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Abstract	
We	 focus	 on	 the	 problem	 of	 modelling	 extreme	 events	 in	 the	 financial	 market.	 The	
choice	of	the	distribution	that	adequately	models	the	extreme	behavior	of	the	financial	
time	series.	Extreme	Value	Theory	outlines	the	framework	for	determining	the	best	fit	
distribution	for	the	data.	However,	the	generalized	extreme	value	distribution	and	the	
generalized	 Pareto	 distribution	 are	 the	 traditional	 distributions	 that	 most	 analysts	
resort	 to	 using.	 However,	 recent	 works	 have	 shown	 that	 the	 generalized	 logistic	
distribution	can	also	capture	the	effect	of	the	extreme	due	to	its	fat	tailed	characteristic.	
In	this	paper,	we	determine	if	this	is	true	and	analyze	the	importance	of	the	generalized	
logistic	 distribution	 in	modelling	 extreme	 events	 in	 the	 financial	market	 in	 order	 to	
accurately	conduct	risk	measure	analysis.		
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INTRODUCTION	

	Many	 financial	 institutions	 are	 faced	with	 high	 possibilities	 of	 risk.	 These	 risk	 arise	 due	 to	
various	 factors	 including	market	performance,	portfolio	size	and	 failure	of	 internal	conducts.	
Whilst	exposed	to	a	variety	of	risks,	 the	 institutions	still	have	an	obligation	 to	 its	clients	and	
must	 reserve	 enough	 capital	 to	 sustain	 these	obligations.	As	 such,	many	 regulatory	 agencies	
such	 as	 the	 BCBS,	 Federal	 Reserve	 Board	 and	 the	 Federal	 Deposit	 Insurance	 require	
institutions	 to	 have	 a	 minimum	 capital	 requirement	 in	 reserves.	 This	 minimum	 capital	 is	
required	to	act	as	a	cushion	when	businesses	are	 impacted	by	 large	 losses	and	to	reduce	the	
chance	of	running	into	bankruptcy	or	default.	Institutions	therefore	make	it	an	important	duty	
to	calculate	how	much	of	this	capital	 is	required	to	buffer	the	institution	against	 large	losses.	
Many	institutions	use	the	risk	measures	Value-at-Risk	and	expected	shortfall	to	quantify	these	
exposures	to	financial	risks	and	to	estimate	the	necessary	capital	to	protect	them	against	these	
extreme	 losses.	Since	VaR	 is	a	quantile	 risk	measure,	 it	 is	believed	 to	be	a	good	measure	 for	
capturing	tail	extreme	events.	In	the	financial	literature,	it	is	usually	assumed	that	the	daily	log	
returns	of	 indexes	 follow	a	normal	distribution.	Two	popular	examples	of	 this	assumption	 is	
the	 Black-Scholes-Merton(1973)	 framework	which	 assumes	 stock	 prices	 follow	 a	 Geometric	
Brownian	motion	in	the	option	pricing	model	and	Sharpe	(1964)	who	assumes	normality	of	the	
distribution	 for	 the	 stock	 returns	 in	deriving	 the	 capital	 asset	 pricing	model.	However,	 after	
extensive	 research	 and	 analysis	 of	 this	 data	 type,	 it	 had	 been	 proven	 to	 be	 skewed	 data.	
Therefore	under	 the	normal	assumption,	VaR	analysis	 tends	 to	drastically	underestimate	 the	
true	extreme	financial	losses	the	institution	may	be	exposed	to	if	the	index	drastically	falls.	It	is	
therefore	 of	 importance	 to	 identify	 the	 best	 distribution	 that	 fits	 the	 heavy	 left	 tail	 of	 the	
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financial	time	series.	The	determination	of	adequate	model	for	extreme	stock	movement	was	
an	important	problem	that	thus	arose	in	the	financial	industry.	It	is	under	these	circumstances	
of	 modelling	 extreme	 events	 in	 order	 to	 conduct	 risk	 measure	 analysis	 that	 the	 concept	 of	
Extreme	Value	Theory	was	developed.	
	
Extreme	Value	Theory	(EVT)	allows	one	to	assess	the	probabilities	and	distribution	of	events	
that	 are	 more	 extreme	 than	 others	 previously	 observed.	 The	 application	 of	 EVT	 is	 seen	 in	
disciplines	 that	 require	 careful	 monitoring	 of	 extreme	 events	 and	 the	 casualties	 they	 may	
cause.	 In	 finance,	 EVT	 focuses	 only	 on	 extreme	 returns	 rather	 than	 all	 returns,	 which	 is	 of	
importance	to	the	institutions	and	regulators.	There	have	been	a	variety	of	work	done	where	
EVT	was	applied	to	various	aspects	of	the	financial	sector.	This	 includes	the	works	of	McNeil	
and	 Frey	 (2000)	 whose	 focus	 was	 the	 estimation	 of	 tail	 risk	 measures	 of	 heteroscedastic	
financial	time	series	and	Gencay	and	Selcuk	(2004)	who	analyzed	the	daily	extreme	returns	of	
emerging	markets.		
	
