there	 is	 homoscedastiicty.	
One	was	based	on	the	least	trimmed	squares	estimator	(Rousseeuw		Leroy,	1987)	and	another	
was	based	on	the	MM-estimator	derived	by	Yohai	(1987).	Using	a	slight	variation	of	the	robust	
analog	 of	 Liu’s	 (1993,	 2003)	 estimator	 studied	 by	 Ertas	 et	 al.	 (2017)	 also	 performed	 well.	
However,	 each	 replication	 in	 the	 simulation	 study	 in	 section	 3	 required	 a	 little	 over	 seven	
seconds	 using	 a	 MacBook	 pro	 with	 a	 2.9	 GHz	 processor.	 So	 each	 simulation	 in	 section	 3	
required	a	little	over	four	hours	based	on	2000	replications.	Consequently,	the	main	focus	here	
is	on	a	just	the	Theil–Sen	and	LAD	estimators.	
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It	is	noted	that	two	approaches	were	found	to	be	unsatisfactory	under	normality.	The	first	was	
based	 on	 the	 Liu	 (1993,	 2003)	 estimator	 used	 in	 conjunction	 with	 the	 bootstrap	 method	
described	in	section	3.	The	actual	level	was	estimated	to	be	0.005	when	testing	at	the	0.05	level	
using	 a	 sample	 size	 of	J = 30	and	 a	 common	 correlation	 of	m = 0.8	among	 the	 explanatory	
variables.	 Power	 was	 well	 below	 the	 method	 described	 in	 section	 3,	 so	 this	 approach	 was	
abandoned.	The	robust	analog	of	Liu’s	estimator,	derived	by	Kan	et	al.	 (2013),	suffered	 from	
the	same	problem.	This	 is	not	to	suggest	that	this	estimator	be	abandoned.	In	terms	of	mean	
squared	 error	 it	 can	 perform	 well.	 But	 in	 terms	 of	 testing	 the	 hypothesis	 of	 a	 zero	 slope,	
currently	it	seems	that	some	alternative	estimator	is	preferable.	
	
The	paper	is	organized	as	follows.	Section	2	describes	the	estimator	that	will	be	used	followed	
by	a	description	of	 the	method	used	 to	 test	 the	hypothesis	of	a	zero	slope.	Section	3	reports	
simulation	results	and	section	4	illustrates	the	proposed	method.	
	

DESCRIPTION	OF	THE	PROPOSED	METHOD	
Here,	the	basic	strategy	was	to	use	a	percentile	bootstrap	method	in	conjunction	with	a	robust	
ridge	estimator	that	is	based	in	part	on	the	Theil	(1950)	and	Sen	(1964)	regression	estimator.	
When	using	the	Theil–Sen	estimatror	(O = 0),	this	approach	has	been	studied	extensively	and	
found	to	perform	reasonably	well	(e.g.,	Wilcox,	2017).	This	suggests	that	this	approach	might	
continue	to	perform	well	when	O > 0.	
	
Let	T = SUS.	The	basic	ridge	estimator	is	
	
																																																												Y (O) = (T + O[)+"SUo,	
	
where	[	is	the	identity	matrix.	When	O = 0	it	reduces	to	the	ordinary	least	squares	estimator.	
Here,	 the	estimate	of	O	is	based	on	results	 in	Kibria	 (2003),	which	was	also	used	by	Lukman	
(2014)	 when	 dealing	 with	 a	 robust	 analog	 of	 the	 ridge	 estimator.	 First,	 determine	 the	
orthogonal	matrix	p	such	 that	pUTp = q,	where	q = eI,f(B", … , B:)	contains	 the	 eigenvalues	
of	the	matrix	T.	Let	r = q+"(Sp)Us	and	let	
	

ZN =
1

J − G − 1∑XH
N,	

	
where	X", … , X:	are	the	usual	residuals.	Then	the	estimate	of	O	is	taken	to	be	
	

ZN

( tE
:
EM" )"/:

.	

	
Adegoke	et	al.	 (2016)	used	another	estimate	of	O	when	comparing	robust	ridge	estimators	 in	
terms	 of	 mean	 squared	 error.	 Indeed,	 several	 other	 estimators	 are	 listed	 by	 Kibria	 (2003),	
perhaps	 in	 terms	 of	 power	 these	 alternative	 estimators	 offer	 a	 practical	 advantage,	 but	 this	
remains	to	be	determined.	
	
