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ABSTRACT 

The Lucy-Richardson super resolution image processing technique, combined with the introduced virtual point 
spread function (PSF), was used to develop a measurement method of the processing precision of the superfine 
thick pinhole aperture.  The principles of the technique were based on the known ideal image and degraded image.  
After the restoration and reconstruction of the degraded image with the introduced virtual point spread function 
(PSF)，the comparison is made between the reconstructed image and the ideal image to judge the correctness of 
the virtual point spread function (PSF).  During this process, the simulation of the effects of the point spread 
function (PSF) upon the image reconstruction was carried out at first.  As indicated by the simulation, the ideal 
point spread function (PSF) used in the image restoration and reconstruction could provide ideal results of the 
image reconstruction.  However, in the case of relatively bigger size of the point spread function (PSF), the 
reconstructed image would be obtained smaller than the ideal image.  Besides, related experiments were carried 
out on the cobalt radiation sources.  In the experiments, the aperture of the shielded collimator to restrict and align 
the radiation source was known to be 1.0mm, the thick pinholes respectively 0.7mm and 0.45mm in aperture were 
used for the imaging of the Φ1mm radiation source, and the radiation image was recorded in imaging plates 
0.05mm×0.05mm in spatial resolution.  Based on the hypothesis that the processing precision of the thick pinhole 
fulfill the experiment requirements, the point spread function obtained from the simulated computation was 
introduced into the restoration and reconstruction of the recorded images.  At the area with an intensity of 50%, 
the thick pinhole with 0.7mm aperture could provide homogenous image of the radiation source.  However, the 
thick pinhole with 0.45mm aperture provided an elliptical image with a major-minor axis ratio of 5:3.  The relatively 
big difference between the measurement results with the actual known object size indicates the relatively big gap 
between the virtual point spread function with the actual or real point spread function.  This could be considered to 
be another indirect evidence of the relatively big difference between the actual processing precision of the 0.45mm 
aperture with the designed requirements.  

Keywords: image super resolution, thick pinhole, Lucy-Richardson, neutron imaging  

1. INTRODUCTION 
During the inertial confinement fusion (ICF) experiments, the reacting conditions in the fusion 

thermal nucleus could be obtained from the diagnostics of information of high energy neutrons, γ-
rays and other particles induced by the nuclear reaction in the D-T capsule.  This attempt was 
succeeded in the laser-driven fusion [1]. At the same time, various diagnostic methods were well 
developed.  As one of the major diagnostic methods, the pinhole photography was used to track 
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and record the spatial radiation flux of the high energy thermonuclear neutrons.  This technique 
was considered to be a preferential option in terms of various aspects.  Firstly, the flux could 
convey such important information of the implosion process more directly including the spatial 
scale, shape and homogeneity.  Secondly, the spatial intensity distribution of neutrons with various 
energy levels could further reflect the temperature distribution in the target capsule.  Thirdly, the 
spatial intensity distribution of the neutrons is independent on the surface density of the target 
capsule.  Based on the above considerations, in the experiments, such diagnostic methods including 
the pinhole neutron imaging and penumbral imaging were developed to successfully obtain the 
profile images of the reacting area[2, 3].  

Due to the fact that the size of the imaging aperture used in the penumbral imaging is a little bit 
bigger than that of the radiation source, the size of the radiation source could not be obtained 
directly. And the image information of the radiation source could only available after image 
processing.  As for the case of the pinhole imaging, where the size of the imaging aperture is 
smaller than that of the radiation source, it could provide directly the size of the radiation source.  
However, due to the dependence of the spatial resolution largely upon the pinhole aperture, the 
relatively smaller size of the pinhole aperture could provide a fairly better spatial resolution but 
lacks in smaller neutron flux.  Thus, as a common compromise, the requirement of the spatial 
resolution is lowered for the purpose of an acceptable sensitivity of the imaging recording system, 
as well as an acceptable impact of the detecting efficiency upon the image quality.  The aperture of 
the thick imaging pinhole used in our ICF experiments were about 30µm[3], whose spatial 
resolution, in dealing with the radiation sources about 100µm in size, could not fulfill the 
experimental requirements.  Thus, the super resolution image process of the existing neutron 
images was considered reasonably to be an important measure to obtain better image quality.    

As a major parameter in the image reconstruction, the point spread function (PSF) is dependent 
on both the thick pinhole aperture and the material composition of the aperture.  Besides, due to 
the relatively strong penetration effects of the neutrons, the PSF itself is dependent upon not only 
the size of the straight-throng area of the pinhole, but also upon the decaying maters in the pinhole 
materials. The shapes of the thick pinhole are majorly in circle, or triangle and square sometimes.  
Another major factor to affect the PSF size is the processing precision of the thick pinhole.  
Generally, the thick pinhole is made of such high density maters as tungsten (W), with a thickness 
of over 20cm, or even more than 50cm in the extreme conditions.  As for the manufacturing 
procedure, the thick pinhole is assembled with segmented parts.  Technically, it’s very difficult to 
obtain experimentally the effective aperture of the superfine thick pinhole due to its relatively big 
total size. 

In dealing with this issue, several options are available.  The first option is to use laser 
diffraction method, where the processing precision could be provided based on the analysis of the 
configurations of the diffraction rings.  This method could provide information mainly related with 
the shape of the aperture in the diffraction plane.  Another option to detect the thick pinhole is CT 
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scanning with high energy γ-rays, which, however, could not provide satisfactory detecting 
precision for the experiment.  In our past image reconstruction process of the super resolution of 
the neutron images, we used the simulated computational parameters based on an ideal thick 
pinhole[4].  Thus, in this paper, the super resolution image processing technique, combined with 
the introduction of the virtual point spread function (PSF), was used to develop a new 
measurement method of the processing precision of the superfine thick pinhole aperture.     

2. PRINCIPLES OF THE DETECTION 

2.1 Basic Principles of Thick Pinhole Imaging  

Generally, the image of the radiation source is imaged and transmitted onto the image plane 
through the thick pinhole.  And the intensity of the image plane could be given in the following 
equation: 

'')','()','(,,,,(),( ∫∫ ⋅′′= dydxyxfyxfyxyxhyxg                  (1) 

where: (x′,y′) is a point in the object plane,  (x,y) is a point in the image plane, f(x′,y′) is the  
luminescence intensity at Point (x′,y′), and h(x,y,x′,y′,f(x′,y′)) is the corresponding intensity 
distribution of f(x′,y′) at Point (x,y) according to the imaging system characteristics.  Suppose the 
image plane intensity is in the mode of the linear superposition, and based on its theory, the image 
plane intensity could be given as follows:  

'')','(),,,(),( ∫∫ ⋅′′= dydxyxfyxyxhyxg                             (2) 

where: h(x,y,x′,y′) is the response function at Point (x,y) in the image plane of Point (x′,y′) in the 
object plane.  Again, suppose the response of f(x′,y′) to h is linear.  The reason to make some 
hypothesis is to simplify the issues.  Thus, based on the supposed ideal thick pinhole imaging 
process, and static object plane and image plane, the above equation could be alternatively 
expressed as follows: 

fhg ∗=                                             (3) 

However, the effects of the noise upon the system could never be excluded in the radiography.  
Consequently, the image plane intensity could be given in the following:   

nfhg +∗=                                          (4) 

where: n is the noise of the recording system.  

