
Hans W. GOTTINGER

-1-

 Krohn-Rhodes Complexity on Decision Rules∗

Hans W. GOTTINGER
STRATEC Munich Germany

 stratec_c@yahoo.com

Abstract: The notion of ‘global rationality’ underlying the concept of ‘economic
man’ as generally been accepted in normative economics has come increasingly
under attack by those who strive for more realistic behavioral assumptions in
economic reasoning. The critique applies particularly to various optimization
programs that have been implemented in economics but that have been found only
of limited use in realistic, complex situations. Herbert Simon deserves credit for
having observed the limitation of global rationality and suggesting a modification of
this program by introducing his concept of ‘bounded rationality’. To a great extent
these ideas were advanced through studies of actual human thought processes. This
paper relates the discussion on bounded rational decision rules to algebraic
complexity of dynamic systems in the context of Krohn-Rhodes.

Keywords. Computability, Algebraic Complexity, Decision Analysis, Bounded
Rationality, Problem Solving, Automata

1.Introduction

In this paper we show how algebraic measures of complexity derived from automata
theory can be meaningfully interpreted in the context of ‘bounded rationality’
regarding individual or social choices. We show more specifically how algebraic
complexity impacts individual and social decision rules. The complexity measure
appears to be a natural consequence of looking at a decision rule as a finite-state
automaton that computes preferences bounded by computational constraints. By
factoring the decision process into component processes very much alike
decomposition into component machines, we will be able to show how searching for
improvement depends on ‘structural’ and ‘computational’ limitations. We argue that
the three notions ‘complexity’, ‘bounded rationality’ and ‘problem-solving’ are
intrinsically related. That is, complexity appears to be a structural property of any
observable system, decision-making mechanism, organization or bureaucracy that
imposes constraints upon computation, information, control mechanisms or
decision-making powers. These limits to putative optimal functioning constrain

∗Dedicated to Herb Simon’s 100th birthday (1916-2016).

Hans W. GOTTINGER

-2-

rationality. Moreover, structural constraints such as complexity modify the
handling, manipulation and controllability of information within the systEffective
practical solutions in this environment require heuristics, search, step-by-step
procedures, ad hoc remedies which constitute problem-solving in a task domain
(e.g., problem-solving in contrast to implementation of optimal programs). In the
upcoming sections we seek to establish links in a meaningful way.

2. Complexity of Decision Rules
The decision-maker identifies alternatives within a choice space and expresses
preferences between two or more alternatives by acts of computation, finds
alternatives ‘undecidable’ or incomparable’ that cannot be computed. Preference
statements are therefore translated into computing devices (indifference statements
are kept out because of possible vagueness). The decision-maker can be represented
as a simple finite state machine, decomposed according to these distinct tasks. In the
first case the job to be done, e.g. computing preferences, is achieved by a simple
group machine. In the second case the activity consists of a combinatorial machine,
acting as a ‘flip-flop’ which does not compute anything. A realized decision rule
therefore associates with a specific decomposition of the decision process. This, in
turn, associates with a decomposition of machines into component machines that
‘hooked’ together (via the wreath product) realize the overall machine. Of course,
the complexity of decision rules may vary; a sophisticated’ decision-maker may
activate more simple groups, less flip-flops, or groups that compute faster, more
accurately and more reliably. Thus, the sophisticated decision-maker embodies
more structural complexity in the sense given previously. Again, alternatives may
be ‘undecidable’ or ‘incomparable’. People perforce perform finite computations
but the properties of their calculations — taken individually or collectively —
constitute a rich system for which certain existence theorems, e.g. respecting social
rationality or ‘strategy-proofness’ cannot be proved at the level of generality usually
attempted in the literature.
A (social) decision rule is a sequential decision rule and as such is considered to be
a finite state machine (associated with a finite semigroup), and according to
complexity theory it has a finite decomposition. In this regard the results of Krohn-
Rhodes complexity theory apply. The idea involved here is to factor a social choice
process into parts (components) where the global process is modeled as a
transformation semigroup associated with a social decision rule, and the local parts
are represented by transformation sub-semigroups. The new tools originate from
decomposition results in automata theory.
Consider a finite choice set of many alternatives X = {a, b,..., x, y, z) and let Di = 1
iff i prefers x to y, Di = 0 iff i is ‘undecided’ about x and y, Di = -1 iff i prefers y to
x. Let D be a nonempty set of decision rules Di; X a nonempty collection of subsets
of X, a social decision function (SDF) then is a function F: ZxD→P(X), P(X) being
the power set. A SDF for individual i is given by F ({x,y}, Di), x,y ∈X. Social
decision functions are in fact decision machines in the sense that they decide
propositions about accepting or rejecting social states through discrimination

Complexity and Decision Rules

-3-

(preference, non-preference calculations). By doing this, they generate as outputs
decision rules and induce next states representing changes in preference profiles or
configurations. In order to construct such a decision machine as a decision maker
(DM) let us state the following Problem: Let Xn =X1×..xXn be the social choice set
when the DM is confronted with a sequence of finitely many social alternatives. Let
A0 ⊆A1 ⊆ …⊆ An be those sets of alternatives in which the DM can actually find
comparisons (in the sense of preferred computable alternatives in these sets). Let A
be a nonempty collection of all A0, A1, ...An. Then the DM constructs selection
functions ρ0, ρ1,…, ρn, ρi: Xn →A such that for all xi ∈ Xi ρ(xi)∈Ai). In a way, ρI

constitutes a mechanism that reduces all possible alternatives to those which can be
computed as actual choices. It is said that the DM accepts the decision rule
D i (x 0 , … , x i) i f ρ (x 0 , … , x i)∈A i , more explicitly, accept D0(x0) if
ρ(x0)∈A0, accept D1(x0, x1) if ρ(x0, x1) ∈ A1 etc.