Following,	for	example,	Kan	et	al.	(2013),	a	robust	ridge	estimator	is	taken	to	be	
	
																																																						Y = (T + Ou[)+"TYu ,																													(6)	
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where	Yu 	is	some	robust	regression	estimator	and	Ou 	is	estimated	as	previously	described,	but	
with	ZN	based	on	the	residuals	associated	with	Yu .	
	
As	previously	noted,	the	first	choice	for	Yu 	considered	here	is	the	Theil	(1950)	and	Sen	(1964)	
estimator,	which	has	been	studied	extensively	(e.g.,	Wilcox,	2017).	Momentarily	focus	on	G = 1.	
For	any	I < IU,	for	which	8H ≠ 8Hw ,	let	
	

xHHw =
%H − %Hw
8H − 8Hw

.	

	
The	Theil–Sen	estimate	of	the	slope	is	estimated	by	the	median	of	all	the	slopes	represented	by	
xHHw .	For	G > 1	a	back-fitting,	Gauss–Seidel	method	is	used	(e.g.,	Wilcox,	2017,	section	10.2).	
	
Finally,	 the	 null	 hypothesis	 is	 tested	 as	 follows.	 Generate	 a	 bootstrap	 sample	 by	 randomly	
sampling	 with	 replacement	J	vectors	 from	 the	 random	 sample	(%", 8H", … , 8H:)	(I = 1,… , J)	
yielding	(%"∗, 8H"∗ , … , 8H:∗ )	(I = 1,… , J).	Compute	?E 	(F = 1,… , G)	based	on	this	bootstrap	sample	
yielding	?E

∗
.	 Repeat	 this	 process	z	times	 yielding	?"E

∗ , … , ?E{
∗
.	 Put	 these	z	values	 in	 ascending	

order	 yielding	?E(")
∗ ≤ ⋯ ≤ ?E({)

∗
.	 Let	'	denote	 the	 number	 of	 bootstrap	 estimates	 less	 than	

zero.	From	Liu	and	Singh	(1990),	a	p-value	is	given	by	2|IJ(G∗, 1 − G∗),	where	G∗ = '/z.	This	
will	 be	 called	 method	 RTS	 henceforth.	 The	 percentile	 bootstrap	 can	 be	 used	 to	 compute	 a	
confidence	interval,	but	this	is	not	recommended	for	the	situation	at	hand	due	to	the	bias	of	the	
estimator.	 When	O = 0,	 meaning	 that	 the	 Theil–Sen	 estimator	 is	 used	 instead,	 this	 is	 called	
method	TS.	When	Y (0)	is	taken	to	be	the	LAD	estimator,	the	percentile	bootstrap	method	for	
testing	the	null	hypothesis	will	be	called	method	RQ.	
	

SIMULATION	RESULTS	
Simulations	were	used	to	study	the	power	and	Type	I	error	probabilities	when	testing	at	the	
} = 0.05	level	using	methods	RTS,	TS	and	RQ.	Estimated	Type	I	error	probabilities	were	based	
on	 2000	 replications.	 Four	 types	 of	 distributions	were	 used:	 normal,	 symmetric	 and	 heavy-
tailed,	 asymmetric	 and	 light-tailed,	 and	 asymmetric	 and	 heavy-tailed.	More	 precisely,	 values	
for	 the	error	 term,	CE 	were	generated	 from	one	of	 four	g-and-h	distributions	 (Hoaglin,	1985)	
that	 contain	 the	 standard	 normal	 distribution	 as	 a	 special	 case.	 If	�	has	 a	 standard	 normal	
distribution,	then	by	definition	
	

W =
ÄÅG(f�) − 1

f ÄÅG(ℎ�N/2)	

	
has	a	g-and-h	distribution.	For	f = 0,	this	last	equation	is	taken	to	be	
	

W = �ÄÅG ℎ
�N

2 .	

