

Some Infections are Heritable or Endogenous: Biological and Mathematical Analysis

Alen J Salerian

1. George Washington University

Abstract: This brief report presents biological and mathematical evidence to suggest some infections develop independent of contamination. The germ theory “infections result from invasions of human body by foreign microbes “has been the central paradigm for infectious disorders since Pasteur’s research in mid-1800’s. Tuberculosis, leprosy, tinea versicolor H.Pylori infections are heritable and tetanus, pseudomonas aeruginosa burn wound infections, myasis and pinworm infections are endogenous. Conclusion: Some infections result from contamination whereas many others are inherited or develop internally consistent with Darwinian theory of evolution.: New species emerge from reproduction or evolution of more complex species from less complex ones.

Keywords: leprosy, tuberculosis, pinworms, tetanus, burn wounds

This paper reports that some infections are heritable or endogenous along with infections that result from contamination.

The germ theory “infections result from invasions of human body by foreign microbes “has been the central paradigm for infectious disorders since Pasteur’s research in mid-1800’s (1,2).

Surprisingly new evidence has emerged suggesting that some infections e.g. tuberculosis (3) tinea versicolor (4) H.Pylori infections (5) are heritable conditions that may develop independent of contamination. In general, they are not contagious.

Evidence also reveals that many infections e.g. pseudomonas aeruginosa burn wound infections (6), myasis (7) and tetanus (8) may develop internally and independent of contamination.

Hereby, we present biological and mathematical evidence to suggest pinworm infections are endogenous and leprosy is heritable.

PINWORMS

Gut stem cells may evolve to pinworms independent of contamination:

1. Pinworms co evolved with mammals' ancestors (9).
2. The synonymy of *E. gregorii* with *E. vermicularis* is supported by the molecular evidence Sequences of 5S rDNA were identical in chimpanzees and humans(10).
3. Phylogenetic analysis :Pinworms co evolved with humans (10).
4. Phylogenetic analysis :Pinworms co evolved with orangutans.(11).
5. Pinworms belong to natural human physiology :61% of children in India, 50% in England, 39% in Thailand, 37% in Sweden are infected (9,,12).

6. 70% of hosts are asymptomatic consistent with natural physiology(9,12)
7. Enterobius vermicularis are at home in every biome that is home to humans , Human Intestines are the only natural host of Enterobius vermicularis. (9,12).
8. More than half of hosts of Enterobius vermicularis harbor normal gut microbiota (13).
9. Human physiology mediate Enterobius Vermicularis. Host age strongly associate with infection, much less common in adults(9,12).
10. Enterobius vermicularis infestations have been noted in over one-quarter of acute appendectomies on histologic examination (9).
11. Gut microbes have all the essential to produce eggs of Enterobius vermicularis.
12. Gut microbes produce blowfly eggs (13).
13. Gut stem cells produce gut microbes (13,14).
14. There is no evidence that contamination is the only pathway for egg production. Contamination does not rule out independent production of eggs from gut microbes as observed in myasis(13).
15. Darwinian theory: new species may emerge by reproduction or development of more complex organisms (15).

Odds of certainty = %99.997 “Pinworms may develop independent of contamination”..

LEPROSY

Observations consistent with” leprosy Is heritable “and “inconsistent with leprosy is not heritable ”.

1. Evidence of several characteristic features of *M. leprae* from patients in Qiubei County, China. with, severe clustering of patients within families and multicase families, sharing closely matching VNTR genotypes (20),
2. Two Cases of leprosy in siblings were demonstrated (21).
3. The region of DNA responsible for leprosy is also involved in Parkinson's disease, the two disorders may be linked at the biochemical level.(22)
4. Using comparative genomics, in 2005, geneticists traced the origins and worldwide distribution of leprosy from East Africa or the Near East along human migration routes (23).
5. All contemporary leprosy cases trace back to one ancestral *M. leprae* clone, demonstrating minimal genetic diversity(23).
6. Genomic Reduction: *M. leprae* has lost about half its genome, becoming highly dependent on its host (23).
7. Sooty mangabey monkeys (*Cercocebus atys*) harbor natural infection with *M. leprae* (24).
8. Chimpanzee and sooty mangabey *M. leprae* strains belong to a human *M. leprae* lineage in West Africa (24).