In	this	paper	we	seek	to	characterize	the	distribution	of	extreme	stock	returns	for	the	S&P500	
from	1990	to	2015.	The	fatness	of	the	tail	of	the	limiting	distribution	can	be	used	to	calculate	
the	probabilities	of	a	market	crash	and	thus	can	contribute	to	the	early	warning	of	market	risk	
(Jansen	 and	De	 Vries,	 1991).	We	 focus	 on	 the	works	 of	 Gilli	 and	Kellezi	 (2006)	 and	 Tolikas	
(2008)	who	both	applied	EVT	in	order	to	measure	financial	risks	using	different	approaches.	
Gilli	 and	 Kellezi	 (2006)	 applied	 the	 two	 well	 known	 methods	 under	 EVT,	 Block	 Maxima	
Approach	and	the	Peak	Over	Threshold,	to	the	data	which	leads	to	different	but	closely	related	
descriptions	of	the	extremes.	The	methods	model	the	extreme	events	by	fitting	the	Generalized	
Extreme	 Value	 (GEV)	 distribution	 and	 the	 Generalized	 Pareto	 (GP)	 Distribution,	 whereafter	
risk	measure	 analysis	was	 conducted	 using	 both	models.	 Gilli	 and	 Kellezi	 (2006)	 concluded	
that	the	GP	is	the	better	model	as	there	is	less	wasting	of	data.	However,	Tolikas	(2008)	states	
that	although	the	GP	distribution	does	have	its	advantages	over	the	GEV,	it	is	subjected	to	more	
serial	dependence.	Tolikas	(2008)	therefore	applied	a	non-overlapping	sub	period	technique	to	
the	financial	data	to	reduce	dependency.	He	then	fit	the	Generalized	Logistic	(GL)	distribution	
and	the	GEV	to	the	data	and	compared	the	results	to	determine	which	model	better	describes	
the	extreme	events.	Calabrese,	Marra	&	Osmetti	(2013)	applied	GEV	and	BGEVA	models	to	the	
sample	of	Italian	SMEs	from	2006	to	2011	and	found	each	of	the	two	model	is	better	than	the	
logistic	regression.	Tolikas	(2008)	introduced	the	option	of	probability	weighted	moments	as	a	
more	efficient	way	to	estimate	parameters	instead	of	the	maximum	likelihood	approach,	which	
was	the	method	used	in	Gilli	and	Kellezi	(2006).	Each	sub	period	is	analyzed	and	the	better	fit	
distribution	 is	 assigned	 to	 each	 sub	 period,	where	 after	 he	 concluded	 that	 the	 extremes	 are	
generally	better	characterized	by	the	GL	distribution.		
	
The	aim	of	this	paper	is	to	apply	Extreme	Value	Theory	to	financial	returns	and	determine	the	
best	 distribution	 which	 fits	 the	 returns.	 We	 apply	 the	 data	 sub	 period	 technique	 of	
Tolikas(2008)	on	three	global	financial	indices	and	fit	the	GL	and	GEV	distributions	to	the	data	
set.	 We	 then	 compare	 the	 results	 from	 using	 the	 sub	 period	 technique	 to	 Gilli	 and	 Kellezi	
(2006)	who	analyzed	the	 fit	of	 the	GEV	distribution	to	the	entire	 time	horizon.	Based	on	our	
results,	 we	 analyze	 which	 methodology	 is	 more	 efficient	 and	 sufficient	 for	 choosing	 the	
adequate	distribution	 that	describes	 the	 financial	market	 extremes.	 Finally,	we	perform	VaR	
analysis	given	the	optimal	distribution	to	determine	capital	requirement.		
	
Section	 two	 details	 the	 technical	 content	 surrounding	 the	 different	 distributions,	 obtaining	
model	parameters	as	well	as	goodness	of	fit	testing.	Section	3	provides	a	description	of	the	data	
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sets	used	and	results	obtained.	Section	four	covers	a	critical	analysis	of	the	results	as	well	as	
advantages	and	drawbacks	of	both	approaches.	Finally,	we	end	the	report	with	our	conclusion.		
	

METHODOLOGY	
Distributions	
We	make	mention	of	two	approaches	that	model	and	analyze	the	behavior	of	extreme	events.	
These	are	the	Peak	over	Threshold	approach	that	utilizes	the	GPD	distribution	and	the	Block	
Maxima	 Approach	 which	more	 popularly	 utilizes	 the	 GEV	 distribution	 and	 the	more	 recent	
introduction	 of	 the	 Generalized	 Logistic	 distribution.	 In	 figure	 1,	 we	 observe	 from	 the	
probability	distribution	density	functions	of	the	GPD,	GEV	and	GL	that	the	tails	are	similar	 in	
distribution.	As	such,	the	three	distributions	are	asymptotically	equivalent	in	their	tails	(Nidhin	
et	 al	 2013).	 It	 is	with	 this	 equivalence	 in	 the	 tails	 that	we	 focus	 our	 attention	 on	 the	 three	
distributions	to	model	extreme	stock	returns.	

	

	
Figure	1:	Probability	density	functions	of	GEV(max),	GEV(min),	GP	and	GL	distributions.	

