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Abstract: The random correlation data algorithm allows the creation of two randomly 
correlated variables having a relatively strong positive or negative correlation between 
them. We have used this algorithm in project management and, more specifically, in 
project portfolio selection. This paper describes the most important concepts and 
portrays the relevant equations for the algorithm being considered. The equations can be 
applied to other domains of inquiry. Also, although the random distribution generator was 
uniformly distributed, other random generators can be used, such as normally distributed 
random generators. 
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INTRODUCTION. WHAT IS A PROJECT? 

A project consisting in the combination of two or more mutually inclusive tasks with pre-

specified precedence relationships may as a matter of fact be considered a single project. 

 But, what is a project? A project is an organized set of activities with finite duration 

to be performed, having a given purpose or goal (well defined set of final results desired), 

with some unique elements and interested parties (customers, parent organization, project 

team, and the public). A project is the combination of interrelated activities that must be 

executed in a pre-specified sequence to complete a full task (Meredith & Mantel, 2008). 

 The Probabilistic Critical Path Method (PCPM) measures the way in which a project 

is managed by using three dimensions: time in the form of a project schedule, which can be 

appreciated in a Gantt chart for planning purposes (Meredith & Mantel, 2008), cost in the 

form of a budget that may be higher or lower depending on whether the activities are 

crashed or not (Elsayed & Boucher, 1994), and finally performance, in the form of the 

Internal Rate of Return (IRR), which is compared with the Minimally Attractive Rate of 

Return or MARR (Brealey & Myers, 1991). 

 

SYSTEMIC RELATIONSHIPS BETWEEN THE PROJECT DIMENSIONS: TIME, COST, 
AND PERFORMANCE 

Although the relations among the project management dimensions vary from time to time 

and from project to project, a systemic approach can be used to elucidate the nature of the 

underlying balances (Icmeli, 1996; Johnson & Schou, 1990; Sunde & Lichtenberg, 1995). 

 Figure 1a illustrates the systemic relationships between time and cost using influence 

diagrams. If the project is delayed (it takes longer) will cost more, so that there is a positive 

correlation between time and cost. But if to deliver the project on time, additional 
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resources are used for critical activities, maintaining resources to a minimum for non-critical 

activities (which is called crashing) there is a negative correlation between cost and time 

(Winston, 1994). The existence of both a positive and a negative correlation between time 

and cost implies the existence of a balance point in which an optimal project completion 

can be achieved at a minimum cost. Figure 1b illustrates how the time/cost balancing is 

additionally influenced by performance. Improving the quality of the product requires 

investing more resources, which will increase cost and increase time if those resources are 

limited. But if more resources are invested and it takes longer to complete the project, it 

costs more, so that the Internal Rate of Return (IRR) of the project measuring its profitability 

is reduced. Therefore, there must also be an optimal balance between time/cost achieving 

an optimal performance as measured according to the project’s IRR. 

 

Figure 1: Balances among time, cost, and performance. 

 

A PROJECT PORTFOLIO SELECTION MODEL 

Considering a higher level of abstraction, we can have a set of projects to select or de-

select. A project portfolio is a set of projects chosen to be carried out. Project selection is 

one of the first and most critical activities in project management. Deciding from a pool of 

available and competing projects which ones should be undertaken (thus assigning limited 

resources to them) and which ones should not be undertaken or terminated is a complex 

decision. Overall value maximization, balance among dimensions, and business strategy 

should be considered. The very essence of portfolio management portrayed by Cooper, 

Edgett and Kleinschmidt (2007) as a “dynamic decision process… constantly up-dated and 

revised… [where] new projects are evaluated, selected and prioritized; existing projects 

may be accelerated, killed or de-prioritized; and resources are allocated or re-allocated to 

the active projects” increases the difficulty. Furthermore, portfolio selection is a process 

characterized by uncertainty and changing information: new opportunities arise, multiple 

goals as well as strategic considerations are required, and interdependences among projects 

(either when competing for scarce resources or when synergies are achieved) exist, not to 

mention multiple decisionmakers and locations. Consequently, a mathematical model seems 

to be the best long-term approach to tackle such a complex decision-making process. 