2.2 Rucy-Richardson Super Resolution Image Processing Method 

R-L is actually a super resolution imaging processing method based Bayesin’s theory, which 
could be expressed in the following[5,6]:  
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where: f̂ is the reconstructed image obtained after repeated commutation for k times.  In the 
case of the experiment, based on the available h (the PSF of the system) and g (the recorded 
image), the reconstructed image could be obtained from iteration algorithm.  And the 
reconstructed image is largely dependent on the PSF intensity distribution.   

Things are quite different in the actual application, where, the PSF is unknown or even if known 
but with big uncertainty to result in a certain uncertainty for the image reconstruction.  
Fortunately, the effects of the PSF upon the super resolution image reconstruction could be 
analyzed by simulated computation.   Firstly, the PSF in Gaussian distribution could be used to 
degrade the grid image.  Then super resolution image reconstruction could be carried out according 
to Equation (5).  The reconstruction results are given in Figure 1, where the image was 
reconstructed with ideal PSF, PSF with 2 pixels plus in size and PSF with 2 pixels minus in size, 
respectively.  As indicated in this figure, with a relatively smaller PSF size, the reconstruction size is 
larger than the original size, while with relatively larger PSF size, the reconstruction size is smaller 
than the original size.   

   

reconstructed with ideal 
PSF 

reconstructed with PSF 
with 2 pixels plus in size  

reconstructed with PSF   
with 2 pixels minus in size 

Figure 1 :   The R-L reconstruction results with different PSF sizes 

The super resolution image reconstruction was made mainly based on the PSF of the image 
diagnostic system that was mainly obtained from such methods as precision measurement.  In 
dealing with the case, where the original image is known, but the PSF uncertainty is relatively large 
or even with an unknown PSF, the following equation could be used for computation:     
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As indicated by Equation (3), it could be roughly concluded that Equation (5) and Equation (6) 
are almost same but different in expression.  Thus, after the shape of the original object and the 
degraded image produced by thick pinhole imaging are available or known, Equation (6) could be 
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used for the PSF computation of the thick pinhole imaging system.  The same experimental results 
could also be obtained with Wiener super resolution image processing method.  And the test 
results are basically same with those obtained from such traditional measurement methods such as 
the slit method and edge method.   

3. EVALUAION METHODOLOGY 

3.1 Experimental Setup  

The experiment was made with 60Co radiation source with an intensity of 8.5×103Ci and a 
diameter of 30mm.  A collimator with an aperture of about 1mm was placed 87.1cm away from the 
radiation source to provide shielding and beam restriction.  The imaging thick pinhole was installed 
114cm away from the collimating aperture.   The image was recorded with the imaging plate, which 
was 197cm away from the thick pinhole.  The amplification factor of the imaging system was 1.728, 
and the spatial resolution of the imaging plate was set to be 0.050mm/pixel.  

3.2 Sensitivity Response of Imaging Plate  

The imaging plate used in the experiment was provided by Fujifilm Medical Co. FCR PROFECT 
CS. The fluorescent reagent deliberately integrated in the imaging plate would be excited by the 
irradiation up to metastable state for the storage of the radiation energy.  Such metastability, 
subject to a specific laser scanning, would be deexcited back to stable state same as that before 
irritation and transmit photons at the same time.   The photon signals transmitted from all of pixels 
during deexcitation would be amplified with photomultiplier and converted in to digital signal 
output.  Then the relationship between the image intensity and injected radiation flux could be 
determined by the data processing.  As indicated by the experimental results, the dynamic rang of 
the imaging plate could be as large as up to 4 orders of magnitude.  And the exposure time was 
appropriately determined in accordance with the relationships among the dynamic range, 
irradiation dosage and image intensity.  In our experiment, the exposure time was set to be 1000s 
to provide a satisfactory signal-to-noise ratio (SNR) for the imaging system.  

3.3 PSF of Thick Pinhole Imaging System 

The PSF of the thick pinhole imaging system changes continuously with the change of the space.  
Generally, the PSF along the pinhole axis is used to interpret the spatial resolution of the thick 
pinhole imaging system[7].  The PSF of the thick pinhole imaging system could be obtained from the 
simulated computation.  In dealing with a given thick pinhole, 6.5mm in material free path, 600mm 
in total length, 0.4mm in aperture, and 200mm in both object distance and image distance, the 
simulated computations of the PSF were carried out with various straight hole sections (30mm, 
20mmand 10mm, respectively) and half angles of the conic strengthening segments at both ends 
(0.65°, 0.9° and 1.5°, respectively).  The computational results are given in Figure 2.  The PSF is 
consisting with transmittance component (the straight hole section) and the attenuation 
component through the pinhole matrix.  And the attenuation component could be expressed by 
exp(-µL), where, µ is linear attenuation coefficient and L is the pass-throng thickness of γ-rays in the 
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attenuation matters.  The amplification factor is the function of the PSF size, whose PSF could be 
given as r=D(1+M).  In this equation, D is the pinhole diameter and M is the amplification factor.   

 
Figure 2:  The structural diagram of the thick pinhole PSF 

4. EXPERIMENTAL RESULT 
During the experiment, a shielding collimator 1mm in aperture was used to provide beam 

restriction for the radiation source 30mm in diameter, as well as an equivalent radiation source 
Φ1mm in area.  Then thick pinholes, 0.7mm and 0.45mm in aperture were used for imaging.  With 
the laser beam as the benchmark, the collimator was aligned to be coaxial with the thick pinholes.  
The PSF along the pinhole axis is given in Figure 2.  As for the thick pinhole with a straight hole 
section of 20mm, the effective clear aperture at 1% intensity attenuation would be expanded by 
about 0.1mm equaling to 2 pixel value.  In this sense, the PSF of the ideal thick pinhole was used for 
the super resolution image reconstruction during the data processing.  

The original image and reconstructed image obtained with 0.7m thick pinhole are given in 
Figure 3.  As indicated in the figure, the reconstructed image is basically in circular, and the size at 
the 50% intensity is about 1mm.  The original image and reconstructed image obtained with 0.45m 
thick pinhole are given in Figure 4.  The reconstructed image is elliptical with a major-minor axis 
ratio of 5:3.  Along the minor axis direction, the corresponding size at 50% intensity is about 1mm, 
indicating that this direction is corresponding to the 0.45mm pinhole thickness while the major axis 
direction is corresponding to the 0.7mm pinhole thickness. 