Now this reduction mechanism induces the choice space to be partitioned into at
least two parts, one part which is ‘computable’, generated by computable preference
statements, the other part is ‘non-computable’, imposed by indecisiveness in
choosing among alternatives.
Therefore, the actual choice space generated by the selection functions is derived
from the following equivalence: computable choice space equals given choice space
modulo non-computable choice subspace.
There is an upper bound, representing the complexity limits of search for the DM.
This upper bound restricts the DM to select decision rules which are ‘within
calculating capacity’.
Therefore, let k(D) be the largest integer satisfying the bound such that AK(D)-1 ≤
Ak(D). HOW is the bound to be determined? In the context of game theory, as
interactive decision-making, to model a player as a finite state automaton expresses
the constraint on his computational ability by the number of states of the automaton
that mimicks him (see Neyman(1985), Abreu and Rubinstein (1988), Kalai and
Stanford (1988), Rubinstein (1986,1987), Gottinger(1990)) as well as Rubinstein
(1998), though other related models for ‘computing agents’ beyond finite state
automata have been used (Mount and Reiter, 2002). The underlying theory
originates from work by Krohn-Rhodes on algebraic complexity through
semigroups, automata models, and complexity of finite state machines (Rhodes,
2010).

3. Design vs. Control Complexity of Decision Rules
Regarding the complexity of (dynamic) finite-state systems, we distinguish between
design and control complexity. To recall, under design complexity we assign that
complexity (number) which associates with the transformation semigroup in which
full use of the system potential is made. Under control complexity we assign that
specific complexity (number) that associates with computations which keep the

Hans W. GOTTINGER

-4-

entire system or at least part of it under complete control. A qualitatively stable
decision rule would be a rule for which design and control complexity coincide.
However, in most practical cases design complexity will exceed control complexity.
Since one cannot assume that the control complexity of an average (unsophisticated)
DM can be increased by exhortations to behave in a rational manner one should
seek designs of decision rules for which there is reasonable understanding and
control. Another way of looking at it utilizes H. Simon’s (1973) distinction between
a well-structured and an ill-structured problem. A stable decision rule is equivalent
to a well-structured problem. An unstable decision rule results from the possible
‘computational gap’ which may occur in the problem-solving process. As Simon
(1973, p. 186) puts it: “ ... definiteness of problem structure is largely an illusion
when we systematically confound the idealized problem that is presented to an
idealized (and unlimitedly powerful) problem-solver with the actual problem that is
to be attacked by a problem-solver with limited (even if large) computational
capacities”. So, in a way, if the problem-solver’s control complexity is below the
design complexity of the decision rule, he himself encounters an ill-structured
problem, or equivalently, his decision rule is unstable. Then, it is desirable to
redesign the decision rule in such a way that his ill-structured problem becomes
well-structured to the extent that the new design coincides with the computational
power of the problem-solver.
In chess the number of possible strategies which can be generated by a general
chess-playing program for particular endgame configurations correspond to design
complexity. The number of actual strategies engaged by a particular player or
program corresponds to control complexity. Suppose two chess players are initially
endowed with the same knowledge of the rules of the game, e.g., identical design
complexity, then if in a sufficiently long sequence of repetitive plays one does better
than the other, the player with a superior understanding of the game must be
attributed to a higher control complexity. To a degree, design complexity and
control complexity associate with ‘programs of optimization’ and ‘programs of
satisficing or bounded rationality’, respectively. That is to say, design complexity
pertains to computable resources available for obtaining the best possible result
(e.g., involving a general optimization principle), whereas control complexity
involves the best result possible given limited computational resources. The Krohn-
Rhodes complexity theory offers an axiomatics that allows to determine the
complexity level on the computability restrictions as outlined in the next section.

4. Bounded Rationality
In traditional decision theory it is generally acknowledged that at least two
definitions of rationality are conceivable, depending on whether the approach is
abstract (normative), based on non-contradictory reasoning, or pragmatic
(descriptive), based on experience. We hold that these two concepts are not
necessarily mutually exclusive, if we add one important aspect to the description of
rationality, e.g. computability. Rationality in the normative sense is too restrictive
by granting the decision-maker unlimited computational resources which obviously

Complexity and Decision Rules

-5-

fail to hold in view of complex (ill-structures) situations. On the other hand,
rationality in the descriptive sense is too elusive and diffuse to be of any analytical
or even predictive value since it violates unique links to consistency and coherence
standards of normative postulates. The concept of ‘bounded rationality’ is offered
for the middle ground where computability is a desideratum (required by most real-
world problems). In practice ‘bounded rationality’ is an appropriate description of a
decision environment or a strategy of decision when one or more of the following
conditions are present: (1) limited computational resources of the decision maker
(2) thresholds of complexity beyond which individuals are unable to discriminate,
choose and reveal cognitive limits, (3) ill-structured problems. Let us take a
moment to discuss the last point.