 According to Meredith and Mantel (2008), project selection methods can be classified 

as nonnumeric (qualitative) or numeric (quantitative). The sacred cow, operating necessity, 

competitive necessity, product line extension and the comparative benefit model are among 
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the qualitative methods. Profitability models* and scoring models† are among the 

quantitative methods. 

 A decision support system for project portfolio selection is presented by Archer and 

Ghasemzadeh (1999). There is no such thing as the optimal portfolio when we consider the 

tradeoffs among time, cost, and performance (not to mention risk preferences). 

Decisionmakers must weight multiple project dimensions and intuitively decide how adding 

or removing a specific project would have an impact on the portfolio. In other words, they 

face intuitive decisions on marginal contribution (gain or loss). Our conjecture is that the 

best decision is achieved when overall cost and time are minimized while maximizing 

performance for a given risk profile. 

 

THE RELEVANT VARIABLES THROUGH AN ILLUSTRATIVE EXAMPLE 

There are six basic (input) variables to consider for our portfolio selection model. The first 

such variable is the average (mean) completion time for each project. The Probabilistic 

Critical Path Method (PCPM) can be used to obtain the mean completion time of any given 

project as well as the related average cost and average rate of return (Copertari, 2020). 

 Also, we need the uncertainty associated to each of these three variables. Such 

uncertainty can be given as one or two times the standard deviation for each dimension 

(time, cost, and performance). Given the variance, the standard deviation is simply the 

square root of such variance. Thus, let k be any given project in a portfolio with a total of 

s projects. Then, tk, ck and ik are the time, cost, and performance mean values (averages) 

for each project k, where k = 1, 2, …, s, respectively. Also, let tk, ck and ik be the 

associated uncertainties for the time, cost, and performance dimensions, respectively, 

where k = 1, 2, …, s. For illustrative purposes, let us consider a portfolio of three alternative 

projects: Alpha, Beta and Gamma. Table 1 shows the relevant information. 

 

Table 1: Small illustrative example. 

k Project Time in 

weeks (tk) 

Time 

uncertainty 

(tk) 

Cost in 

dollars 

(ck) 

Cost 

uncertainty 

(ck) 

Performance in 

percentage (ik) 

Performance 

uncertainty 

(ik) 

1 Alpha 7 4 $2,000 $500 8% 2% 

2 Beta 3 3 $1,500 $1,000 7% 3% 

3 Gamma 10 4 $2,500 $500 5% 4% 

 Average: Irrelevant Total: $6,000 Average: 6.67%  

 

 The portfolio’s budget is $4,500. Since we are dealing with a portfolio, not a single 

project with a set of projects and a given precedence sequence for such projects, the 

                                            
* Payback period, average rate of return, Net Present Value or NPV, Internal Rate of Return or IRR, 
profitability index, as well as others that subdivide the elements of the cash flow, include terms of 
risk or uncertainty, or consider the effect on other projects or the organization. 
† Weighted and non-weighted factor models, with or without constraints, usually solved using 
integer programming as well as goal programming when multiple objectives are given. 



Vol. 13 No. 01 (2026): Advances in Social Sciences Research Journal 

Scholar Publishing 

 

 
 

 

Page | 139  

 

average (or total) time dimension for the portfolio is irrelevant. However, the total 

(maximum) possible cost for the portfolio is important. Notice that such total is $6,000, 

which is higher than the portfolio’s budget. This means we cannot include all projects in 

the portfolio, but rather decide which ones should be undertaken. 

 

THE RANDOM CORRELATION DATA EQUATIONS 

It is possible to generate random data where the time dimension is positively correlated 

with the cost dimension to generate useful trial data. Let Mintk = 5 and Maxtk = 50 be the 

minimum and maximum possible time estimates. Also, let Minck = 100 and Maxck = 1500 be 

the minimum and maximum possible cost estimates. Finally, let Minik = 5 and Maxik = 40 be 

the minimum and maximum possible return rates. 

 How can we calculate the corresponding values for tk, tk, ck, ck, ik and ik, given 

these parameters? Let R be a 0-1 uniformly distributed random number such that 0 ≤ R < 1, 

R(a,b) be a uniformly distributed random number between a and b such that both a and b 

are integer values. Also, let the function f(x) indicate the rounding function given x such 

that if x = 5.3, f(5.3) = 5 and if x = 5.7, f(5.7) = 6, for example. Thus, R(a,b) = f(a+(b-a)R). 