 

Figure 3 : The original image and reconstructed image obtained with 0.7m thick pinhole 

A d v a n c e s  i n  I m a g e  a n d  V i d e o  P r o c e s s i n g ,  V o l u m e  1 ,  N o 1  ( 2 0 1 3 )  6 
 



 
Xie Hongwei, Zhang Jianhua, Zhang Faqiang, Li Linbo and Qi Jianmin; An Imaging Supper-Resolution Processing Method for Effective Aperture Check of 
Thick Pinhole. Advances in Image and Video Processing, Volume 1, No 1, PP 01-09. (2013)   

 

 
Figure 4 : The original image and reconstructed image obtained with 0.45m thick pinhole 

5. DISCUSSION 

5.1 Processing Precision of 1mm Thick Pinhole 

During the processing of the superfine thick pinhole, the electrical discharge machining method 
was used to prepare a small pinhole aperture in about 0.2-0.3mm.  Then, the low-speed wire 
grinding process on precise machine would be carried out to finish the fabrication of the thick 
pinhole.  The precision of the product is dependent on the precision of the machine.  Based on the 
confidence of the existing science and technology, the precision could presumably well fulfill the 
experimental requirements.  During the experiment, the PSF of the 0.7mm thick pinhole was used 
for the super resolution image reconstruction.  The size at 50% intensity was obtained to about 
1.0mm and basically in circular shape.  This could be considered as a roughly accordance of the 
hypothetical PSF of the thick pinhole with the ideal PSF, which provide an additional indirect 
evidence for the processing precision of the 0.7mm thick pinhole.    

5.2 Processing Precision of 0.45mm Thick Pinhole 

The super resolution image reconstruction was made for the images obtained with 0.45mm 
thick pinhole.  The perpendicular/horizontal size ratio was about 5:3 at 50% intensity.  The 
measurement results obtained with 1mm thick pinhole was quite different from those with 0.7mm 
thick pinhole.  In terms of the fact that there’s one but only one real image, the processing 
precision of the 0.45mm thick pinhole would be concluded unacceptable for the design 
requirement.   

5.3 Evaluation of Measurement Precision 

Since the PSF of the thick pinhole imaging system is determined by D(1+1/M), the PSF should be 
a major cause for the image degradation.  In the ideal conditions, after the super resolution image 
reconstruction, the maximum correction size would roughly equal to the PSF size.  In addition, the 
minimum precision of the image restoration is determined by the spatial resolution of the image 
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recording system.  Thus, the ultimate precision in our experimental measurement could be 
determined to be about   0.05mm.  

5.4 Reasons for Why not to Apply This Method into PSF Computation of Thick Pinhole 
Imaging System Directly  

In our experiment setup, a 1.0mm collimating aperture was indeed placed in front of the 
radiation source.  However, the collimating aperture was 87.1cm away from the radiation source 
and 114cm away from the imaging aperture at the same time.  In accordance with the pinhole 
imaging principles, the collimating aperture would be considered as a penumbral intensity 
distribution.  Hypothetically, the ideal intensity of the object plane should be a homogenous 
transmittance.  Actually, with this additional 1mm radiation collimator, the distribution in a 1mm 
area in the aperture could not be homogenous.  Thus, the PSF could not be determined with 
Equation (6), because this equation is only available for the ideal image and recorded image with 
homogenous intensity.  

5.5 Spatial Resolution of Imaging Plate 

In the experiment, the imaging plate was used to record the radiation image, but the effects of 
the imaging plate on the image processing were excluded from the super resolution image 
reconstruction.  

6. CONCLUSION 
The major application of the superfine thick pinhole was dealing with the image diagnostics of 

the high energy neutrons and γ-rays.  The super resolution image processing, combined with the 
virtual PSF, was used to develop a new measurement method for the precision of the thick pinhole 
aperture.  This method is based on the known image of the original object.  And the correctness of 
the virtual PSF would be determined based on the comparison of the reconstructed image and the 
original image.  

In this paper, the simulated study was presented.  After that, imaging process was made for a 
radiation source 1mm in effective size with thick pinholes respectively 0.7mm and 0.45mm in 
aperture (a 1mm aperture collimator was used to provide beam restriction for the radiation 
source).   Then, the super resolution image reconstruction, combined with the virtual PSF, was used 
to measure the processing precision of the thick pinhole.  As indicated theoretically and 
experimentally, this method is concluded to applicable, reliable and simplified, which could provide 
the effective PSF of the thick pinhole imaging system.   
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ABSTRACT   

The paper deals with the improvement of irregular pyramid method for processing images 
of dispersed formations and other microscopic objects. The method is based on the natural 
aggregation of adjacent image areas from one pyramid level to another and can process noisy 
images of different sized objects with non-uniform brightness. The developed method 
combines image segmentation, filtration and binarization operations. 

There is made analysis of topological problems caused by applying the different types of 
pixels connectivity. Algorithms determining the adjacent image areas and internal hollows in 
connected pixel sets are designed on the basis of analysis. Proposed algorithms may be applied 
to local image segmentation. Using algorithms for constructing different hierarchical levels of 
Meer pyramid and dispersed formations images segmentation will provide more precise objects 
structure and avoid over-detailing. There is proposed method for sliding window size evaluation 
for local segmentation methods applied to processing dispersion environments images by 
irregular pyramids method.  

Keywords: segmentation, filtration, video images, dispersed formations, irregular pyramid. 

1. INTRODUCTION  
Object segmentation is one of the main and perhaps the most difficult stages of image 

processing. The complexity of this problem lies in the possibility of changing the whole 
spectrum of image parameters in a wide range.  The images may be of different brightness, 
background noisiness etc. Besides, these differences may occur within the same image set, and 
even more – in the same image. Images of real objects have inhomogeneous background; this 
feature also should be considered. On the other hand, there is no uniform standard of image 
quality. Therefore, despite the large number of image processing methods and algorithms [1-4], 
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the problems of images filtration, segmentation and binarization (especially for dispersed 
formations images), do not lose their actuality and do not have a universal solution. 

Even such well-known methods as a threshold global segmentation are often inefficient due 
to the impossibility of determining single threshold for entire image. The method of histogram 
shape analyzing does not always lead to satisfactory results because of image noise, which 
causes multimodal histograms. Otsu method [5] is based on the calculating the statistical 
characteristics of the image pixels. This method also is also reduced to calculating entire image 
threshold, separating sets of object and background pixels in the most effective way. This 
method is effective in the case of image uniform illumination. 

Methods of local segmentation are more flexible. They are based on evaluating threshold 
value for each part of the image (window), which size is predetermined [6]. However, for 
adaptation them to the images of other dispersed environments some reconfiguration of these 
methods consisting in refining threshold function coefficients and window size is required. 

The purpose of investigation is to develop a method providing determination of objects 
varying in size and brightness, and combining image segmentation, filtration and binarization 
operations. This problem can be efficiently solved by using irregular pyramids structure. 

2. CONSTRUCTION OF AN IRREGULAR PYRAMID FOR DISPERSED 
FORMATIONS IMAGES  

2.1 Irregular pyramid structure 

The proposed method uses the irregular pyramids structure and is based on the natural 
aggregation of adjacent image areas from one pyramid level to another. 