4.1 Ill-Structured Problems
Many choice processes in the real world engage in ill-structured problems for which
solutions are not readily available or involve excessive computational resources. In
contrast, a problem is considered to be well-structured if it satisfies a number of
criteria, the most important of which relate to the existence of at least one problem
space that provides for solvability with the help of a practicable (reasonable)
amount of computation or search. Apparently well-defined problems such as
theorem-proving and chess-playing in artificial intelligence turn out in many
instances to be ill-structured, given the problem-solving power of contemporary
problem-solving methods. There seems to be an intrinsic relationship between well
or ill-structuredness of a problem and the threshold of complexity (in von
Neumann’s sense) below which a system shows regular, stable and predictable
behavior but beyond which often quite different, sometimes counterintuitive modes
of behavior can occur. A problem can be well-structured in the small, but ill-
structured in the large. According to H. Simon (1973) “the difficulty stems from the
immense gap between computability in principle and practicable computability in
problem spaces as large as those of games like chess”. This comment applies
generally to choice processes in the social sciences.

An ill-structured problem (ISP) fails to satisfy at least one (or, more likely, several)
of the listed computability restrictions:

DSC (Definite Single Criterion): there is a definite single criterion for testing any
proposed solution,

RPS (Representation in Problem Space): there is at least one problem space in
which can be represented the initial problem state, the goal state, and all
other states that may be reached.

TPS (Transformation in Problem Space): attainable state changes (legal moves) can
be represented via transitions in a problem space.

APPS (Accurate Prediction in Problem Space), if the actual problems involve acting
upon the external world (environment), then changes of the state by

Hans W. GOTTINGER

-6-

applying operators can be predicted, controlled and directed toward the goal
state with any desirable degree of accuracy, conditional on the knowledge
of the environmental states,

PAC (Practical Amount of Computation): all basic processes underlying the step-
by-step procedure of problem-solving search involve only a ‘practicable’
amount of computation’ so that only a practicable amount of search is
needed for terminating the problem solving process.

Starting with problems regarding characteristic DSC we note that ISPs usually
involve a representation of multiple criteria, requiring complex trade-off statements
which in practice also increase the number of computational steps and engage PAC.
In the set-up of a decision problem the trade-offs may pertain to any of the
following different situations: (a) Two or more values are affected by the decision,
but they are known to the decision-maker, (b) At least one of the outcomes is
subject to uncertainty, e.g., involves a lottery that has to be traded against a sure
prospect, (c) The power to make a decision is dispersed over a number of individual
actors of organizational units representing different values or goals. These trade-off
problems have been treated, one way or another, in now classical contributions to
decision theory (J. Marschak and R. Radner (1972), R.L. Keeney and H. Raiffa
(1976). These attempts are exclusively confined to static problems and hardly
exhaust the range of ISPs. Conditions RPS and TPS refer to the dynamic nature of
the problem space and require that the problem to be solved is well-defined and
well-structured per se so that the goal structure is clearly determined a priori, while
condition APPS alludes to the possible stochastic nature of the problem to pure
uncertainty, and/or to the random character of environmental states.In our view,
PAC is the crucial condition and the structure of computations is the dominating
concern. To establish PAC one may search for effective heuristic procedures that to
some extent substitute for computational burdens that go far beyond the information
processing capability of human decision-makers. As H.Simon argues, ‘practicable
amounts of computation’ are only defined relatively to computational power and
there is a continuum of degrees of definiteness between the well-structured and ill-
structured ends of the problem spectrum.

4.2 Ill-Structuredness and Bounded Rationality in Chess-Playing Games
A good paradigm of bounded rationality is provided by designing chess-playing
programs. There are various reasons for studying outcomes and strategies in games
in connection with the problem of complexity and problem-solving programs.

Complexity and Decision Rules

-7-

(1) First, people are involved in complex games and attempt to find good
strategies. Does there exist a computer program that matches the best human
play? Furthermore, if it exists, is there anything in the structure of the
program that would be beneficial to be learnt by the human problem-solver?
According to Newell, Shaw and Simon (1963b): “We do assert that
complexity of behavior is essential to an intelligent performance - that the
complexity of a successful chess program will approach the complexity of
the thought processes of a successful human chess player”.

(2) In the early phase computer programs as applied to a general class of
problems did rather poorly, as compared to humans, but from the eighties
there have been some fascinating improvements as evidenced by chess
playing programs such as ‘Chess 5.0’ all the way to ‘Deep Blue’. More than
50 years ago, in a then state-of-the-art survey, Newell, Shaw and Simon
(1963b) have pointed out that there are just too many alternatives for a
computer to examine each move, so an adequate chess-playing program
must contain heuristics which restrict it to the examination of reasonable
moves, also to win a game you need not select the best moves, just the
satisfactory ones. This is still true today though the sheer size of
computational power has tilted the balance toward ‘brute force’ search
procedures (computational complexity) first at the expense and then in
combination of ‘self-learning’ expert heuristics (structural complexity) .