	
The	 Peak	 over	 Threshold	 Approach	 models	 all	 values	 that	 exceed	 a	 fixed	 or	 high	 level	
threshold.	This	approach	follows	the	Pickands-Balkema-de	Haan	(1975)	theorem.	The	theorem	
indicates	 that	 the	 limiting	 distribution	 of	 excesses	 over	 a	 high	 enough	 threshold	 provides	 a	
theoretical	 foundation	for	us	to	use	the	GPD	to	develop	estimators	and	quantiles.	The	GPD	is	
argued	to	be	more	advantageous	than	the	GEV	and	GL	as	it	makes	use	of	more	data	points	from	
the	tails.	As	such,	there	exists	a	greater	number	of	available	data	for	the	model	to	fit.	However,	
this	approach	has	two	drawbacks:	choosing	a	suitable	threshold	and	being	subjected	to	serial	
dependence.	 The	 choice	 of	 a	 threshold	 is	 critical	 as	 if	 it	 is	 too	 high	 then	 there	 are	 less	
observations	 available	 for	 accurate	 estimation	 and	 if	 too	 low	 will	 lead	 to	 many	 central	
observations	in	the	sample.	Additionally,	EVT	is	based	on	the	assumption	that	the	extremes	are	
independent	 and	 identically	 distributed.	 As	 financial	 returns	 tend	 to	 cluster	 and	 have	 high	
serial	dependence,	the	GP	approach	is	more	likely	to	violate	the	i.i.d	assumption	that	underlies	
the	EVT	concept.	Also	 take	 into	consideration	 the	modelling	of	extreme	events	using	 the	sub	
period	technique	that	is	of	focus	in	this	paper.	This	modelling	approach	is	not	fit	for	assuming	
the	GPD	distribution.	As	such,	we	focus	on	the	GEV	and	GL	distributions.		
	
The	Block	maxima	approach	utilizes	the	assumption	that	the	log	returns	are	in-	dependent	and	
identically	distributed.	It	is	realized	as	a	traditional	method	that	groups	the	returns	into	non-
overlapping	 blocks	 of	 equal	 length	 and	 models	 the	 maxima	 of	 each	 adjoining	 block	 with	 a	
suitable	 distribution.	 The	 choice	 of	 block	 size	 is	 very	 critical	 as	 there	 exists	 a	 bias-variance	
trade	off	between	the	block	length	and	the	number	of	blocks.	This	traditional	approach	follows	
the	 Fisher,	 Tippet	 (1928)	 and	Gnedenko	 (1943)	 theorem.	 The	 theorem	 indicates	 that	 under	
EVT,	the	limiting	distribution	of	the	extremes	collected	over	non-overlapping	time	periods	of	
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equal	 length,	after	being	normalized	and	centered,	ought	 to	be	one	of	 the	 three	distributions	
that	make	up	the	GEV	family	(Weibull,	Gumbel	and	Frechet	distribution).		
	
If	shape	parameter	is	0,	then	it	is	the	Gumbel	distribution;	if	shape	parameter	is	greater	than	0,	
it	 is	 the	Weibull	 distribution	 and	 if	 less	 than	0,	 it	 is	 Frechet	distribution.	We	 take	particular	
note	of	the	shape	parameter	which	governs	the	shape	of	the	distribution,	where	larger	absolute	
values	 of	 shape	 parameter	 imply	 heavier	 tailed	 distributions.	 Gilli	 and	 Kellezi	 (2006)	 and	
Tolikas	 (2007)	 are	 two	 of	 the	 many	 works	 that	 have	 proven	 extreme	 financial	 returns	
generally	follow	the	Frechet	distribution,	a	distribution	with	a	heavy	left	tail.		
	
However	 in	a	number	of	 recent	EVT	analysis,	various	authors	such	as	Gettinby	et	al.	 (2004),	
Tolikas	and	Brown	(2006)	and	Nidhin	and	Chandran	(2013),	have	empirically	shown	that	the	
extremes	 of	 financial	 returns	 can	 adequately	 be	 modelled	 by	 the	 generalized	 logistic	
distribution(GL)	 over	 the	GEV	distribution.	Gettinby	 et	 al.	 (2001)	 studied	 the	distribution	of	
extreme	stock	market	index	on	both	tails	and	discovered	that	the	GL	distribution	characterized	
the	 extremes	better	 than	 the	GEV	and	GP	 for	daily,	weekly	 and	monthly	 financial	 returns	 as	
there	is	persisting	evidence	of	autocorrelation	and	heteroskedasticty	in	the	financial	data.	This	
is	owing	 to	 the	 fact	 that	 the	GL	distribution	has	a	 fatter	 tail	 than	 the	other	afore-	mentioned	
distributions.	Nidhin	and	Chandran	(2013)	have	also	 in	their	research	proved	the	theoretical	
importance	of	GL	distribution	in	extreme	value	modelling:	a	fatter-tailed	distribution	is	better	
able	to	fit	large	extremities	that	lie	in	the	tail,	reducing	underestimation	error.		
	
Model	Selection		
The	 selection	 the	 distribution	 that	 best	 fits	 the	 financial	 returns	 is	 determined	 by	 using	 L-
moment	 ratio	 diagrams.	 L-moments	 (Hosking	 1990)	 are	 expectations	 of	 certain	 linear	
combinations	of	ordered	statistics	(L-statistics),	used	to	summarize	the	shape	of	a	probability	
distribution.	They	can	be	used	to	calculate	mean,	standard	deviation,	skewness	and	kurtosis.		
	
A	 theoretical	 distribution	 has	 a	 set	 of	 population	 L-moments.	 Sample	 L-moments	 can	 be	
defined	for	a	sample	from	the	population,	and	can	be	used	as	estimators	of	the	population	L-
moments.	We	 identify	 the	distributions	 that	best	 fit	 empirical	data	by	plotting	 the	estimated	
skewness	 and	 kurtosis	 from	 the	data	 set	 and	 choosing	 the	 distribution	whose	 theoretical	 L-
skewness	and	L-kurtosis	curve	is	closest	to	the	observed	plotted	points.		
	