Irregular pyramids method by Meer [7] is based on graph theory. Irregular pyramid is a 
sequence of nodes set R0, …, RN restricting at each level. Zero or base pyramid level R0 is the 
original image. Each node of the next, decimated pyramid level corresponds to connected set of 
nodes of the previous level. That is 

   Ρι+1=Τ(Ρι), where .N,0i,RR,RR i1ii1i =⊂< ++      (1) 

So, if the algorithm is applied to original image, at the output we obtain a set of nodes, each 
of them corresponds to the specified object in the image. Irregular pyramid structure is shown 
in Figure 1. 
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Object 3 Object 4
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Figure 1: Irregular pyramid structure 

From expression (1) it is clear that the key point in algorithm designing is the choice of the 
transforming function T, providing to obtain subset Ri+1 from Ri nodes set. Function T is the 
criterion for moving from one pyramid level to another. It selects supporting (also mentioned as 
survivors) nodes among the previous level nodes for making the next level. Function T is also 
known as the decimation function. Child nodes of i+1 level are formed from the non-survivors 
(not included in the next i+1 level) nodes. This technique provides the relationship from any 
pyramid level down to its base.  

Each stage of algorithm consists of following steps: 

– Determination of the neighboring regions; 

– Evaluation of T-function value ("surviving threshold") for each node of set Ri. 

– Nodes of greater "surviving value" than the threshold form supporting nodes subset Ri+1, 
forming the next i+1 level; 

– For each supporting node of set Ri+1 it is formed connected set of children from Ri nodes 
neighboring to considered one. Graph nodes at i level are considered neighboring if their 
children are neighbors at the base level. 

The process is complete, if i1i RR =+  there is no further thinning of pyramid levels. 

Let’s consider algorithm in detail. 

2.2 Zero (Basic) Pyramid Level Design 

The process starts from analysis of given image. Images of dispersed formations are 
characterized with non-uniform brightness and noisy background. Objects contours are darker 
in comparison with background. We propose to put in the pyramid base the pixels 
corresponding to figures contours after elimination of noise and background elements. To 
ensure method quality independence, and provide it applicability to images of other 
environments, filter parameters are not appointed, but evaluated based on the correlation of 
image parameters. Due to the fact that image brightness and noisiness may be non-uniform, it 
is advisable to consider each pixel in the context of its surroundings in some neighborhood. 
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So, the first step is supporting pixels determination. Authors propose to calculate the 
following global features of the image: 

Global average brightness 

H*W

)y,x(g

Gab 1H,0y
1W,0x

∑
−=
−=

=
,   (2) 

Horizontal contrast 

,
H*W

)y,x(g)y,1x(g
Gac 2W,0x

h

∑
−=

−+
=  1H,0y −= ,    (3) 

Vertical contrast 

,
H*W

)y,x(g)1y,x(g
Gac 2H,0y

v

∑
−=

−+
=  1W,0x −= ,    (4) 

Global average contrast 

( ) 2CacGacCac hv += ,   (5) 

where g(x,y) brightness of (x,y) pixel; W, H – image width and height. 

Local brightness features Lab and Lac (local average brightness and local average contrast) 
for each considered pixel (x, y) and its neighborhood (x-w, y-h, x+w, y+h) should be evaluated in 
this way. The pixels with high contrast neighborhood only should be taken into consideration, 
because they are most likely to contain the object. Such neighborhoods (Figure 2,  
neighborhood A) are characterized by the relationship 

05.1
Gac
Lac

>= ,    (6) 

(local contrast is more than the average value). Pixel (x, y) generating such neighborhood 
will be inserted in supporting nodes list, if it is darker then background in this neighborhood 
and  contrast enough, i.e. 

Gac)y,x(gLav ≥−     (7) 

Area B (Figure 2), containing the noise and do not containing any objects of interest, does 
not satisfy (7) and its pixels will not be included in the supporting nodes set. Thus, we are 
protected from noise influence. 

In the case if the entire neighborhood belongs to object, so it is a low-contrast region 
(Figure 2, area C) 
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2.0Lac < ,    (8)  

which brightness is lower than the average brightness of the image ( g(x,y)<Gav ). Let’s 
introduce following criterion for inclusion its pixels to the supporting points list 

05.0
Gav

)y,x(g1 >−     (9) 

 
Figure 2: Neighborhoods of different types 

This relationship also prevents overdetalizating the contours of objects of non-uniform 
brightness. Thus, expressions (6) - (9) represent an image self-adjusting filter. 

The next step is child nodes selection. Let’s assign some connected set of child pixels to 
each supporting node. For this purpose it should be done local segmentation within the 
smallest (3 x 3) 8-connected neighborhood of supporting pixel. Average brightness value in this 
neighborhood will be taken as threshold. The pixels which brightness is less than calculated 
threshold will be considered children. Since the considered supporting pixel is the center of 
such neighborhood, set connectivity is not violated for any choice of child points. Pixels forming 
the base level of the pyramid are shown in black in Figure 3. 

 
Figure 3: Base level of pyramid 

Pyramid base level in this interpretation is monochrome and partially filtered version of the 
original image. If binarization is the final goal and there is not a segmentation problem in its 
general formulation implying relationships between the pixels forming specified object, there is 
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no need in making other pyramid levels. Thus, in Figure 3 there is shown selection of entire 
pixel mass characterizing all objects, but these data cannot be used for analytical determination 
the objects number, their relative positions and geometric parameters. To determine if the 
pixel belongs to the particular object one should make higher pyramid levels. 

2.3 Higher Pyramid Levels Design 

– Determining neighboring supporting nodes for each supporting node.  

– Evaluate T-function value for each node. This value is the number of neighboring supporting 
nodes. 

– The threshold value of surviving function T is defined as an average number of neighboring 
nodes. Supporting nodes which surviving value is greater than threshold, assign the 
supporting nodes at the next level. 

– Non-surviving neighboring nodes are attached to list of children. Specificity of dispersed 
structures segmentation consists in the fact that object is a kind of ring, i.e. has dark 
contour, bounding the light area (which is a part of the object too), this feature is caused by 
optical effects on the participles surface. Therefore, internal area nodes contained within 
the selected child sets should be attached as children nodes. Identification of such areas is 
made by algorithm described below. 

At a certain pyramid level there is a situation when the nodes number ceases to decrease 
due to the impossibility of further merging because of neighborhood absence, each supporting 
node corresponds to the entire isolated object (for clarity, unique color is assigned to each 
object), this fact is a criterion for algorithm termination. Figure 4 shows results of method 
application to the image in Figure 2. 

 
Figure 4: The top level of the pyramid for the image in Figure 2 

The results of application of this method to several images of the water-oil emulsions are 
shown in Table. 1. 
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Table 1 Segmentation of water-oil emulsion by irregular pyramids 

No The original image Resulting image 
1 

  
2 

  
3 

  
 

At the end of algorithm procession, additional filtering of selected objects based on their 
geometrical or morphological characters may be done. So, in our case, for images containing 
more or less homogeneous objects (see Table 1), it is advisable to perform filtering to eliminate 
the drops of low pixel weight (less than 5% of average pixel weight of all identified objects). 