Equation (1) shows how to estimate any given tk, where k = 1, 2, …, s. 

 tk = R(Mintk, Maxtk)     (1) 

Equation (2) indicates how to calculate tk given a previously calculated tk. 

 Δtk = f (R(f(tk/10), f(tk/3)))     (2) 

Calculating the value for ck is the most complicated equation, because, in general, the 

values for tk and ck, although random, must have some degree of positive (or negative) 

correlation. Equation (3) indicates how to calculate ck given a previously calculated tk. Also, 

Min{tk} indicates the minimum value of all previously generated values for tk, and Max{tk} 

indicates the maximum value of all previously generated values of tk. 

 ck = f (R(Minck, Maxck) × (
tk−Min{tk}

Max{tk}−Min{tk}
) + Minck)  (3) 

Unfortunately, equation (3) produces randomly correlated cost figures between Minck and 

Maxck+Minck. To get randomly correlated data between Minck and Maxck we should modify 

equation (3) becoming equation (4). 

 ck = f (R(0, Maxck − Minck) × (
tk−Min{tk}

Max{tk}−Min{tk}
) + Minck), Maxck > Minck (4) 

Also, to get negatively random correlated data between tk and ck in the range Minck and 

Maxck for the cost figures, we should use equation (5). 

 ck = f (R(0, Maxck − Minck) × (
Max{tk}−tk

Max{tk}−Min{tk}
) + Minck), Maxck > Minck (5) 

Calculating ck is like calculating tk and the equation is shown as equation (6). 

 Δck = f (R(f(ck/10), f(ck/3)))    (6) 
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 Then comes how to calculate ik. Remember that ik is a percentage. Thus, a value 

given for Minik = 5 means 5% and a value for Maxik = 40 means 40%. Equation (7) shows how 

to calculate ik. 

 ik = f(R(Minii, Maxik))    (7) 

 Finally, comes how to calculate ik in equation (8). 

 Δik = f (R(f(ik/10), f(ik/3)))    (8) 

 The projects are named Project k, where k = 1, 2, …, s, and as default, there are no 

pre-required projects or mutually exclusive projects. 

 There is a correlation between time and cost in the way the random data was 

generated. The Pearson correlation coefficient denoted as r (Walpole & Myers, 1989) was 

calculated between the time and the cost dimensions according to equation (9). Notice that 

t̅ and c̅ are the average duration time and the average cost as indicated in equations (10) 

and (11), respectively. 

 r =
∑ (tk−t̅)(ck−c̅)s

k=1

√∑ (tk−t̅)2s
k=1 ∑ (ck−c̅)2s

k=1

      (9) 

 t̅ =
1

s
∑ tk

s
k=1       (10) 

 c̅ =
1

s
∑ ck

s
k=1       (11) 

 

SAMPLE OUTPUTS USING THE POSITIVE RANDOM CORRELATION AND THE 
NEGATIVE RANDOM CORRELATION ALGORITHMS 

Following is output using the equations to generate a positive random correlation between 

tk and ck. 
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 Notice that the Pearson correlation coefficient for this set of data values between tk 

and ck equals 0.8315, which indicates a strong positive correlation. Also, notice that we 

used equation (4) instead of equation (3) to generate the cost figures, because the maximum 

cost occurs for Project 17 and it is $1,498, which is less than the maximum allowed cost of 

$1,500. 

 Next comes using equation (5) to generate negatively random correlated data 

between tk and ck. The relevant outcome is shown following. Notice that in this case the 

Pearson correlation coefficient (r) equaled -0.6630, which is a negative correlation, 

although not as strong. The reason such correlation is not as strong is because the data is 

randomly generated. The user could try other outcomes if a stronger correlation is wanted. 

 

DISCUSSION AND CONCLUSION 

Why do equations (4) and (5) work? Let us consider our small illustrative example from Table 

1. The values given for tk are t1 = 7, t2 = 3 and t3 = 10. Let us assume we want to create new 

cost figures using equations (4) and (5). The minimum value we want to assign is Minck = 

$100 and the maximum value we want to assign is Maxck = $1,500. 