Parameter	Estimation		
Estimating	parameters	for	the	models	are	subjected	to	sampling	errors.	There-	fore,	a	method	
of	estimating	parameters	that	minimize	these	errors	must	be	chosen.	Parameter	estimates	for	
the	 limiting	 distributions	 are	 calculated	 using	 the	 probability	 weighted	 moments	 (PWM)	
technique	 outlined	 in	 Tolikas	 (2008)	 and	 Gettinby	 et	 al.	 (2004)	 instead	 of	 the	 conventional	
MLE	as	used	in	Gilli	and	Kellezi	(2006)	and	other	researchers.	This	technique	was	chosen	as	it	
generates	 more	 unbiased	 parameter	 estimates	 than	 popular	 MLE	 method	 for	 small	 sample	
sizes,	which	is	the	norm	for	EVT	data	sets.	There	also	exists	a	linear	relationship	between	PWM	
and	 the	 more	 robust	 L-moments	 as	 to	 why	 this	 technique	 was	 chosen.	 The	 PWM	 method	
estimates	a	distribution’s	parameters	by	equating	 the	sample	moments	 to	 those	of	 the	 fitted	
distribution.				
	
Goodness	of	Fit		
The	Anderson-Darling	 test	 (Anderson	 and	Darling	 1954)	 is	 used	 to	 assess	 how	 effective	 the	
chosen	distribution	is	to	fit	the	extremes.	The	test	is	most	often	used	in	contexts	where	a	family	
of	 distributions	 is	 being	 tested,	 in	 which	 case	 the	 parameters	 of	 that	 family	 need	 to	 be	
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estimated.	 This	 goodness	 of	 fit	 test	 is	 believed	 to	 be	 the	 best	 option	 in	 this	 analysis	 for	
measuring	the	discrepancies	in	the	tails	between	theoretical	and	empirical	distributions	based	
upon	a	small	sample	size	(Choulakian	and	Stephens	2001).	Arshad	et	al.	 (2003)	describe	 the	
AD	test	as	the	most	powerful	statistical	tools	for	detecting	how	great	the	sample	moves	away	
from	normality.	The	 test	 statistic	 includes	a	weight	 function	 that	places	greater	emphasis	on	
the	tails	of	the	distribution.	As	such,	it	is	the	best	model	test	for	heavy	tailed	distributions.		
	

APPLICATION	AND	RESULTS	
Description	of	Data		
This	 paper	 focuses	 on	 the	 results	 of	 modelling	 extreme	 maxima	 daily	 returns	 over	 weekly	
intervals.	That	is,	we	focus	on	the	maxima	extreme	returns	which	occur	on	the	right	tail	of	the	
empirical	distribution	observed	in	each	week	and	determine	the	best	fitting	distribution	for	the	
weekly	 maxima	 data	 set.	 These	 maxima	 daily	 returns	 are	 collected	 over	 non-overlapping	
successive	 selection	 intervals	 of	 5	 days.	 Daily	 log	 returns	 of	 the	 S&P500	 indexes	 were	 the	
underlying	data	used	to	assess	the	effectiveness	of	the	chosen	distributions	to	fit	the	extreme	
returns.	The	closing	prices	were	downloaded	for	different	time	periods	based	on	availability	of	
the	data.	As	a	result,	 the	historic	 time	periods	under	analysis	are	1986-2015	 for	 the	S&P500	
index.		
	
Figure	 2	 illustrates	 the	 QQ	 plot	 of	 daily	 log	 returns	 against	 the	 normal	 distribution	 for	 the	
S&P500.	 	 Notice	 in	 the	 diagram	 that	 the	 data	 does	 not	 follow	 the	 pattern	 of	 the	 normal	
distribution,	which	as	previously	mentioned	is	universally	assumed.	We	observe	the	existence	
of	 deviation	 from	 the	 normal	 in	 both	 the	 left	 and	 right	 tails,	 justifying	 the	 use	 of	 the	 EVT	
distributions	to	model	the	right	tail	distributions	of	the	three	indexes.	

	
The	 time	 span	 chosen	 also	 contains	 some	 key	 volatile	 moments	 in	 history	 which	 have	
negatively	 impacted	 the	 chosen	 financial	markets,	 from	which	proper	EVT	modelling	 should	
capture	if	sufficient.	These	extreme	historic	moments	include	but	are	not	limited	to	the	2008	
financial	 crisis,	 the	 2011	 Japanese	 earthquake,	 the	 1992	 collapse	 of	 the	 exchange	 rate	
mechanism	 and	 the	 2001	 US	 terrorist	 attack.	 The	 weekly	 maxima	 extremes	 (right	 tail	
extremes)	were	collected	for	the	S&P500	over	the	period	1990	to	2015.	We	apply	the	moving	
window	techniques	where	the	log	financial	returns	are	divided	into	yearly	selection	intervals	
each	of	size	51-52	extremes.	As	a	result,	we	not	only	determine	the	distribution	which	best	fits	
the	 entire	 sample	 period,	 but	 the	 distribution	 that	 fits	 each	 of	 the	 30	 sub	 respectively.	 This	
technique	is	argued	to	reduce	the	serial	dependency	of	financial	returns	by	capturing	the	non-
stationary	of	the	data.		
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RESULTS		
The	 first	step	 in	our	analysis	 is	 to	assume	probability	distributions	 that	are	 likely	 to	provide	
good	descriptions	of	the	financial	series.	As	previously	mentioned,	the	focus	of	analysis	lies	on	
the	GEV	and	GL	distributions.	The	values	of	skewness	against	kutosis	for	the	series	of	maxima	
over	 each	 selection	 interval	 were	 estimated	 and	 plotted	 on	 an	 L-moment	 ratio	 diagram.	
Figures	3	shows	 the	relationship	between	sample	estimates	of	 skewness	against	kutosis	and	
that	of	the	theoretical	GEV	and	GL	curve	respectively.	The	diagrams	reveal	that	the	samples	of	
the	weekly	maxima	are	generally	dispersed	and	fall	in	the	region	between	the	theoretical	GEV	
and	GL	distributions	for	the	three	indexes.	Based	on	this	observation,	we	run	further	statistical	
tests	on	the	GEV	and	GL	distributions.	