3. APPLYING DIFFERENT TYPE OF PIXELS CONNECTIVITY  
TO IMAGE PROCESSING 

Concepts of 4- and 8- connected regions are often used for image recognition. But applying 
the both types of connectivity causes some topological problems. If the pixels forming the 
object are considered to be 4-connected, we get the following anomaly: the vertical and 
horizontal sections of the border will be connected, but the inclined ones – will not. For 
example, line inclined at 45° to the raster grid lines is presented not as solid object (as it is in 
fact), but as a set of odd pixels. This fact causes to the multiple breaks in the object contour 
(Figure  5(a)). 

If objects boundaries are considered in terms of 8-connectivity, inclined parts are correctly 
identified, but background areas will be connected too, so the sloping line shown in Figure 5(b) 
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does not divide the field in two areas and the white pixels are connected in spite of the a black 
line separating them. 

  
(a) (b) 

Figure 5: (a) Topological anomalies when using 4-connectivity principle; (b) Topological anomalies when 
 using 8-connectivity principle 

To solve this problem, we propose to apply different connectivity types to objects and to 
background. 8-connectivity is applied to object pixels, and 4-connectivity to background pixels. 
In this case, the object shown in Figure 6 will be a "ring", dividing the field of the image in two 
areas – internal and external. 

 
Figure 6: Application of different connectivity types to object and background pixels 

In accordance with introduced connectivity criteria algorithm for areas filling [9] is improved 
to process not only the 4-connected (as in standard case), but the 8-connected regions. Based 
on this improvement, the algorithms for image segmentation are developed and applied to 
irregular pyramid method.  

3.1 Algorithm for adjacent areas determination 

To determine whether the two connected pixel sets Х1 and Х2 are adjacent, i.e. if 21 XX   
set is connected, the following algorithm is proposed: 

– Make the convex hull for each set. 

– Check if the convex hulls are overlapping. If no, Х1 and Х2 are not overlapping too. 

– Otherwise paint the areas corresponding to these sets in the same color. Determine the 
connectivity of 21 XX   set by pouring it with contrasting color using above mentioned 
filling algorithm, starting from some point A (Figure 7) of Х1 set. If the sets are adjacent, 
algorithm automatically fills  Х2 area. So, if the color of any Х2 point is changed (in point B, 
for example) to the given color, Х1 and Х2 are adjacent. 
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– After merging adjacent regions joint convex hull will be made. 

X1

X2

А

В

 
Figure 7: Scheme of 21 XX   set connectivity definition  

3.2 Algorithm for determining internal hollows in connected set 

Developed filling algorithm are applied to determinating the internal  hollows of connected 
sets. Area of interest are placed into some rectangle, height and width of it are 2 pixels larger 
than circumscribed rectangle (Figure 8, a). Then fill an external towards the object part of the 
rectangle with some contrast color considering it in terms of 4-connectivity. In this case, 
isolated internal hollows keeps original color (Figure 8, b). The points which have kept original 
color, will be attached to considered set ( Figure 9, c) . This approach provides us to process not 
only the dark contours of drops, bubbles and other dispersed formations, but the whole "body" 
of participles containing glares. 

 

a 

 

b 
 

c 

Figure 8: Scheme of internal hollows determination by using the filling algorithm 

4. EVALUATE SLIDING WINDOW SIZE AT THE BASE PYRAMID LEVEL 
The question of choosing sliding window size while constructing of base pyramid level is still 

open. Experiments on determining the influence of window size on segmentation results show 
that the small window size causes noise gaining, while too large one leads to brightness and 
contrast parameters averaging over a large area and cause  small objects elimination. 

Influence of sliding window size on segmentation quality of water-oil emulsions images 
(Table 1) is shown in the chart (Figure 10). As conventional criterion K (ordinate) is taken 
average brightness of supporting pixels ( .portsupg ) at base level divided by the average image 

brightness. 

Gav
g

K .portsup= .    (10) 
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As it is shown in the picture, applying sliding window of small area ~ 0.1 % (1p. x 1p. , 3p. x 
3p.) of image area, the average brightness of supporting pixels is high, because of capturing the 
large mass of background elements (noises) that falls as the window area increases and reaches 
its minimum at a window area  ~ 0.3 % - 1.3% of image size, then it increases again due to 
excessive brightness averaging, leading to the contours roughening and the adjacent areas 
capture. Thus, sliding window size for water-oil emulsions images segmentation advisable to 
choose within these limits. The curve corresponding to image in Figure 2, reaches its minimum 
at a larger window size - 2.21 % due to a significant difference between the structure of this 
image and other images containing number of objects. One drop in Figure 2 occupied ~ 32 % of 
image area. 

 
a 

 
b 

 
c 

Figure 9: Segmentation using sliding windows of different sizes: a – original image (320p. x 237p.); b – 1p. x 1p. window; c 
– 30p. x 30p. window; 

 
Figure 10: The impact of sliding window size on segmentation quality factor  of water-oil emulsions 

5. CONCLUSION 
There is improved irregular pyramids method for processing the images of dispersed 

formations and other micro objects. The method is based on the natural aggregation of 
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adjacent areas in the image from one pyramid level to another and can process noisy images of 
different sized objects with non-uniform brightness. 

Algorithms determining the neighboring areas in the image and internal hollows of 
connected set are designed on the basis of different types of pixels connectivity. Using 
proposed algorithms for constructing different hierarchical levels of Meer pyramid and 
dispersed formations images segmentation will provide more precise objects structure  and 
avoid overdetalization. There is proposed method for sliding window size evaluation for local 
segmentation methods applied to processing dispersion environments images by irregular 
pyramids method. The software system is designed on the results of investigation. 
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ABSTRACT   

 Information about the retinal blood vessel network is important for diagnosis, treatment, 
screening, evaluation and the clinical study of many diseases such as diabetes, hypertension 
and arteriosclerosis. Automated segmentation and identification of retinal image structures had 
become one of the major research subjects in the fundus imaging and diagnostic 
ophthalmology. Automatic segmentation of blood vessels from retinal images is considered as 
first step in development of automated system for ophthalmic diagnosis. With the development 
of computational efficiency, the pattern classification and image processing techniques are 
increasingly used in all fields of medical sciences particularly in ophthalmology. In this paper, 
we have presented a review of supervised classification algorithms for retinal vessel 
segmentation available in the literature. We outline the principles upon which retinal vessel 
segmentation algorithms are based. We discuss current supervised classification techniques 
used to automatically detect the blood vessels.  

Keywords: Image segmentation, Pattern Recognition, Supervised classification, Ocular 
Fundus, Retinal image analysis. 