(3) Studying game playing sheds a crucial light on the concept of learning in
games which is not well understood. To teach an intelligent person the rules
of chess, by itself, does not make him an expert player. One must have
experience. If we could build effective playing programs which profit from
experience we have at least some clue how to practice problem-solving in
real life situations that require strategic planning.

(4) How a computer program should acquire chess knowledge is an interesting
and difficult point. One way, of course, is for certain records to be built into
the original program. To an extent this is done. Most recent chess-playing
programs contain the sequence of moves and counter-moves for standard
defenses. The situation at mid-game is more difficult, since so many
positions might arise.

How was it possible that good chess-players still outperformed computer programs
of chess which were much more powerful in computing strategies? The answer is
that they evidently activate powerful heuristics that more than offset their lack of
computational power up to a point when massive super computing power took over.
(Apparently, this was evident in the latest chess contest between Kasparov and
IBM’s ‘Deep Blue’, but also the latter activates powerful heuristics !)

Hans W. GOTTINGER

-8-

 4.3 Heuristics
We claim that activating successful heuristics is intrinsically connected to the notion
of structural complexity in dynamic algebraic systems. Chess belongs to the class of
two person games with complete information and no chance moves. It is known that
there exists for each board position (or more generally for each state of the game)
one (or several) optimal moves. A tabulation of the optimal moves is a tremendous
task. Chess has on the average over 10120 board positions, hence the table would
have to have the same number of entries. Such a complete search for the optimal
move is so enormous that it transcends the capabilities of any physical computer, in
other words, ‘brute force computing’ was not likely to be the ultimate solution.

By designing the first chess playing program Shannon (1950) proposed two
principles on which an algorithm for playing chess could be formulated:

(1) Scan all the possibilities (moves) and construct a search tree with branches
of equal length. Hence, all the variants of the moves to be searched for are
computed to the same depth. At the end of each variation (at the end of the
branch) the position is evaluated by means of a numerical evaluation
function. By comparing the numerical values, one can choose the best move
in any given starting position, simply by a minimaxing procedure, i.e.
averaging strategies by the evaluation function.

(2) Not all possibilities are scanned, some are excluded from consideration by a
special rule, special search or pre-selective criteria (J.Pearl,1984,Chap.8). In
this method, with the same computational resources, the depth of
computation can be greater.

In the first case, information of high value will be treated equally with information
of low value, or collecting information is uniformly assigned equal cost to each
node. A substantial part of the work will be useless, i.e. not leading to a desirable
goal (checkmate). This is a modified breadth first search with a numerical
evaluation function and minimaxing procedure.

Under option (2) it appears that highly selective search, the drastic pruning of the
tree or in depth search is likely to be more successful, to treat highly complex
decision problems. For this purpose one needs a heuristic, as a rule of thumb,
strategy or trick which drastically limits search for solutions, they even do not
guarantee any solution at all, but a useful heuristic offers solutions which are good
enough most of the time (‘satisficing’).

The pay-off in using heuristics is greatly reduced search and, therefore, involves a
‘practicable amount of computation’.

Complexity and Decision Rules

-9-

In summarizing the experience of various chess-playing programs, we observe that
some programs have put more emphasis on computing power along tree search in
the direction of option (1), whereas others have traded off computing speed against
sophistication or selectivity as sources of improvement in complex programs.
Selectivity is a very powerful device and speed a very weak device for improving
the performance of complex programs. By comparing two major chess-playing
programs, the Los Alamos and the Bernstein program, we see that they achieve
roughly the same quality of performance by pursuing different routes the
computational vs. the heuristic approach: the first by using no selectivity and being
very fast, the second by using a large amount of selectivity but not relying on
computational speed. So, in a way, Bernstein’s program introduces more
sophistication to the chess program. Most of the major game-playing programs are
based upon (local) look ahead and minimax techniques. As might be expected such
programs have been most successful in games that have challenged the memory
ability of human players, but not in games that require experience, thinking
creativity, sophistication, such as chess. This apparently has been accomplished
with ‘Big Blue’ with experience type learning on big data.

Hans W. GOTTINGER

-10-

5. Problem-Solving
Let us start with a definition of a problem according to Newell, Shaw and Simon
(1963a): ‘ A problem exists whenever a problem-solver desires some outcome or
state of affairs that he does not immediately know how to attain’. To generate all
kinds of task-related information that pertains to ‘problem-solving’ is to involve
heuristics that reflect practical knowledge, experience, but also logical consistency,
smartness, sophistication.

5.1 Theory of Problem-Solving
A theory of problem-solving is concerned with discovering and understanding
systems of heuristics. A particular, interesting method is provided by GPS,
consisting of means-end analysis and planning.
Problem-solving has developed into a challenging subdiscipline of artificial
intelligence, but the methods and techniques used are of sufficient general interest
for dealing with decision-making situations of politicians, bureaucrats or managers.
It is likely that these decision-makers could improve their decisions if they make use
of a formal theory of problem-solving. The state-space approach is a very
appropriate problem-solving representation, since it has a natural association to
dynamic algebraic systems and complexity.