	

	
Figure	3:	L-moment	ratio	points	for	S&P500	daily	return	weekly	maxima,	divided	into	30	sub	

periods,	over	1986	to	2015	
	
The	 second	 step	 is	 to	 determine	 which	 of	 the	 distributions	 (if	 any)	 better	 fit	 the	 extreme	
returns	 for	each	sub	period	and	 for	 the	entire	sample	 time	horizon	as	well.	The	GEV	and	GL	
distributions	were	fitted	to	the	weekly	maxima	returns	for	each	of	the	different	30	sub	periods	
for	the	S&P500	index.	The	parameters	for	both	models	were	estimated	using	PWM	technique,	
then	the	Anderson-Darling	goodness	of	fit	test	is	conducted	for	model	efficiency	for	the	three	
indexes.	 The	 tables	 for	 all	 three	 indexes	 illustrate	 the	 location,	 scale	 and	 shape	 parameter	
estimates	for	the	distributions	together	with	the	critical	p-values	of	the	AD	goodness	of	fit	test.		
	
We	observe	the	results	for	the	S&P500	index	in	tables	1after	fitting	the	GEV	distribution	and	
the	GL	distribution.	The	shape	parameter	takes	a	overall	negative	value	for	the	entire	30	year	
period	 of	 -0.169,	 showing	 the	 30-year	 weekly	 maxima	 returns	 is	 modelled	 by	 a	 Frechet	
distribution.	However,	notice	that	once	the	time	horizon	is	reduced	into	yearly	sub	periods	for	
the	GEV,	the	shape	parameter	fluctuates	between	negative	and	positive	values.	This	shows	that	
different	time	periods	have	different	skewness	of	distribution	depending	on	what	is	going	on	in	
the	market	at	that	point	 in	time.	The	Anderson-Darling	p-value	of	0.2653	(greater	than	0.05)	
shows	that	the	GEV	distribution	fits	the	weekly	extreme	maxima	for	the	30	years	adequately	
compared	to	the	GL	distribution	which	had	a	p-value	of	0.0001.		
	
When	the	weekly	maxima	were	divided	into	30	sub	periods,	both	the	GEV	and	GL	provided	an	
adequate	 fit	 for	 28	 of	 the	 30	 sub	 periods.	 Both	 the	 GEV	 and	 GL	 distributions	 failed	 to	
adequately	 fit	 the	maxima	returns	 in	sub	period	26	which	corresponds	 to	 the	2011	 terrorist	
attack	on	the	United	States.	Additionally,	the	GL	did	not	provide	an	adequate	fit	for	sub	period	
23	which	corresponds	to	the	2008	financial	crisis.	Notice	that	it	is	in	these	sub	periods	that	the	
shape	 parameter	 for	 both	 distributions	 takes	 its	 maximum	 values,	 implying	 a	 fat	 tailed	
distribution.	In	comparison	to	each	other,	the	GL	provided	a	better	fit	for	16	of	the	sub	periods	
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while	the	GEV	provided	a	better	fit	for	14.	This	implies	that	there	is	no	single	distribution	that	
is	consistently	better	for	all	time	intervals	for	the	maxima	series.	The	scale	parameter	for	the	
GEV	ranges	from	0.003	to	0.014	and	0.002	to	0.01	and	for	the	GL,	emphasizing	that	there	was	
not	 much	 volatility	 in	 maxima	 returns.	 An	 average	 of	 0.007	 and	 0.006	 for	 the	 GEV	 and	 GL	
respectively	 of	 the	 yearly	 sub	 period	 scale	 parameters	 shows	 that	 the	 scale	 parameter	
estimates	increase	as	the	interval	increases	regardless	of	the	sub-periods.		
	

Table	1:	GEV	and	GL	parameters	Estimates	for	S&P500	
SUBPERI OD( S)  LOCATI ON SCALE SHAPE AD P−VALUE FI T 

 GEV GL GEV GL GEV GL GEV GL  
S=1 0. 007 0. 007 0. 026 0. 007 - 0. 169 - 0. 169 0. 2653 0. 0001 GEV 
S=30 

1 0. 008 0. 01 0. 006 0. 003 0. 287 0. 001 0. 9263 0. 9682 GL 

2 0. 011 0. 013 0. 007 0. 005 - 0. 218 - 0. 317 0. 9372 0. 9861 GL 
3 0. 008 0. 01 0. 007 0. 004 - 0. 014 - 0. 179 0. 9741 0. 9281 GEV 
4 0. 007 0. 009 0. 005 0. 003 0. 109 - 0. 102 0. 9946 0. 9993 GL 
5 0. 008 0. 01 0. 006 0. 004 0. 049 - 0. 139 0. 9983 0. 9982 GEV 
6 0. 008 0. 01 0. 006 0. 004 0. 029 - 0. 151 0. 9835 0. 9985 GL 
7 0. 006 0. 008 0. 004 0. 003 0. 05 - 0. 138 0. 9536 0. 8676 GEV 
8 0. 005 0. 006 0. 004 0. 002 0. 139 - 0. 084 0. 9391 0. 9954 GL � 