1. INTRODUCTIN  
The eye is a unique region of the human body where the vascular condition can be directly 

observed in-vivo. By using an ophthalmoscope to look through the pupil, a magnified image of 
the retina and blood vessels can be observed that course across its anterior surface [1]. The 
blood vessels appear as elongated features in retinal images that are of different intensity than 
the background, and their thickness is always smaller than a certain value. They enter into the 
retina by the optic disc and form branches of vessels that are connected. 

Information about the retinal vascular network is important for diagnosis, treatment, 
screening, evaluation and the clinical study of many diseases such as diabetes, hypertension 
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and arteriosclerosis [2]. Several eye diseases such as retinal artery occlusion and chorodial 
neovascularization [3] induce changes in the retinal vascular network [4]. Blood vessels are the 
most predominant and stable structures appearing in the ocular fundus, therefore reliable 
vessel extraction is a prerequisite for subsequent retinal image analysis and processing. Some 
of the main clinical objectives reported in the literature for retinal vessel segmentation are the 
implementation of screening programs for diabetic retinopathy [4, 5]  evaluation of retinopathy 
of prematurity [6], foveal avascular region detection [7], arteriolar narrowing [8, 9], the 
relationship between vessel tortuosity and hypertensive retinopathy [10], vessel diameter 
measurement to diagnose cardiovascular diseases and hypertension [11, 12], and computer-
assisted laser surgery [2, 13]. Other indirect applications include automatic generation of retinal 
maps for the treatment of age-related macular degeneration [14]; extraction of characteristic 
points of the retinal vasculature for temporal or multimodal image registration [15, 16]; retinal 
image mosaic synthesis [17]; identification of the optic disc position [18, 19], and localization of 
the fovea [20]; change detection [6, 21-23] and tracking in video sequences [24, 25]. All these 
techniques depend on vessel extraction. The network of retinal vessels is distinctive enough to 
each individual and can be used for biometric identification, although it has not yet been 
extensively explored [26]. Furthermore, the segmentation of the vascular tree seems to be the 
most appropriate representation for the image registration applications due to three of the 
following reasons: 1) it maps the whole retina; 2) it does not move except in a few diseases; 3) 
it contains enough information for the localization of some anchor points. Mostly vascular 
branching and crossover points are used as landmark features [27]. 

The quantification of vessel features, such as length, width and branching pattern, among 
others, can provide new insights to diagnose and stage pathologies which affect the 
morphological and functional characteristics of blood vessels. However, when the vascular 
network is complex, or the number of images is large, manual measurements can become 
tiresome or even impossible. A feasible solution is the use of automated analysis, which is 
nowadays commonly accepted by the medical community. 

   
Figure 1: Anatomical Structures in Retinal Images 
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2. RETINAL BLOOD VESSELS MORPHOLOGY 
The retinal vasculature is composed of arteries and veins, with their tributaries visible 

within the retinal image. There is a wide range of vessel widths ranging from one pixel to 17 
pixels, depending on both the width of the vessel and the image resolution. The vessels have a 
lower reflectance compared to other retinal surfaces, thus, they usually appear darker relative 
to the background. The central intensity of some vessels differs from the background by as little 
as four grey levels, and the background noise standard deviation is almost 2.3 grey levels [28]. A 
variety of structures appear in the images, including the retina boundary, the optic disc, and 
pathologies. The pathologies are particularly challenging to automatic vessel extraction because 
they may appear as a series of bright spots, sometimes with narrow, darker gaps in between. 
Light is absorbed and reflected by the retinal vessels, the retinal capillaries and the choroid. 
Variations in the thickness of the vessel wall and the index of refraction have negligible 
influence on the apparent width of the blood column. However, occasionally a light streak 
running the length of the vessel is reflected from the transparent convex wall of the arteriole 
[12]. Retinal vessels also exhibit a strong reflection along their centerline known as central 
vessel reflex, which is more pronounced in arteries than veins, and is stronger at longer 
wavelengths. This effect is believed to result from a specular reflection at the interface between 
the retina and vitreous, the internal limiting membrane. Light reflexes and artifactual features 
such as specular reflection are typically found in the retinal images of younger patients. 
However, the thickening and fibrosis of the vessel wall associated with arteriosclerosis changes 
the refractive index and increases the width of the light reflex. The anatomical structures in 
retinal images are shown in Figure 1. 

The vessel cross-sectional intensity profiles approximate a Gaussian shape, or a mixture of 
Gaussians in case of central vessel reflex. The orientation and grey level of a vessel does not 
change abruptly; they are locally linear and gradually change in intensity along their lengths. 
The vessels can be expected to be connected and, in the retina, form a binary treelike structure. 
However, the shape, size and local grey level of blood vessels can vary hugely and some 
background features may have similar attributes to vessels. Vessel crossing and branching can 
further complicate the profile model. As with the processing of most medical images, signal 
noise, drift in image intensity and lack of image contrast pose significant challenges to the 
extraction of blood vessels. 

There are some reviews [29, 30] available in the literature which give an overview of vessel 
segmentation techniques from 2-D as well as 3-D images in various application domains 
including (i) extraction of neurovascular structures (ii) retinal blood vessel segmentation, (iii) 
coronary artery extraction, (iv) extraction of blood vessels from mammograms, (v) human 
airway tree (pulmonary tree) segmentation, (vi) extraction of abdominal aorta and vascular 
structures in the legs, (vii) extraction of vascular structures in livers, (viii) colon extraction, (ix) 
segmentation of nerve channels and (x) extraction of tubular structures for industrial and 
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scientific applications. Other studies [30-33] present an overview of different algorithms for 
feature extraction, segmentation and registration of retinal images. The surveys [5, 34] [38,39] 
on algorithms for automatic detection of diabetic retinopathy are also presented.  

3. RETINAL BLOOD VESSEL SEGMENTATION 

3.1 Materials 

The retinal vessel segmentation methodologies are evaluated on the publically available 
databases for retinal images. The datasets are discussed below. 

3.1.1 DRIVE Database 

The DRIVE (Digital Retinal Images for Vessel Extraction)[35] is a publically available 
database, consisting of a total of 40 color fundus photographs. The photographs were obtained 
from a diabetic retinopathy screening program in the Netherlands. The screening population 
consisted of 453 subjects between 31 to 86 years of age. Each image has been JPEG 
compressed, which is common practice in screening programs. Of the 40 images in the 
database, 7 contain pathology, namely exudates, hemorrhages and pigment epithelium 
changes. The images were acquired using a Canon CR5 non-mydriatic 3CCD camera with a 45 
degree field of view (FOV). Each image is captured using 8 bits per color plane at 768 × 584 
pixels. The FOV of each image is circular with a diameter of approximately 540 pixels. The set of 
40 images was divided into a test and training set both containing 20 images. Three observers, 
the first and second author and a computer science student manually segmented a number of 
images. All observers were trained by an experienced ophthalmologist (the last author). The 
first observer segmented 14 images of the training set while the second observer segmented 
the other 6 images. The test set was segmented twice resulting in a set X and Y. Set X was 
segmented by both the first and second observer (13 and 7 images respectively) while set Y was 
completely segmented by the third observer. The performance of the vessel segmentation 
algorithms is measured on the test set. In set X the observers marked 577,649 pixels as vessel 
and 3,960,494 as background (12.7% vessel). In set Y 556,532 pixels are marked as vessel and 
3,981,611 as background (12.3% vessel). Figure 2 shows the retinal images from DRIVE 
database. 
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Figure 5: Retinal Images from DRIVE Database; (top row) Normal Image, (bottom row) Pathological Image. (a) Retinal 