Assume the existence of a finite or countable set Z of states, and a set J of operators
consisting of semigroups S acting upon Z. The problem-solver is seen as moving
through space defined by the states in an attempt to reach one of a desired set of
goal states. . A problem is solved when a sequence of semigroup operators S =
S1,S2,...Sn could be found for some decomposition of the state-space such that a
nested relationship holds for some initial state z0 to generate the goal state

Z=Sn(Sn-1,(...S2(SI(z0))...)).

One could establish a one-to-one correspondence between the problem of finding S
and the problem of finding a path through a graph. Let Z be defining the nodes of a
graph, with arcs between nodes i and j if and only if there is an operation Sij
connecting zi with zj. The graphic representation of state-space problem solving has
three advantages. It is intuitively easy to grasp, it leads to a natural extension in
which we associate a cost with the application of each operation Si. Finally, in many
cases the next step to be explored can be made a function of a comparison between
a goal state and a final state.

How does a theory of problem-solving relate to decision theory?
The ingredients of the conventional decision problem under uncertainty consist of

Complexity and Decision Rules

-11-

(i) a set of actions available to the decision-maker and subject to control by
himself,

(ii) a set of mutually exclusive states of nature, one and only one of them can
occur,

(iii) a set of consequences that obtain if the decision-maker chooses particular
actions and a certain state of nature turns out to be true.

If the decision-maker is rational and satisfies certain consistency criteria on the
choice of actions, he will attempt at maximizing expected utility or expected pay-
off.
In this problem it appears that uncertainty about which event obtains is his most
severe restriction in following an optimal course of actions. On the other hand,
apparently, the decision-maker need not cope with computational constraints, either
there are no physical or psychological limits on his ability to handle an immense
amount of data, facilitating his choice problem, or else costs of computation are
virtually known, so that the decision-maker need only determine his net pay-off
making allowance of the computational costs.

A problem-solving situation, requiring decision-making in contrast reveals special
features that could be circumscribed by degree of difficulty, limited decision-making
capabilities or resources, intrinsic complexity in finding acceptable or satisfying
strategies (solutions). These characteristics require adequate methods such as
complexity-bounded search, heuristics etc..

Example:
Consider the description of a genuine problem in the framework of artificial
intelligence.. In the ‘missionaries and cannibals’ problem, three missionaries and
three cannibals wish to cross a river from the left bank to the right. They have
available a boat which can take only two people on a trip. All can row. The problem
is to get all six safely to the right bank subject to the constraint that at no time the
number of missionaries on either side of the river may be exceeded by the number
of cannibals on that side. To translate the ‘puzzle’ into a formal problem, let a state
be defined by the number of missionaries and cannibals on the left bank and the
position of the boat. The starting position is (3,3,L) and the goal (terminal) state
(3,3,R). The permissible moves of the boat define the operators. The problem is
solved in a number of steps, whereby the minimal number, if it exists, constitutes
the optimal solution.
 Problem-solving is certainly linked to ‘survivability’, given a chess position,
change it into a position in which the opponent’s king is checkmated. En route to
this position, avoid any position in which your own king is checkmated or in which
a stalemate occurs. The board positions define the states, and the piece moves the
operator.
In this example the terminal state need not be fixed, but in the process problem-
solving may be subsequently redefined and modified subject only to the restriction

Hans W. GOTTINGER

that at no point ‘survivability’ is endangered (endogeneous value generation).

Among the tools for a comprehensive assessment of complex public and private
decision problems, decision analysis appears to be the most comprehensive one. But
comprehensive methods of decision analysis, as proposed by H. Raiffa (1968), for
instance, are restricted in several ways:

(1) they are basically off-line procedures, i.e. limit choices to the ‘givens’ once
stated,

(2) they limit complexity to the determination of uncertainty via probability,
(3) they address only to ‘well-structured’ decision problems, where the whole

set of alternatives is laid out before the decision-maker and where he knows
how to achieve a particular course of action,

(4) they apply only to situations where the goal structure has been fixed in
advance or no change of goals is anticipated in the process of taking a
course of actions,

(5) they pertain to the computational part of decision-making using expected
utility as the unique performance index, but making no use whatsoever of
the strength of heuristics, sophistication, creativity, innovation etc., that is
the unique feature of complex decision processes.

There have been recent criticisms on the major defects of contemporary decision
analysis.
They can be loosely summarized as follows:
(a) Complexity is an outcome of physical constraints on information processing

and therefore a matter of design.
(b) Complexity is a matter of economic constraints imposed by costs of making

decisions.
(a) and (b) could be considered of being independent significance. The first point
has been emphasized here from the view of systems complexity, as has been pointed
out by H. Simon(1969) in his Architecture of Complexity. The second point, not
less important, has been more related to costs of economic decision-making. As
Th.S. Ferguson (1974) remarks, “one of the drawbacks of decision theory in general
and of the Bayesian approach in particular, is the difficulty of putting the cost of the
computation into the model.” There are no doubt examples in which quick and easy
rules are preferable to optimal rules for a Bayesian simply because it costs less to
perform the computations. This has been taken up earlier by modeling the cost of
computation as a finite-state machine (Gottinger, 1991).