9 0. 005 0. 006 0. 003 0. 002 - 0. 027 - 0. 187 0. 9254 0. 9852 GL 
10 0. 006 0. 007 0. 004 0. 002 0. 227 - 0. 032 0. 7579 0. 9293 GL 
11 0. 006 0. 008 0. 004 0. 002 0. 167 - 0. 067 0. 9193 0. 9813 GL � 

12 0. 009 0. 011 0. 006 0. 004 - 0. 041 - 0. 196 0. 9456 0. 9976 GL 
13 0. 009 0. 012 0. 007 0. 005 - 0. 019 - 0. 182 0. 7579 0. 8112 GL 
14 0. 0111 0. 0139 0. 008 0. 0046 0. 222 - 0. 035 0. 7186 0. 4281 GEV 
15 0. 01 0. 013 0. 007 0. 005 - 0. 066 - 0. 213 0. 9104 0. 8437 GEV 
16 0. 009 0. 013 0. 009 0. 006 - 0. 024 - 0. 185 0. 9928 0. 9944 GL � 

17 0. 01 0. 014 0. 009 0. 007 - 0. 138 - 0. 262 0. 9857 0. 9418 GEV 
18 0. 011 0. 013 0. 007 0. 004 0. 022 - 0. 156 0. 9661 0. 8379 GEV 
19 0. 008 0. 009 0. 004 0. 002 0. 25 - 0. 019 0. 8776 0. 5837 GEV 
20 0. 006 0. 007 0. 004 0. 002 0. 064 - 0. 129 0. 9832 0. 9789 GEV 
21 0. 006 0. 007 0. 004 0. 003 0. 002 - 0. 169 0. 9972 0. 9771 GEV 
22 0. 006 0. 008 0. 004 0. 003 - 0. 01 - 0. 235 0. 9742 0. 9935 GL � 

23 0. 01 0. 013 0. 009 0. 007 - 0. 234 - 0. 329 0. 3833 0 GEV 
24 0. 017 0. 022 0. 014 0. 01 - 0. 122 - 0. 251 0. 9912 0. 9343 GEV 
25 0. 01 0. 0125 0. 008 0. 005 0. 053 - 0. 136 0. 9087 0. 9713 GL � 

26 0. 008 0. 01 0. 006 0. 005 - 0. 125 - 0. 253 0. 0012 0. 0013 GL 

27 0. 008 0. 0111 0. 007 0. 005 0. 047 - 0. 14 0. 9774 0. 985 GL 
28 0. 006 0. 008 0. 005 0. 003 0. 27 - 0. 003 0. 0011 0. 9572 GL 
29 0. 006 0. 007 0. 003 0. 002 0. 045 - 0. 141 0. 9771 0. 9657 GEV 
30 0. 008 0. 01 0. 006 0. 004 0. 084 - 0. 117 0. 5612 0. 4618 GEV 
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Table	2:	VaR	Estimates	via	GEV	and	GL	at	99%	confidence	level	
SUBPERI OD( S)  GEV GL SUBPERI OD( S)  GEV GL 
s =1 0. 046 0. 048    

S=30 
1 0. 023 0. 027 16 0. 053 0. 056 
2 0. 062 0. 064 17 0. 069 0. 072 
3 0. 039 0. 042 18 0. 04 0. 042 
4 0. 025 0. 027 19 0. 019 0. 02 
5 0. 032 0. 034 20 0. 02 0. 021 

6 0. 033 0. 035 21 0. 025 0. 026 
7 0. 024 0. 025 22 0. 031 0. 032 

8 0. 019 0. 02 23 0. 081 0. 084 
9 0. 021 0. 022 24 0. 104 0. 108 

10 0. 016 0. 017 25 0. 041 0. 044 
11 0. 019 0. 021 26 0. 017 0. 02 
12 0. 041 0. 043 27 0. 038 0. 041 
13 0. 045 0. 048 28 0. 019 0. 021 
14 0. 034 0. 037 29 0. 02 0. 021 
15 0. 05 0. 053 30 0. 03 0. 032 

	
As	expected,	the	VaR	at	the	99%	confidence	level	reveals	some	of	the	smallest	values	in	the	sub	
periods	that	were	very	volatile	and	affected	those	 in	the	 long	position.	Take	for	example	sub	
period	26	of	the	S&P500	index.	The	2011	terrorist	attack	on	the	United	States	of	America	had	a	
greater	effect	on	individuals	 in	a	 long	position	at	that	time	than	those	in	the	short	(maxima).	
Individuals	therefore	with	a	short	position	in	stock	were	less	exposed	to	risks.	
	
Also,	we	notice	 that	 the	observed	VaR	 for	 the	entire	periods	did	not	exceed	 the	average	sub	
period	 VaR	 for	 all	 three	 indexes.	 This	 reveals	 the	 true	 purpose	 of	 our	 research	 as	 we	 can	
conclude	that	the	VaR	estimates	can	be	greatly	underestimated	depending	on	the	length	of	the	
sub	 periods.	 The	 same	 conclusion	 holds	 when	 we	 compare	 the	 VaR	 results	 across	 the	 two	
different	distributions.	We	generally	observe	that	the	distribution	which	provided	the	better	fit	
gave	a	better	VaR	estimate	than	the	other.		
	