image, (b) Segmented Vessels 

3.1.2 STARE Database 

The STARE database [36] contains 20 images for blood vessel segmentation; ten of these 
contain pathology. The digitized slides are captured by a TopCon TRV-50 fundus camera at 
35o  field of view (FOV). The slides were digitized to 605 x 700 pixels, 8 bits per colour channel. 
The approximate diameter of the FOV is 650x500 pixels. Two observers manually segmented all 
the images. The first observer segmented 10.4% of pixels as vessel, against 14.9% vessels for 
the second observer. The segmentations of the two observers are fairly different in that the 
second observer segmented many more of the thinner vessels than the first one. Performance 
is computed with the segmentations of the first observer as the ground truth. Figure 3 
illustrates the retinal images form STARE database. 
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Figure 6: Retinal Images from STARE Database; (top row) Normal Image, (bottom row) Pathological Image. (a) Retinal 

image, (b) Segmented Vessels 

3.2 Performance Measures 

In the retinal vessel segmentation process, the outcome is a pixel-based classification result. 
Any pixel is classified either as vessel or surrounding tissue. Consequently, there are four 
events; two classifications and two misclassifications. 

3.2.1 Classifications 

The classifications are  

• True Positive (TP) ; when a pixel is correctly segmented as a vessel pixel i.e. the pixel 
is classified as a vessel pixel and it is actually the vessel pixel as per the gold standard 
(the manual segmentation by an expert) 

• True Negative (TN); when a pixel is correctly segmented as a non-vessel, the pixel is 
classified as a non-vessel pixel and it is actually the non-vessel pixel as per the gold 
standard. 

3.2.2 Mis-Classifications 

The two misclassifications are 

• False Negative (FN) occurs when a pixel in a vessel is segmented in the non-vessel 
area, i.e. the pixel is classified as non-vessel but actually it belongs to a vessel as per 
the gold standard.  

A d v a n c e s  i n  I m a g e  a n d  V i d e o  P r o c e s s i n g ,  V o l u m e  1 ,  N o 1  ( 2 0 1 3 )  26 
 



Edward James and Antonio Francisco; On Supervised Methods for Segmentation of Blood Vessels in Ocular Fundus Images. Advances in Image and 
Video Processing, Volume 1, No 1, PP 21-37 (2013) 

 

• False Positive (FP) occurs when a non-vessel pixel is segmented as a vessel-pixel i.e. 
the pixel is actually the non-vessel pixel (as per the gold standard) but is classified as 
the vessel pixel. 

The measures derived from the above events are 

3.2.3 True Positive Rate 

True Positive Rate (TPR) or true positive fraction represents the fraction of pixels correctly 
detected as vessel pixels. It is the ratio between the numbers of pixels correctly detected as 
vessel pixels to the count of pixels which are actually in vessels. 

 

3.2.4 False Positive Rate 

False Positive Rate (FPR) or false positive fraction represents the fraction of pixels 
erroneously detected as vessel pixels. It is obtained as the ration between the numbers of 
pixels erroneously detected as vessel pixels to the number of pixels which are actually in non-
vessel region in the retinal image. 

 

 

3.2.5 Accuracy 

The accuracy is estimated by the ratio of the total number of correctly classified pixels (sum 
of true positives and true negatives) by the number of pixels in the image FOV. 

 

3.2.6 Sensitivity 

Sensitivity (SN) reflects the ability to detect vessel pixels. The sensitivity of a vessel 
detection algorithm is a measure of how well the algorithm performs in correctly identifying 
vessel pixels within a retinal fundus image. 

Sensitivity is expressed as 

 

 

Where, TP and FN are the number of true positive and false negative results, respectively. 
Sensitivity can also be thought as 1- the False Negative Rate.  

# of pixels correctly detected as vessel pixel
# of pixels actually in vessels

TPR =

# of pixels erroneously detected as vessel pixel
# of pixels actually in non-vessels region

FPR =

# of correctly classified pixels
# of pixels in image FOV

Accuracy =

TP
(TP + FN)

SN =
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3.2.7 Specificity 

Specificity (SP) is the ability to detect non-vessel pixels. The specificity of a vessel 
segmentation algorithm reflects how good the algorithm is correctly identifying the non-vessel 
pixels.  

The formula for specificity is 

 

 

Where, TN and FP are the number of true negative and false positive results, respectively. Specificity 
can also be written as, 

SP = 1 - FPR 

3.2.8 ROC Analysis 

A receiver operating characteristic (ROC) curve plots the fraction of vessel pixels correctly 
classified as vessel, namely the true positive rate (TPR), versus the fraction of non-vessel pixels 
wrongly classified as vessel, namely the false positive rate (FPR). The closer the curve 
approaches the top left corner; the better is the performance of the system. The most 
frequently used performance measure extracted from the ROC curve is the value of the area 
under the curve (AUC) which is 1 for an optimal system. For retinal images, TPR and FPR are 
computed considering only pixels inside the FOV. 

4. SUPERVISED METHODS FOR RETINAL VESSEL SEGMENTATION 
Supervised methods exploit some prior labeling information to decide whether a pixel 

belongs to a vessel or not, while unsupervised methods perform the vessel segmentation 
without any prior labeling knowledge. In supervised methods, the rule for vessel extraction is 
“learned” by the algorithm on the basis of a training set of manually processed and segmented 
reference images often termed as “gold standard”. This gold standard data set consists of a 
number of images whose vascular structure must be precisely marked by an ophthalmologist. 
However, as noted by Hoover et al. [37] there is significant disagreement in the identification of 
vessels even amongst expert observers. These methods classify individual pixels and require 
hand-labeled gold standard images for training. In a supervised method, the criteria are 
determined by the ground truth data based on given features. However, a prerequisite for a 
supervised method is the availability of the ground truth data that are already classified, which 
may not be available in real life applications. As supervised methods are designed based on pre-
classified data, their performance is usually better than that of unsupervised ones and can 
produce very good results for healthy retinal images. 

Artificial neural networks have been extensively investigated for segmenting retinal 
features such as the vasculature[38] making classifications based on statistical probabilities 

TN
(TN + FP)

SP =
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rather than objective reasoning. These neural networks employ mathematical “weights” to 
decide the probability of input data belonging to a particular output. This weighting system can 
be adjusted by training the network with data of known output typically with a feedback 
mechanism to allow retraining. 