9. *M. leprae* and *M. lepromatosis* are obligate intracellular pathogens and cannot grow or be cultured outside of host tissues(25).
10. Multilocus sequence typing of the armadillo *M. leprae* strains suggests that they were of human origin (26).
11. Leprosy does not spread to the fetus during pregnancy (27).
12. Leprosy does not spread through sexual contact (27).
13. 95% of people who are exposed to leprosy do not develop leprosy (27).

Odds of random occurrence of this outcome is 0.01

13 observations are consistent with" leprosy is heritable "and "inconsistent with leprosy Is not heritable ".

In summary it has been proven that tuberculosis, tinea versicolor, *H.Pylori* infections. *pseudomonas aeruginosa* burn wound infections, myasis and tetanus may develop independent of contamination.

CONCLUSION

Some infections result from contamination whereas many others are inherited or develop internally consistent with the germ and evolutionary theories.

I am most grateful to gifted researchers listed in the references or their contribution to my lucky discovery.

REFERENCES

1. Schwartz, M. (2001). "The life and works of Louis Pasteur". *Journal of Applied Microbiology*. 91 (4): 597-601.
2. Salerian AJ,(2018) Was Pasteur Wrong? Human Cells may Generate Bacteria. *Biomed J Sci &Tech Res(2018) 4(5)- 2018. BJSTR.*
3. Salerian AJ, What are the odds of tuberculosis is a heritable disorder? *European Journal of pharmaceutical and medical research.* 2025. Volume 12, Issue Six
4. Salerian, AJ (2018) Gastric Ulcers May Result From Transformation of Human Tissue to *H. pylori*: Mathematical Evidence. *SSRN: https://ssrn.com/abstract=3225494*
5. Salerian. AJ (2019) Twins With Endogenous Tinea Versicolor. *International Journal of Case Reports*, 4:81
6. Salerian AJ, What are the odds that tetanus is an endogenous infection? *European Journal of Applied Sciences*, 2025. volume 13, number 06.
7. Salerian AJ, Origin of Myiasis, *International Journal of Scientific Research*, 2022, volume 11, issue 09.
8. Salerian AJ.(2020) Burn wound infections and *Pseudomonas aeruginosa*. *Burns*. ;46(1):257-258.
9. Mitrica, Dragos (2 December 2014). "Scientists find 240 million-year-old parasite that infected mammals' ancestor". *ZME Science*. Retrieved 14 February 2023.
10. Solórzano García B, Melin AD, Aureli F, Pérez Ponce de León G. Unveiling patterns of genetic variation in parasite-host associations: an example with pinworms and Neotropical primates. *Parasitology*. 2019 Mar;146(3):356-362.