Critical	Analysis	
Many	 applications	 of	 EVT	 in	 finance	 tend	 to	 focus	 on	 either	 the	 GEV	 or	 GP	 distributions.	
However,	the	GL	distribution	has	a	fatter	tail	than	the	aforementioned	distributions.	Therefore,	
it	is	expected	to	be	a	better	fit	for	extreme	value	and	better	estimate	tail	measures	such	as	VaR.	
The	 works	 of	 Tolikas	 (2008)	 and	 Tolikas	 and	 Gettinby	 (2009)	 argue	 that	 overall	 the	 GL	
distribution	proves	a	better	fit	when	multiple	sub	periods	are	used.	Hussain	(2015)	concludes	
that	the	GEV	distribution	is	the	best	distribution	to	fit	the	extremes	that	exist	in	the	right	tail	of	
indexes.	Gilli	and	Kellezi	(2006)	on	the	other	hand	identified	the	GP	distribution	as	the	better	
choice	for	modelling	extreme	events	in	financial	markets	over	the	GEV	distribution.	However,	
the	 results	 revealed	 that	 both	 the	GEV	and	GP	distributions	 are	necessary	 for	modelling	 the	
extreme	maxima	returns	 for	 the	S&P500	 index.	The	results	 revealed	 that	 the	GL	distribution	
adequately	fit	more	sub	periods	than	the	GEV.	Furthermore,	the	GEV	provided	a	better	overall	
fit.	The	sign	of	the	shape	parameter	tends	to	change	over	each	sub	period,	indicating	no	unique	
distribution	can	adequately	describe	the	empirical	data	well.	Lastly,	the	small	p-values	for	the	
Anderson	 Darling	 test	 statistic	 observed	 after	 fitting	 the	 GL	 distribution	 suggest	 that	 the	
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distribution	fits	poorly.	However,	the	fact	that	the	p-value	is	greater	than	0.05	in	a	number	of	
instances	for	the	S&P500	does	not	allow	us	to	completely	reject	the	GL	distribution.				
	
Additionally,	upon	dividing	the	entire	time	horizon	into	sup	periods,	it	is	observed	that	the	size	
of	 the	 extreme	 maxima	 varies	 constantly	 over	 time.	 This	 is	 indicated	 by	 the	 substantial	
variability	 observed	 in	 the	 shape	 parameters	 over	 the	 different	 sub	 periods	 as	 mentioned	
above.	 We	 observe	 that	 those	 sub	 periods	 with	 extremely	 large	 losses	 had	 high	 volatility	
parameters	and	in	turn	resulted	in	higher	shape	parameter	than	those	with	smaller	observable	
losses.	 This	 result	would	 have	 a	 great	 effect	 on	 VaR	 estimates	 as	 those	 periods	with	 higher	
shape	 parameters	 are	 expected	 to	 have	 greater	 VaR	 estimates.	 Therefore,	 industries	 who	
choose	 to	 use	 shorter	 period	 for	 measuring	 their	 exposure	 to	 financial	 risks	 would	 have	 a	
greater	minimum	capital	requirement	than	those	who	choose	to	conduct	analysis	on	extended	
time	horizons.	Clearly,	we	note	that	therefore	there	are	both	advantages	and	disadvantages	to	
this	 methodology	 of	 obtaining	 the	 extreme	 maxima	 returns.	 An	 advantage	 of	 analyzing	 the	
extreme	 losses	 using	 the	 sub	 period	 technique	 is	 that	 the	 VaR	 estimates	 are	more	 likely	 to	
respond	 to	 changes	 in	 the	market	 faster	 than	 using	 one	 extended	 time	 horizon.	 However,	 a	
disadvantage	is	having	a	larger	minimum	capital	requirement	reserve	than	needed,	leading	to	
less	available	funds	to	the	organization	to	conduct	other	business.	We	can	therefore	conclude	
that	the	choice	of	distribution	and	time	period	to	model	the	behavior	of	extreme	returns	has	
important	implications	for	investors	who	wish	to	assess	the	risk	of	a	portfolio,	and	for	financial	
regulators	who	employ	VaR	based	on	the	distribution.		
	
Financial	returns	exhibit	heteroscedasticity	and	serial	correlation.	Tolikas	(2008)	argues	that	
the	sub	period	technique	reduces	the	dependency	that	financial	series	may	be	subjected	to	by	
selecting	 maxima	 extremes	 from	 non	 overlapping	 blocks	 of	 equal	 length.	 This	 approach	 is	
similar	 to	 the	block	maxima	approach	but	differs	 in	 the	sense	that	 the	best	 fit	distribution	 is	
determined	for	each	predetermined	sub	period	and	not	the	entire	time	horizon.	However,	for	
shorter	 periods,	 we	 cannot	 guarantee	 the	 same	 level	 of	 confidence	 of	 reduced	
heteroscedasticity.	 	McNeil	and	Frey	(2004)	suggest	modelling	heteroscedastic	 financial	 time	
series	 by	 fitting	 the	 tail	 of	 the	 conditional	 distribution	 of	 returns	 using	 an	 autoregressive	
volatility	model,	 standardizing	 the	 returns	by	 the	 estimated	 conditional	 volatility	 and	 finally	
conducting	the	EVT	analysis.	However,	this	method	requires	additional	parameter	estimation	
which	 leads	 to	 increased	possibility	of	estimation	error	and	model	 risk.	Additionally,	 further	
research	 can	be	 conducted	 to	 compare	 the	EVT	analysis	with	 the	GARCH-based	 approach	 in	
estimating	the	VaR.	One	can	apply	the	conditional	EVT	and	conditional	correlation	and	copulas	
to	investigate	the	dependency	between	the	each	of	the	three	global	indexes.		
	