An example of a physical constraint of a problem-solving mechanism, as in
chessplaying programs, is given by the well-known traveling salesman problem.

Complexity and Decision Rules

-13-

Example:
A salesman wants to visit all cities C1,C2,...,Cn, pass through each city exactly once
(starting from and returning to his home base city C) while minimizing his total
mileage. The set of objects in the travelling salesman problem is the set of all
acyclic permutations of the cities, i.e. the set of feasible tours. The number of these
turn out to be bounded by (n-1)!/2 which is an extremely large number for moderate
n. By Stirling’s formula n! = (n/e)n , hence n! increases very rapidly. For instance,
for n = 10 the number is about 180,000 and for n= 11 it is nearly 2 million. Several
exact mathematical solutions of this problem have been proposed, but they amount
to sensible complete enumeration of the alternatives, that is, enumeration of the
more likely cities. Such methods seem to work up to about n = 20 and then break
down because of excessive demand upon computer time.

The traveling salesman problem is closely related to many other problems that are
considered to be NP-hard (M.R. Garey and D.S. Johnson (1979)), the letters NP
standing for ‘nondeterministic polynomial’. These problems have received even
more prominence by the invention of Khachiyan type ellipsoid algorithm (B.
Aspvall and R.E. Stone (1979); C.H. Papadimitriou and K. Steiglitz (1998, Chap.
15)) Any problem for which an algorithm can be devised can be solved but no
practical general solution may be feasible, because the solution requires an
impractical amount of computational time and effort. This can be referred to as
‘intractability”. It is now generally agreed by computer scientists that algorithms
whose computational time increases exponentially as a function of the size of input
are ‘intractable’ or simply inefficient: The only algorithms to be considered efficient
are ‘polynomial time’ algorithms. Relating program size n to algorithmic
complexity, f(n), we see that for any f and for ‘large’ n the exponential f is always
larger than the polynomial f. For the traveling salesman problem exhaustive search
would constitute an exponential f, hence, be inefficient, whereas some shortcut
heuristic procedure would let computational time increase as a polynomial function,
constituting an efficient algorithm. Now, even among efficient algorithms some are
faster than others, thus, it is important only to distinguish polynomial-time
algorithms as a class from exponential-time algorithms. The speed of the algorithm
is almost machine independent, thus for large n, a polynomial-time algorithm will
find a faster solution on a slow machine than an exponential-time algorithm on a
powerful machine. This is another hard fact to support the thesis of complexity
tradeoffs between computational and structural complexity.

5.2. Algorithmic Complexity and Problem-Solving
A way to identify and classify algorithmic complexity i.e., the complexity assigned
to the most efficient algorithm required to solve a problem provided it exists, is to
count the number of arithmetic operations (additions, subtractions, multiplications,
divisions) that are required in order to carry out an algorithm. A major purpose of
the theory of algorithmic complexity is to characterize the intrinsic complexity of

Hans W. GOTTINGER

specific computational problems. This is typically done by fixing some idealized
model of computation and establishing upper and lower bounds on the amount of
time or space, or other resources needed to solve a giving problem. An upper bound
on complexity is obtained by analyzing the resource requirements of known
algorithms which solve the problem. Establishing lower bounds on complexity is
usually a much more difficult process, since it involves demonstrating that no
possible algorithm can surpass a given level of efficiency.

A frequent choice for the model of computation is a Turing machine, and the
problems studied are often posed in the form of recognition problems. By a
‘recognition problem’ we mean any problem in which some string is initially placed
on the tape of the Turing machine, and the Turing machine must decide whether or
not the input string belongs to some predefined set of strings. For example, the input
string may be a formula in some formal logical theory, the truth of which is to be
decided.

It is convenient to classify recognition problems into complexity classes defined in
terms of worst-case and space bounds, which are expressed as a function of the
length of the input string, for example, the class of problems as polynomial space
consists of all problems which can be decided by a Turing machine using an amount
of tape that never exceeds some poly nominal function of the input length.
Similarly, the class ‘polynomial time’ consists of all problems which are decided
with the polynomial bounded number of machine steps.

The complexity theory of specific problems, along the lines just described, have
emerged in the past decade as an active and fruitful area of research. At higher
levels of complexity (that is, where the time and space bounds are very rapidly-
growing functions of the input length), this work shares much with the classical
theory of undecidability. The objects of study are often formal logical theories, and
the work has served to extend the negative results of undecidability theory by
showing that many problems that are formally decidable are nevertheless not
decidable in any practical sense because they have a very large (e.g. super
exponential) time complexity.

At lower levels of complexity, however, the problems studied often concern
combinatorial objects such as graphs and other finite structures, rather than logical
theories. At this level, polynomial space contains many problems of great practical
interest such as the traveling salesman problem, combinational assignment problems
and network problems etc. which seem to be computationally infeasible, in that all
known algorithms have a time requirement which increases exponentially with the
size of the input. Although the question of whether this exponential growth is
unavoidable is one of utmost practical interest, the present state of the theory gives
little aid for resolving this question.