 We begin analyzing equation (4). This could happen if the time and cost figures are 

positively correlated due to delay (refer to Figure 1a). The function R(0,1500-100) = 

R(0,1400) generates uniformly distributed random numbers between 0 and 1400. The 

minimum such value could be 0 and the maximum such value could be 1400. We multiply 

that randomly generated number by the factor (tk-Min{tk})/(Max{tk}-Min{tk}) and finally we 

add to the result the value 100. We will see that the factor just described is a number 

between 0 and 1. The factor equals 0 if the time it corresponds to is the minimum time and 

the factor equals 1 if the time it is related to is the maximum time. We have that Min{tk} = 

Min{7,3,10} = 3 and Max{tk} = Max{7,3,10} = 10. Thus, for t2 we have the following: (3-3)/(10-

3) = 0/7 = 0, which makes sense since t2 is the lowest time estimate and for t3 we have (10-

3)/(10-3) = 7/7 = 1, which also makes sense since t3 is the highest value for the given time 

figures. Regardless of the outcome given by the uniformly generated random function, the 

lowest time estimate will always yield the lowest cost: R(0,1400)×((3-3)/(10-3))+100 = 
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R(0,1400)×0+100 = $100. The highest time estimate is a little different. It depends on the 

value given by the uniformly distributed random function. Thus, we have: R(0,1400)×((10-

3)/(10-3))+100 = R(0,1400)×1+100. We do not know a priori the value the uniformly 

distributed random function will give. Only that its minimum possible value is 0 and its 

maximum possible value is 1400. If it gives the minimum possible value the cost associated 

to the largest time figure would be 0x1+100 = $100. But if it gives the largest possible value 

the cost associated would be 1400×1+100 = 1500, which is the highest cost we would want. 

Consequently, the highest time figure would tend to have a large cost figure associated to 

it. To illustrate further, let us assume the outcome given by the uniformly distributed 

random function is given by its mean. The mean for the function R(0,1400) is the value 

between the extreme points. In this case, we would have (1400+0)/2 = 1400/2 = $700. Thus, 

for t3 = 10 we would have $700×1+$100 = $800. What happens with the intermediate value 

given as t1 = 7? We would have R(0,1400)×(7-3)(10-3)+100 = $700×(4/7)+$100 = $500. We can 

see that the lowest time estimate (t2 = 3) has the lowest cost (c2 = $100), the highest time 

estimate (t3 = 10) is associated (on average) with the highest cost estimate (c3 = $800) and 

the intermediate cost estimate (t1 = 7) is associated (also on average) with an intermediate 

cost estimate (c1 = $500). In this case, the Pearson correlation coefficient (r) would be equal 

to 1. In practice, the actual correlation coefficient would be less than 1 because the 

uniformly distributed random function would yield randomly distributed numbers, not a 

single number ($700). The reason we have a perfect correlation coefficient of 1 when using 

the average instead of the uniform random distribution is because equation (4) becomes 

equation (12), where  = $100,  = $700 and x are all the factors multiplying . Notice 

equation (12) corresponds to the equation of a straight line with a positive slope. 

 y = α + βx       (12) 

 What about equation (5) for negatively random correlated data? (refer to Figure 1a 

for crashing, when there is a negative correlation between time and cost). In that case, the 

highest time estimate (t3 = 10) would have associated to it the lowest cost, that is: 

R(0,1400)×((10-10)/(10-3))+100 = R(0,1400)×0+100 = $100. The lowest time estimate (t2 = 3) 

would have associated to it (on average) the largest cost figure, that is: R(0,1400)×((10-

3)/(10-3))+100 = $700×1+$100 = $800. The intermediate time estimate (t1 = 7) would have 

(on average) associated to it an intermediate cost estimate, that is: R(0,1400)×((10-7)/(10-

3))+100 = $700×(3/7)+$100 = $400. Thus, the Pearson correlation coefficient would be r = -

1. In practice, that correlation coefficient would be less than perfect negative correlation 

because the uniformly distributed random function would give uniformly distributed random 

numbers. The reason in this other case there is a perfect negative correlation coefficient 

when we use the average value for the uniformly distributed random function is because 

equation (5) becomes equation (13), which is also a straight line with a negative slope, 

where  = $100,  = $700, and (1-x) are all the factors multiplying . If we define x to be 

equal to (tk-Min{tk})/(Max{tk}-Min{tk}), then we can see (1-x) = 1-(tk-Min{tk})/(Max{tk}-Min{tk}) 