L-moment	ratios	were	used	to	determine	the	candidate	distributions	that	could	possibly	model	
the	 extreme	 financial	 returns.	 This	 method	 of	 identifying	 distributions	 has	 a	 number	 of	
advantages	 we	make	 note	 of.	 The	main	 advantage	 of	 the	 L-moments	 is	 that	 they	 are	 more	
robust	to	the	presence	of	outliers	than	conventional	moments	by	being	linear	combinations	of	
the	 ordered	 data.	 This	 is	 because	 conventional	 moments	 include	 powers	 that	 give	 greater	
weight	to	outliers	that	can	lead	to	bias	and	variance	in	the	estimators.	Another	advantage	of	L-
moments	is	that	sample	L-moments	can	take	any	value	that	the	population	moments	can	take	
while	conventional	moments	have	bounds.	Finally,	the	asymptotic	biases	of	the	L-moments	are	
negligible	 for	most	 distributions. Efficient	 parameter	 estimation	 plays	 an	 important	 role	 for	
measuring	the	financial	risks	associated	with	extreme	events.	Institutions	must	select	the	best	
method	 for	 deriving	 estimates	 so	 that	 parameters	 are	 not	 greatly	 under/overestimated	 and	
yield	 inaccurate	results.	The	probability	weighted	moment	 technique	was	chosen	 in	order	 to	



An,	Y.	&	Zhao,	H.	(2016).	The	Appropriate	Extreme	Value	Distribution	for	Extreme	Returns:	A	Look	at	GEV	&	GL.	Advances	in	Social	Sciences	Research	
Journal,	3(11)	193-203.	
	

	
URL:	http://dx.doi.org/10.14738/assrj.311.2371.	 202	

	

determine	parameter	estimates.	Hill	(1963)	argues	that	the	asymptotic	properties	of	MLE	are	
more	open	to	doubt	in	the	case	of	small	samples	where	convergence	of	the	likelihood	function	
is	not	always	guaranteed	 to	be	at	 the	global	maximum,	MLE	 is	 a	better	 fit	 for	moderate	and	
large	 samples.	 As	we	 are	working	with	 sub	 periods	 of	 50-53	 observations	 each,	 probability	
weighted	moments	 (PWM)	was	 chosen	 to	 estimate	 parameters.	 PWM	 tends	 to	 have	 a	 lower	
root-mean	square	error	for	small	sample	sizes	than	MLE.	PWM	are	fast	and	straightforward	to	
compute	and	almost	always	yield	feasible	values	for	the	estimated	parameters	(Hosking	et	al.,	
1985).	 However,	 one	 disadvantage	 of	 estimating	 PWMs	 depends	 on	 the	 choice	 of	 plotting	
positions.	Thus	careful	choice	of	plotting	positions	is	important.		
	

CONCLUSIONS	AND	COMMENTARY	
This	paper	provides	insight	for	risk	assessment	of	extreme	events	in	stock	markets.	Financial	
institutions	 are	 now	 more	 concerned	 with	 managing	 market	 risks	 due	 to	 the	 increase	 in	
market	 volatility	 of	 recent	 times.	 The	 results	 above	 show	 that	 the	 assumption	 that	 returns	
follow	 a	 normal	 distribution	 is	 not	 an	 adequate	 assumption	 to	 make	 as	 the	 distribution	 of	
financial	returns	tend	to	generally	be	skewed.	This	can	lead	to	substantial	underestimation	of	
the	 extreme	 risks	 involved	 in	 the	 financial	 markets.	 The	 extreme	 value	 analysis	 on	 VaR	
estimates	 shows	 that	 without	 analyzing	 the	 extreme	 events	 that	 lie	 on	 the	 tail,	 the	 VaR	 is	
greatly	 underestimated.	 The	 choice	 of	 selecting	 the	 most	 appropriate	 distribution	 can	
therefore	have	serious	 implications	on	stock	market	risk	management.	Computational	errors	
would	mean	either	having	to	maintain	high	minimum	capital	reserve	to	remain	solvent	in	the	
case	of	overestimation,	or	facing	great	losses	in	the	case	of	underestimation.		
	
We	apply	the	Extreme	Value	Theory	method	to	the	log	returns	of	S&P500	stock	index	in	order	
to	derive	estimates	for	VaR.	The	analysis	of	the	extremes	revealed	that	major	estimation	error	
can	occur	 if	 the	best	 fit	distribution	to	 the	extremes	 is	not	chosen.	 It	was	determined	that	 in	
most	 instances	 the	 GEV	 provided	 a	 better	 overall	 fit	 for	 the	 distributions	 based	 on	 recent	
historical	data.	However,	applying	the	same	distribution	to	subsets	of	the	entire	time	horizon	
indicated	that	different	distributions	adequately	fit	different	time	periods	based	on	the	market	
performance	 in	 that	 period.	 This	 leads	 to	 the	 conclusion	 that	 no	 one	 distribution	 can	
adequately	model	the	extreme	maxima.	Finally,	if	the	type	of	data	set	that	financial	institutions	
wish	to	perform	tail	analysis	on	is	not	i.i.d,	EVT	based	analysis	does	not	provide	the	best	results	
when	 modelling	 the	 extreme	 events.	 We	 therefore	 advice	 that	 practitioners	 check	 for	
dependence	in	the	data	before	applying	EVT.		
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