11. Solórzano-García B, Vázquez-Domínguez E, Pérez-Ponce de León G, Piñero D. Co-structure analysis and genetic associations reveal insights into pinworms (*Trypanoxyuris*) and primates (*Alouatta palliata*) microevolutionary dynamics. *BMC Ecol Evol.* 2021 Oct 20;21(1):190.
12. CP, Arjun (October 2015). "A Study of Gastrointestinal Parasites in Bonnet Macaque (*Macaca radiata*) of Pookode, Wayanad, Kerala" (PDF). *Zoos' Print Journal.* 10.
13. Foitová, Ivona; Civáňová, Kristína; Baruš, Vlastimil; Nurcahyo, Wisnu (1 July 2014). "Phylogenetic relationships between pinworms (Nematoda: Enterobiinae) parasitising the critically endangered orang-utan, according to the characterisation of molecular genomic and mitochondrial markers". *Parasitology Research.* 113 (7): 2455-2466.
14. Alexander K.C. Leung, Joseph M. Lam, Benjamin Barankin, Alex H.C. Wong, Kin F. Leong, Kam L. Hon, Pinworm (*Enterobius Vermicularis*) Infestation: An Updated Review, *Current Pediatric Reviews*, 2025, 21, 4, (333-347).
15. Pinto, Fabrizio Bruschi, Pinworm, *Encyclopedia of Infection and Immunity* Volume 2, 2022, Pages 648-654
16. Burkhart, CN., Burkhart, C G. Assessment of frequency, transmission, and genitourinary complications of enterobiasis (pinworms) *International Journal of Dermatology* 2005 VOLUME - 44 ISSUE - 10
17. Rett, Doug. "Enterobius vermicularis". *Animal Diversity Web.* 4 January 2021.
18. Eleonora Kaneva, Rumen Harizanov, Maria Pavlova, Desislava Velcheva, Nina Tsvetkova, Aleksandra Ivanova, Mihaela Videnova, Raina Borisova, Ivailo Alexiev, Reneta Dimitrova, Research on the Influence of *Enterobius vermicularis* on the Composition and Quality of the Intestinal Microbiota, and the Susceptibility to Co-Infections, *Microbiology Research*, 10.3390/microbiolres16100215, 16, 10, (215), (2025).
19. M. Sočan, E. Štromajer, M. Ravnik, M. Mrzel, E. Grilc, I. Grmek Košnik, *Enterobius vermicularis* infection: a cross-sectional study in preschool and school children in the North-Western part of Slovenia, *Helminthologia*, 10.2478/helm-2022-0040, 59, 4, (357-363), (2022).
20. Weng X, Wang Z, Liu J, Kimura M, Black WC 4th, Brennan PJ, Li H, Vissa VD. Identification and distribution of *Mycobacterium leprae* genotypes in a region of high leprosy prevalence in China: a 3-year molecular epidemiological study. *J Clin Microbiol.* 2007 Jun;45(6):1728-34.
21. Sotiriou MC, Stryjewska BM, Hill C (September 2016). "Two Cases of Leprosy in Siblings Caused by *Mycobacterium lepromatosis* and Review of the Literature". *The American Journal of Tropical Medicine and Hygiene.* 95 (3): 522-527.
22. Buschman E, Skamene E "Linkage of leprosy susceptibility to Parkinson's disease genes". *International Journal of Leprosy and Other Mycobacterial Diseases.* (2004). 72 (2): 169-170.
23. Monot, M., N. Honore, T. Garnier, R. Araoz, J. Y. Coppee, C. Lacroix, S. Sow, J. S. Spencer, R. W. Truman, D. L. Williams, R. Gelber, M. Virmond, B. Flageul, S. N. Cho, B. Ji, A. Paniz-Mondolfi, J. Convit, S. Young, P. E. Fine, V. Rasolofo, P. J. Brennan, and S. T. Cole. 2005. On the origin of leprosy. *Science* 308:1040-1042.
24. Honap TP, Pfister LA, Housman G, Mills S, Tarara RP, Suzuki K, Cuozzo FP, Sauther ML, Rosenberg MS, Stone AC. *Mycobacterium leprae* genomes from naturally infected nonhuman primates. *PLoS Negl Trop Dis.* 2018 Jan 30;12(1):e0006190.
25. Bhattacharya S, Vijayalakshmi N, Parija SC (October 2002). "Uncultivable bacteria: implications and recent trends towards identification". *Indian Journal of Medical Microbiology.* 20 (4): 174-177.
26. Bittel, J("Humans Gave Leprosy to Armadillos. Now, They're Giving It Back". 06/28/2016). *National Geographic*

27. "Pathogenesis and Pathology of Leprosy". International Textbook of Leprosy. 11 February 2016.

Table A

Heritable Infections	Endogenous Infections
Leprosy	Tetanus
Tuberculosis	Myasis
Tinea versicolor	Burn wound infections by pseudomonas aeruginosa
H pylori infections.	Pinworms/ Enterobius Vermicularis