	
The	 four	distributions	used	here	were	 the	standard	normal	 (f = ℎ = 0),	a	 symmetric	heavy-
tailed	distribution	(ℎ = 0.2,	f = 0.0),	an	asymmetric	distribution	with	relatively	light	tails	(ℎ =
0.0,	f = 0.2),	 and	 an	 asymmetric	 distribution	 with	 heavy	 tails	 (f = ℎ = 0.2).	 The	 marginal	
distributions	 of	S	were	 taken	 to	 be	 the	 same	 g-and-h	 distribution	 used	 to	 the	 generate	 the	
values	 for	 the	error	 term.	More	precisely,	values	were	generated	 from	a	multivariate	normal	
distribution	 having	 correlation	m,	 then	 the	 marginal	 distributions	 were	 transformed	 to	 the	
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same	g-and-h	distribution	used	to	generate	the	error	term.	Three	values	for	m	were	used:	0.0,	
0.5	 and	0.8.	 Table	 1	 shows	 the	 skewness	 (Ç")	 and	 kurtosis	 (ÇN)	 of	 the	 g-and-h	 distributions	
used.	Additional	properties	of	the	g-and-h	distribution	are	summarized	by	Hoaglin	(1985).	
	

Table	1:	Some	properties	of	the	g-and-h	distribution	
g						h						Ç"								ÇN		
0.0	0.0	0.00						3.0	
0.0	0.2	0.00		21.46	
	0.2	0.0	0.61				3.68		
0.2	0.2	2.81	155.98	

	
Three	 choices	 for	B(S)	were	 used:	B(S) = 1	(homoscedasticity),	B(S)) = |8"| + 1	and	B(S) =
1/(|8"| + 1).	 So	 two	 types	 of	 heteroscedasticity	 are	being	 considered.	The	 first	 is	where	 the	
larger	variation	among	the	dependent	variable	occurs	among	the	more	extreme	values	of	the	
first	independent	variable,	and	the	second	is	the	reverse	situation.	For	convenience	these	three	
choices	for	B	will	be	called	variance	patterns	(VP)	1,	2	and	3,	respectively.	
	
Estimated	Type	I	error	probabilities	are	shown	in	Tables	2	and	3	when	testing	at	the	0.05	level	
and	 the	sample	size	 is	J = 30.	Although	 the	 importance	of	a	Type	 I	error	can	depend	on	 the	
situation,	Bradley	(1978)	suggests	that	as	a	general	guide,	when	testing	at	 the	0.05	 level,	 the	
actual	level	should	be	between	0.025	and	0.075.	None	of	the	estimates	exceed	0.05.	For	method	
RTS,	there	are	five	instances	where	the	estimate	is	less	than	0.025,	the	lowest	estimate	being	
0.018.	Note	that	generally,	there	is	very	little	difference	between	methods	RTS	and	TS.	That	is,	
switching	to	a	robust	ridge	estimator	appears	to	have	very	little	impact	on	the	probability	of	a	
Type	I	error.	This	indicates	that	any	differences	in	power	have	little	to	do	with	any	differences	
in	 the	 Type	 I	 error	 probabilities.	 The	 column	 headed	 by	 RQ	 contains	 the	 results	 when	 the	
robust	 ridge	 method	 is	 based	 on	 the	 LAD	 estimator.	 The	 LAD	 estimator	 reduces	 execution	
substantially,	 but	 as	 can	 be	 seen,	 the	 actual	 level	 tends	 to	 be	 less	 than	 the	 level	 using	 RTS,	
sometimes	 by	 a	 substantial	 amount.	 Using	 the	 LAD	 estimator,	 the	 estimated	 Type	 I	 error	
probability	is	less	than	or	equal	to	0.03	in	all	of	the	situations	considered.	The	lowest	estimate	
was	0.011.	
	