= (Max{tk}-Min{tk})/(Max{tk}-Min{tk}) - (tk-Min{tk})/(Max{tk}-Min{tk}) = (Max{tk}-Min{tk}-

tk+Min{tk})/(Max{tk}-Min{tk}) = (Max{tk}-tk)/(Max{tk}-Min{tk}), which is precisely how the 

factor in equation (5) is defined. 

 y = α + β(1 − x) = (α + β) − βx     (13) 

 The data randomly generated in section 6 shows first the case of positive correlation 

(r = 0.8315) and second a case of negative correlation (r = -0.6630). These correlations are 
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not perfect because the uniformly distributed random function generates values between 

$0 and $1,400, but still, the trend is such that there is a positive and a negative correlation 

in each case associated to the use of equations (4) and (5), respectively. 

 In conclusion, we can see that both equations (4) and (5) work as long as it remains 

true that Minck < Maxck, that is, when the minimum possible cost is less than the maximum 

possible cost, because otherwise, the uniformly distributed random function would have a 

negative high limit. We can apply the ideas behind equations (4) and (5) to other domains 

of inquiry when we require a pair of positively or negatively random correlated variables. 

Also, instead of using a uniformly distributed random function R(a,b), other randomly 

distributed functions, such as a normally distributed random function G(,), where  is the 

mean and  the standard deviation, could be used, yielding, if desired, more perfectly 

correlated functions if the standard deviation is relatively small compared to the mean. 

 A standard normally distributed random function, Z, can be generated using equation 

(14), where R is a 0-1 uniformly random distribution such that 0 ≤ R < 1 (Coss Bu, 1991). 

 Z = R + R + R + R + R + R + R + R + R + R + R + R − 6 = ∑ R12
i=1 − 6 (14) 

 A Gaussian or normally distributed random function, G(,), can be generated using 

the value (Z) generated in equation (14) and applying equation (15), where  is the mean 

and  the standard deviation (Kvanli, Guynes, & Pavur, 1989). 

 G(μ, σ) = μ + Σz     (15) 

 Notice that the standard normally distributed random values Z obtained using 

equation (14) have (on average) a mean of 0 and a standard deviation equal to the variance 

of 1. Also, notice that all the values R in equation (14) are different 0-1 uniformly distributed 

random variables. Other random distributions are also possible (Copertari, 2025). 

 However, applying equations (4) and (5) for positively and negatively randomly 

correlated Gaussian functions, respectively, is not as easy as applying it for uniformly 

distributed random variables. That is because the Gaussian function varies between -∞ and 

+∞ and not between Minck and Maxck. However, it is well known that between +3 and -

3 there are 99.73% of all data values. Thus, we could set the lower interval to a=Minck and 

the upper interval to b=Maxck. Since we are multiplying these values by 0 or 1 for the lowest 

and highest values in a positive correlation (or alternatively by 1 and 0 for a negative 

correlation) the actual upper interval is b-a, whereas the lower interval remains being a, 

because at the end of equations (4) and (5) we are adding a=Minck. Consequently, we have 

a = -3 and b-a = +3. As a result, (b-a)-a = b-2a = (+3)-(-3) = +3-+3 = 6. The 

standard deviation for the randomly correlated Gaussian function is given by equation (16). 

 σ =
b−2a

6
, b > 2a, a = Minck, and b = Maxck   (16) 

 Also, the mean is given by the average of these two extreme values: a and b-a, which 

is indicated in equation (17). 

 μ =
a+(b−a)

2
=

b

2
, b = Maxck     (17) 

 Equations (4) and (5) then become equations (18) and (19) for Gaussian positively 

and negatively random correlated data, respectively. 
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 ck = f (G(μ, σ) × (
tk−Min{tk}

Max{tk}−Min{tk}
) + Minck)   (18) 

 ck = f (G(μ, σ) × (
Max{tk}−tk

Max{tk}−Min{tk}
) + Minck)   (19) 
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