Complexity and Decision Rules

-15-

In the absence of provable lower bounds on the complexity of these problems,
relative measures of complexity have come to play an important role. It is in many
cases possible to reduce one problem to another, that is, to find a way of mapping
one problem into another, so that if an efficient solution were available for the latter
problem, then this would also give a way of solving the formal problem efficiently.
Thus, the latter problem can be thought of as being at least as hard as the former.
Various definitions of reducibility have been given which formalized this intuitive
notion of reducing one problem to another. Each of these reducibility relations is a
partical ordering of the class of all recognition problems.

A key notion which arises in studying the problem of reducibility is that of a
‘complete’ problem. A problem is complete in a complexity class if it lies in the
class and every problem in the class is reducible to it. Such a problem can be
thought of as a hardest problem for the class, relative to the particular reducibility
relation which is being used.

Complete problems are of interest for two main reasons. First, depending on the
complexity class, completeness may constitute evidence of computational difficulty.
For example, if a problem is complete in polynomial space or complete in NP then
it seems likely that the polynomial-time algorithm for the problem does not exist.
This has practical value in that the decision-maker or researcher, knowing the
problem is complete, can avoid wasting time looking for an efficient general
algorithm and instead may look for some good approximation algorithm.

Second, complete problems provide reference measures of complexity, in relation to
which the complexity of other problems and even the relations between complexity
classes can be explored. For example, a problem that is complete in polynomial
space serves as a kind of test case for the open question of whether polynomial time
equals polynomial space. This question has an affirmative answer if and only if
there exists a polynomial-time algorithm for the problem. Complete problems have
been found in a number of different complexity classes, both within and outside
polynomial space.

The completeness results which have attracted the greatest attention are those
involving complete problems in non-deterministic polynomial-time (or NP). These
are usually called NP-complete problems. NP-complete problems aroused particular
interest because they included some very practical problems, for which efficient
algorithms had been intensely (sought). As a result of linking these problems to
each other and to the open question of whether ‘polynomial’ equals ‘non-
deterministic polynomial’, the hope for finding efficient algorithms for these
problems was greatly diminished. Since then hundreds of new NP-complete
problems have appeared. A rather comprehensive list is found in Garey and Johnson
(1979) and NP-completeness has come to be regarded as virtually certain evidence

Hans W. GOTTINGER

that a problem does not have an efficient solution.

Combinatorial games and decision problems arising in assignment and allocation
problems of great public interest provide an obvious target for complexity theory
(Karp, 1987), because it is easy to give examples of game positions which can be
described very definitely, but would seem to require a vast amount of computation
to analyze.

6. Conclusions
Decision and choice processes could be factored into component subprocesses and
these are associated with properties of transformation semigroups. A social choice
process could be understood as a sequential game — an interaction between
individual choice processes such that the interaction generates a SDR that is
compatible with all individual choice processes. To achieve this, we use the tool of
‘bounded rationality’, to derive automata representing a system of social decision-
making. Complexity is a crucial factor in the choice of decision rules and is related
to the natural limitations of human decision-makers when it comes to recalling,
memorizing and computing only relatively few items among which consistent
choices can be made. In contrast to conventional social choice theory we only
consider preference profiles that are in a certain sense ‘computable’, thus restricting
the choice process to reasonable rules. Krohn-Rhodes complexity is a sort of super
structure that binds elements of computational and structural complexity in time-
dependent decision processes as it also embraces design, evolutionary and control
complexity applicable to dynamic finite-state systems. This eems to be missing in
modern guidelines on Complexity (Mitchell, 2009).

An obvious extension would consist of using complexity of decision rules as a
primitive notion for an axiomatization of economic behavior that introduces special
behavioral assumptions related to limited computablility. (A set of structural
constraints for such an axiomatization could be linked to assumptions DSC-
PAC.)Structural complexity is a measure of an algebraic structure (‘module’) that
pertains to a class of heuristics and cuts drastically on the computational dimension
of the problem-solving process. We have argued that in large-scale decision
problems there is necessarily a complexity-trade-off between structural and
computational complexity. The complexity theory of the algebraic theory of
machines points to the fact that any non-purely-routine type operating system
carries ‘modules’ of a simple problem-solving power as well as computational steps
that can be identified with routine-type operations. This seems to explain the major
strengths and weaknesses of human and computer problem-solving capabilities. The
human decision-maker is comparatively strong in activating heuristic principles
pertaining to structural complexity, but being restricted to depth-tree search,
whereas the computer is comparatively strong in searching for many different types

Complexity and Decision Rules

-17-

of solution in a breadth- type search, emphasizing computational routines by
computational power and speed. The construction of useful heuristics built into
computer programs, aimed at solving major tasks of a problem-solving variety,
becomes a tremendous challenge to artificial intelligence, amounting to substituting
computational complexity by structural complexity.