Table	2:	Estimated	Type	I	error	probabilities,	symmetric	distributions,	É = Ñ. ÑÖ,	Ü = áÑ	
f				ℎ					m			VP		RTS							TS								RQ	
0.0	0.0	0.0		1		0.034		0.036			0.022	
0.0	0.0		0.0		2		0.047		0.045		0.026	
0.0	0.0		0.0		3		0.036		0.033		0.018	
0.0	0.0		0.5		1		0.034		0.033		0.020	
0.0	0.0		0.5		2		0.037		0.036		0.025	
0.0	0.0		0.5		3		0.035		0.033		0.017	
0.0	0.0		0.8		1		0.027		0.027		0.019	
0.0	0.0		0.8		2		0.028		0.027		0.020	
0.0	0.0		0.8		3		0.025		0.026		0.015	
0.0	0.2		0.0		1		0.040		0.039		0.023	
0.0	0.2		0.0		2		0.046		0.044		0.028	
0.0	0.2		0.0		3		0.035		0.033		0.016	
0.0	0.2		0.5		1		0.032		0.032		0.023	
0.0	0.2		0.5		2	0	.036		0.037		0.030	
0.0	0.2		0.5		3	0.	026		0.030		0.016	
0.0	0.2		0.8		1	0.	023		0.027		0.018	
0.0	0.2		0.8		2	0.	027		0.026		0.026	
0.0	0.2		0.8		3	0.	018		0.027		0.010	
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Table	3:	Estimated	Type	I	error	probabilities,	skewed	distributions,	É = Ñ. ÑÖ,	Ü = áÑ	
f				ℎ						m		VP			RTS						TS						RQ	
0.2	0.0		0.0		1		0.041	0.039	0.020	
0.2	0.0		0.0		2		0.048	0.043	0.026	
0.2	0.0		0.0		3		0.037	0.035	0.017	
0.2	0.0		0.5		1		0.033	0.033	0.019	
0.2	0.0		0.5		2		0.037	0.037	0.025	
0.2	0.0		0.5		3		0.030	0.029	0.018	
0.2	0.0		0.8		1		0.026	0.025	0.017	
0.2	0.0		0.8		2		0.030	0.026	0.025	
0.2	0.0		0.8		3		0.024	0.027	0.014	
0.2	0.2		0.0		1		0.041	0.039	0.023	
0.2	0.2		0.0		2		0.048	0.044	0.030	
0.2	0.2		0.0		3		0.033	0.033	0.019	
0.2	0.2		0.5		1		0.030	0.032	0.010	
0.2	0.2		0.5		2		0.037	0.037	0.017	
0.2	0.2		0.5		3		0.028	0.028	0.018	
0.2	0.2		0.8		1		0.024	0.026	0.019	
0.2	0.2		0.8		2		0.028	0.026	0.028	
0.2	0.2		0.8		3		0.018	0.026	0.011	

	
Tables	 4	 and	 5	 show	 the	 estimated	 power	when	β" = βN = 0.5.	 The	 column	 headed	 by	 RTS	
indicates	the	probability	of	rejecting	D#:	?" = 0,	when	using	a	robust	ridge	estimator,	which	in	
this	case	 is	also	the	probability	of	rejecting	D#:	?N = 0.	The	column	headed	by	TS	is	the	same	
probability	using	the	Theil–Sen	estimator.	That	is,	O = 0	is	being	used.	The	column	headed	by	
RTS.P2	 is	 the	 probability	 that	 both	D#:	?" = 0	and	D#:	?N = 0	are	 rejected	 using	 the	 ridge	
estimator	And	TS.P2	is	this	probability	using	the	Theil–Sen	Estimator.	As	expected,	when	m =
0.0,	 there	 is	 little	 separating	 the	 two	 estimators.	 As	m	increases,	 situations	 are	 encountered	
where	the	ridge	estimator	offers	substantially	higher	power.	Notice,	however,	that	the	increase	
in	power	depends	on	more	than	just	the	correlation;	the	type	of	heteroscedasticity	plays	a	role	
as	well.	
	
It	 is	noted	 that	 the	power	associated	with	method	RHC	can	be	 substantially	higher	or	 lower	
than	 method	 RTS	 depending	 on	 the	 distribution	 associated	 with	 the	 error	 term	 plus	 the	
strength	 of	 the	 association	 among	 the	 dependent	 variables.	 Under	 normality	 with	m = 0.0,	
Table	3	indicates	that	power	is	0.569	for	VP	1.	Using	instead	RHC,	power	is	0.637.	For	m = 0.8,	
RTS	has	power	0.477	versus	0.710	using	RHC.	However,	a	slight	departure	from	normality	can	
reverse	this	 last	situation.	Consider,	 for	example,	the	mixed	normal	distribution	discussed	by	
Tukey	 (1960).	 There	 is	 very	 little	 visible	 difference	 between	 it	 and	 the	 standard	 normal	
distribution.	 The	 Kolmogorov	 distance	 between	 the	 two	 distributions	 is	 small,	 about	 0.04	
(Wilcox,	 2017).	 If	 the	 error	 term	 has	 this	 mixed	 normal	 distribution,	 and	m = 0.8,	 RTS	 has	
power	0.400	versus	0.362	using	RHC.	
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Table	4:	Estimated	power	symmetric	distributions,	âä = âã = Ñ. Ö,	Ü = áÑ	
f					ℎ				m	VP				RTS					TS					RTS.P2	TS.P2				RQ	
0.0	0.0	0.0		1		0.569	0.572		0.321				0.330		0.462	
0.0	0.0	0.0		2		0.174	0.017		0.043				0.044		0.139	
0.0	0.0	0.0		3		0.919	0.918		0.850				0.850		0.893	
0.0	0.0	0.5		1		0.573	0.444		0.293				0.147		0.476	
0.0	0.0	0.5		2		0.223	0.174		0.044				0.024		0.145	
0.0	0.0	0.5		3		0.907	0.818		0.820				0.653		0.871	
0.0	0.0	0.8		1		0.477	0.240		0.167				0.018		0.362	
0.0	0.0	0.8		2		0.193	0.110		0.024				0.004		0.134	
0.0	0.0	0.8		3		0.812	0.510		0.636				0.184		0.715	
0.0	0.2	0.0		1		0.578	0.580		0.350				0.357		0.565	
0.0	0.2	0.0		2		0.164	0.161		0.049				0.045		0.180	
0.0	0.2	0.0		3		0.896	0.897		0.812				0.813		0.935	
0.0	0.2	0.5		1		0.604	0.445		0.350				0.155		0.644	
0.0	0.2	0.5		2		0.236	0.174		0.054				0.017		0.210	
0.0	0.2	0.5		3		0.908	0.816		0.824				0.654		0.937	
0.0	0.2	0.8		1		0.556	0.261		0.292				0.024		0.561	
0.0	0.2	0.8		2		0.208	0.107		0.039				0.002		0.173	
0.0	0.2	0.8		3		0.851	0.536		0.716				0.226		0.873	

			
Table	5:	Estimated	power,	skewed	distributions,	âä = âã = Ñ. Ö,	Ü = áÑ	

f				ℎ					m		VP		RTS						TS				RTS.P2				TS.P2		RQ	
0.2	0.0	0.0		1		0.588	0.584		0.353				0.343		0.471	
0.2	0.0	0.0		2		0.221	0.218		0.044				0.048		0.145	
0.2	0.0	0.0		3		0.917	0.912		0.846				0.843		0.900	
0.2	0.0	0.5		1		0.593	0.457		0.230				0.170		0.507	
0.2	0.0	0.5		2		0.232	0.177		0.046				0.016		0.165	
0.2	0.0	0.5		3		0.911	0.817		0.826				0.652		0.885	
0.2	0.0	0.8		1		0.494	0.245		0.191				0.017		0.395	
0.2	0.0	0.8		2		0.200	0.105		0.026				0.016		0.140	
0.2	0.0	0.8		3		0.824	0.509		0.662				0.190		0.717	
0.2	0.2	0.0		1		0.591	0.592		0.362				0.363		0.578	
0.2	0.2	0.0		2		0.217	0.215		0.043				0.048		0.187	
0.2	0.2	0.0		3		0.896	0.901		0.810				0.082		0.916	
0.2	0.2	0.5		1		0.637	0.476		0.399				0.191		0.649	
0.2	0.2	0.5		2		0.242	0.179		0.060				0.017		0.210	
0.2	0.2	0.5		3		0.908	0.806		0.820				0.635		0.935	
0.2	0.2	0.8		1		0.569	0.271		0.296				0.027		0.562	
0.2	0.2	0.8		2		0.208	0.107		0.039				0.002		0.177	
0.2	0.2	0.8		3		0.846	0.540		0.709				0.233		0.868	

	
As	previously	noted,	 the	non-robust	ridge	estimator	 is	sensitive	 to	outliers.	To	provide	some	
indication	the	extent	this	issue	is	addressed	using	a	robust	analog,	consider	again	the	situation	
f = ℎ = 0	(normality)	m = 0	and	VP	1,	 only	 now	 the	 sample	 is	 contaminated	by	 setting	 both	
(%", 8"", 8"N)	and	(%N, 8N", 8NN)	equal	to	(−4,	1,	1).	For	?" = ?N = 0.5,	power	using	method	RHC	
drops	from	0.674	to	0.036.	Using	instead,	RTS,	power	is	0.265.	
	