Useful heuristics with high structural complexity must include:
(i) long-run ‘look-ahead’ rules, fixing the planning horizon,
(ii) reasoning by analogy, e.g. evaluating subtle patterns of change,
(iii) depth-tree search, e.g. exploiting more relevant information affecting the

goal or payoff-structure in the search process.
(iv) experience entering problem recognition.
(v) endogeneous value generation, striking a delicate balance between local an

strategic behavior.
A successful heuristic, revealing high structural complexity, should adapt these
components repeatedly to the changing problem structure.
The tradeoff balance between structural and computational complexity can hardly
be determined in advance, but in the history of chess-playing programs there are
indications that such balance exists. By comparing two differently designed chess
playing programs, the Los Alamos Program (1956) and the Bernstein Program
(1958), Newell, Shaw and Simon (1963b) definitely make a statement on the
complexity tradeoffs in terms of overall global performance of the two programs:
‘To a rough approximation, then, we have two programs that achieve the same
quality of performance with the same total effort by two different routes: the Los
Alamos program by using no selectivity and being very fast, and the Bernstein
program by using a large amount of selectivity and taking much more effort per
position examined in order to make the selection. For instance, suppose both the Los
Alamos and the Bernstein programs were to explore three moves deep instead of
two as they now do. Then the Los Alamos program would take about 1000 times
(302) as long as now to make a move, whereas Bernstein’s program would take
about 50 times as long (72), the latter gaining a factor of 20 in the total computing
effort required per move’.
From this we may conclude that as the depth of the moves increases it becomes
correspondingly more difficult, at some point even practically impossible, to trade
off computing speed and power, as represented by computational complexity, for
sophisticated heuristic search procedures given by structural complexity.

References
Abreu, Dilip and Ariel Rubinstein (1988), The Structure of Nash Equilibrium in
Repeated Games with Finite Automata, Econometrica 56 pp. 1259-1288.
Aspvall, C.B. and Stone, R.E., (1979) ‘Khachiyan’s Linear Programming
Algorithm’, Stan-CS-79-776, Dept, of Computer Science, Stanford Univ., Nov.
1979.

Hans W. GOTTINGER

Ferguson, Th.S., (1974) ‘Prior Distributions on Spaces of Probability Measures’,
Ann. Statist. 2, 615-629.
Garey, M.R. and Johnson , D.S., (1979) Computers and Intractability, W.H.
Freeman San Francisco.
Gottinger, H.W.(1990), ‘Complexity of Games and Bounded Rationality’,
Optimization 21, 991 -1003
Gottinger,H.W.(1991), ‘Computational Costs and Bounded Rationality’, in
Stegmüller, W.,Balzer,W. and W. Spohn, eds., Philosophy of Economics, Springer:
Berlin, 223-238
Kalai E. and Stanford W. (1988), ‘Finite Rationality and Interpersonal Complexity
in Repeated Games’, Econometrica, 56, pp. 397-410.
Karp, R.M., (1972) Lecture Notes, Dept, of Computer Science, Univ. of California,
Berkeley, Ca.
Karp, R.M., (1987) ‘Combinatorics, Complexity and Randomness’. ACM Turing
Award Lectures, Addison-Wesley :Reading, Ma., 433-455.
Keeney, R. and Raiffa, H., (1976) Decision Analysis with Multiple Conflicting
Objectives, Wiley: New York.
Marschak, J. and Radner, R., (1972) Economic Theory of Teams, Yale Univ. Press:
New Haven.
Mitchell,M.(2009), Complexity -A Guided Tour , Oxford Univ. Press: New York
Mount, K.R., and S. Reiter (2002), Computation and Complexity in Economic
Behavior and Organization, Cambridge Univ. Press: Cambridge
Neyman, A. (1985), ‘Bounded Complexity justifies cooperation in the finitely
Repeated Prisoners Dilemma’, Economic Letters 19, 227-229
Newell, H., Shaw, P. and Simon, H., (1963a) ‘General Report on GPS’, in R.D.
Luce et al. (eds.). Readings in Mathematical Psychology II, Wiley: New York.
Newell, H., Shaw, P. and Simon, H., (1963b) ‘Chess-Playing and the Problem of
Complexity’, in Feigenbaum (ed.) Computers and Thought, McGraw Hill: New
York.
Papadimitriou,C.H. and K. Steiglitz(1998) Combinatorial Optimization, Dover:
New York
Pearl,J.(1984), Heuristics: Intelligent Search Strategies for Computer Problem
Solving, Addison Wesley: Reading,Ma.
Raiffa, H., (1968) Decision Analysis, Addison-Wesley: New York.
Rubinstein, A. (1986) ‘Finite Automata play the Repeated Prisoners Dilemma’,
Jour, of Economic Theory 39, 83-96.
Rubinstein, A. (1987), ‘Complexity of Strategies and the Resolution of Conflict’,
London School of Economics, Suntory Toyota Intern. Centre for Economics, Disc.
Paper 87/150.
Rubinstein, A. (1998), Modeling Bounded Rationality, MIT Press: Cambridge, Ma.
Shannon, C.E., (1950), ‘Programming a digital computer for playing chess’
Philosophy Magazine 41, 346-375.
Simon, H. (1972) Theories of Bounded Rationality’, in C.B. McGuire and R.
Radner, eds., Decision and Organization, North Holland: Amsterdam.

Complexity and Decision Rules

-19-

Simon,H. (1969), ‘The Architecture of Complexity’ in H. Simon, The Sciences of
the Artificial , Cambridge,Ma.; MIT Press
Simon, H., (1973) ‘The Structure of Ill-Structured Problems’, Artificial Intelligence
4, 181-201.

Hans W. GOTTINGER

Hans W. GOTTINGER

-21-