AN	ILLUSTRATION	
Data	 from	 the	Well	 Elderly	 2	 study	 (Clark	 et	 al.,	 2011)	 are	 used	 to	 illustrate	 the	 proposed	
method	 and	 how	 it	 compares	 to	 using	 the	 Theil–Sen	 estimator	 versus	 the	 LAD	 estimator.	 A	
general	goal	in	the	Well	Elderly	2	study	was	to	assess	the	efficacy	of	an	intervention	strategy	
aimed	at	improving	the	physical	and	emotional	health	of	older	adults.	One	specific	goal	was	to	
understand	the	association	between	a	measure	of	life	satisfaction	(the	dependent	variable)	and	
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two	 explanatory	 variables:	 a	 measure	 of	 emotional	 stress	 and	 a	 measure	 of	 depressive	
symptoms.	Using	the	Theil–Sen	estimator,	the	p-values	for	the	two	slopes	are	<0.001	and	0.017	
respectively.	 Using	 instead	 the	 robust	 ridge	 estimator,	 they	 are	 <0.001	 and	 0.010.	 So	 the	
second	independent	variable	(depressive	symptoms)	is	significant	at	the	0.01	level	when	using	
the	ridge	estimator,	but	not	when	using	the	Theil–Sen	estimator,	the	only	point	being	that	the	
choice	of	method	might	make	a	practical	difference.	Using	the	robust	ridge	estimator	based	on	
the	 LAD	 estimator,	 method	 RQ,	 now	 the	 p-value	 is	 0.080,	 and	 it	 is	 0.053	 using	 the	 MM-
estimator.	As	 for	 the	method	RHC,	which	reduces	 to	OLS	when	O = 0,	 the	p-value	 for	 the	 the	
second	independent	variable	is	0.024.	Using	the	OLS	estimator	it	is	0.029.	So	the	p-value	ranges	
between	0.01	and	0.08,	depending	on	which	method	is	used	again	illustrating	that	the	choice	of	
method	can	be	crucial.	In	this	particular	instance,	method	RTS	has	the	lowest	p-value,	but	this	
is	not	suggest	that	it	dominates	in	terms	of	power.	
	

CONCLUDING	REMARKS	
In	 summary,	 in	 terms	 of	 controlling	 the	 Type	 I	 error	 probability,	 method	 RTS	 performs	
relatively	well	and	generally	better	than	method	RQ.	A	possible	practical	concern	is	that	RTS	
can	 have	 high	 execution	 time	 when	J	or	G	is	 relatively	 large.	 Using	 method	 RQ	 reduces	
execution	time	considerably	but	possibly	at	the	expense	of	lower	power.	In	terms	of	power,	no	
method	 dominates	 and	 the	 choice	 of	 method	 can	 make	 a	 substantial	 difference.	 Under	
normality	and	homoscedasticity,	RHC	can	have	a	clear	advantage	in	terms	of	power,	but	a	few	
outliers	can	destroy	power.	
	
An	open	issue	is	whether	a	robust	method	can	be	found	that	competes	well	with	method	RHC,	
in	 terms	of	power,	under	normality	 and	homoscedasticity.	 Several	 variations	of	method	RTS	
were	considered	and	found	to	be	unsatisfactory.	Using	the	MM-estimator	does	not	address	this	
issue.	 The	 skipped	 regression	 estimator	 in	Wilcox	 (2017,	 section	 10.10)	was	 unsatisfactory.	
This	approach	looks	for	outliers	using	a	projection	method,	eliminates	any	that	are	found,	and	
applies	 the	 Theil–Sen	 estimator	 using	 the	 remaining	 data.	 Using	 instead	 the	 OLS	 estimator	
after	outliers	are	removed	also	performed	poorly.	Another	type	of	skipped	estimator	(Wilcox,	
2017,	section	10.13.3)	has	excellent	properties,	but	when	used	in	the	context	of	a	robust	ridge	
estimator,	again	power	was	unsatisfactory.	
	
Finally,	the	R	function	rob.ridge.test	performs	method	RTS	and	is	being	added	to	the	R	package	
WRS.	
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