Nekovei and Sun [39] describe an approach using a back-propagation network for the 
detection of blood vessels in X-ray angiography. The method applies the neural network 
directly to the angiogram pixels without prior feature detection. The pixels of the small sub-
window which slides across the angiogram image, are directly fed as input to the network. The 
feature vectors are formed by gray-scale values from the sub window centered on the pixel 
being classified. The ground truth images of manually labeled angiograms are used as the 
training set to set the network’s weights. A modified version of the common delta-rule is to 
obtain these weights. The proposed method does not extract the vascular structure but is to 
label the pixels as vessel or non-vessel. 

Sinthanayothin et al. [40] preprocessed images with PCA to reduce background noise by 
reducing the dimensionality of the data set and then applied a neural network to identify the 
pathology. They reported a success rate of 99.56% for the training data and 96.88% for the 
validation data, respectively, with an overall sensitivity and specificity of 83.3% (standard 
deviation 16.8%) and 91% (standard deviation 5.2%), respectively. The result of the approach 
was compared with an experienced ophthalmologist manually mapping out the location of the 
blood vessels in a random sample of seventy three 20×20 pixel windows and requiring an exact 
match between pixels in both images. 

Niemeijer et al. [41] extracts a feature vector for each pixel that consists of the Gaussian 
and its derivatives up to order 2 at scales s = 1, 2, 4, 8, 16 pixels, augmented with the green 
plane of the RGB image and then, uses a k-nearest neighbor (kNN) algorithm to estimate the 
probability of the pixel belonging to a vessel. Each feature is normalized to zero mean and unit 
variance before classification. By thresholding the probability map a binary segmentation of the 
vasculature can be obtained. The algorithm is tested on the DRIVE data set resulting in average 
accuracy of 0.9416 and area under the ROC curve of 0.9294 

Staal et al. [42] presented a ridge based vessel segmentation methodology from colored 
images of the retina which exploits the intrinsic property that vessels are elongated structures. 
The technique is based on an extraction of image ridges, which are natural indicators of vessels 
and coincide approximately with vessel centerlines. Image primitives are computed by grouping 
the ridge pixels, therefore grouping the ridges to sets that approximate straight line elements.  
With these sets an image is partitioned into patches by assigning each image pixel to the closest 
line element. Every line element constitutes a local coordinate frame for its corresponding 
patch. Every line element defines a local coordinate frame termed as an affine convex set 
region within each patch, in which local features are extracted for every pixel. In total, 27 
features are selected from convex set regions collectively as well as from individual pixels using 
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a sequential forward selection method. A K-NN classifier is used for classification. Some authors 
suggests [43] that by combining ridge features across multiple scales, the local vessel size is 
decoupled from the model. The methodology is tested on the publically available STARE [37] 
and Utrecht database obtained from a screening programme in the Netherlands. The method 
achieves an average accuracy of 0.9516 and an area under the ROC curve  of 0.9614 on the 
STARE dataset. 

The use of a 2-D gabor wavelet and supervised classification for retinal vessel segmentation 
has been demonstrated by Soares et al. [44]. Each pixel is represented by a feature vector 
composed of the pixel’s intensity and two-dimensional Gabor wavelet transform responses 
taken at multiple scales. A Gaussian mixture model (a Bayesian classifier in which each class-
conditional probability density function is described as a linear combination of Gaussian 
functions) classifier is used to classify each pixel as either a vessel or non-vessel pixel. The 
probability distributions are estimated based on a training set of labeled pixels obtained from 
manual segmentations. The methodology is evaluated on the DRIVE and STARE datasets 
resulting in average accuracy of 0.9466 & 0.9480 and the area under the ROC curve as 0.9614 & 
0.9671 for DRIVE and STARE respectively. The algorithm takes in to account the information 
local to each pixel through image filters, ignoring useful information from shapes and structures 
present in the image. It does not work very well on the images with non-uniform illumination as 
it produces false detection in some images on the border of the optic disc, hemorrhages and 
other types of pathologies that present strong contrast. 

Ricci et al. [45] proposed a methodology to segment retinal vessels using line operators and 
support vector classification. A line detector which is based on the evaluation of the average 
grey level along lines of fixed length passing through the target pixel at different orientations is 
applied to the green channel of an RGB image and the response is thresholded to obtain 
unsupervised pixel classification. Moreover, two orthogonal line detectors are also employed 
along with the grey level of the target pixel to construct a feature vector for supervised 
classification using a support vector machine. With respect to other supervised techniques, the 
algorithm 1) requires fewer features, 2) feature extraction is computationally simpler, and 3) 
fewer examples are needed for training. The algorithm makes use of local differential 
computation of the line strength which makes the line detector robust with respect to non-
uniform illumination and contrast. Also the line detector behavior in the presence of a central 
reflex is quite satisfactory. The performance of both methods is evaluated on the publicly 
available DRIVE and STARE databases through ROC analysis, resulting in average accuracy of 
0.9563 & 0.9584 and the area under ROC curve as 0.9558 & 0.9602 for DRIVE and STARE 
respectively. 

Osareh and Shadgar [46] use multiscale Gabor filters for vessel candidate identification, 
then the features are extracted using principal component analysis. The parameters for Gabor 
filters are optimally tuned with experimentations. The image pixels are classified as vessels and 
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non-vessels using the corresponding feature vectors by Gaussian mixture model (GMM) and 
support vector machines (SVM). The methodology is tested on DRIVE as well as on the author’s 
dataset consisting of 90 normal and abnormal images. The classification accuracy obtained is 
95.24%, with 96.14% sensitivity and 94.84% specificity with GMM. The best overall accuracy, 
using optimal parameters for SVM is 96.75% with 96.50% sensitivity and 97.10% specificity. The 
methodology achieves area under the ROC curve as 0.965 on the DRIVE database. However, 
there are some false positives due to background noise and non-uniform illumination, the 
border of the optic disc and other types of pathologies and the thinnest vessels are also not 
detectable, however, these thin vessels are not of much clinical importance. 

Salem et al [47] proposed a RAdius based Clustering ALgorithm (RACAL) which uses a 
distance based principle to map the distributions of the image pixels. A partial supervision 
strategy is combined with the clustering algorithm. The features used are the green channel 
intensity, the local maxima of the gradient magnitude, and the local maxima of the large 
eigenvalue calculated from Hessian matrix. The same features are used with kNN and RACAL 
algorithms and later perform better for the detection of small vessels. The methodology attains 
a specificity of 0.9750 and sensitivity of 0.8215 on the STARE database. 

Xu and Luo [48] combines several image processing techniques with support vector 
machine(SVM) classification for vessel segmentation. In this methodology, the background of 
the green channel is normalized, the large vessels are segmented using adaptive local 
thresholding and the optic disk edges are removed. The original image is then processed by 
wavelets at multiple scales for feature extraction. The line detectors are used to identify thin 
vessels. A 12 dimensional feature vector for each residual pixel in the binary retinal image 
excluding large vessels is constructed and a support vector machine is used to distinguish thin 
vessel segments from all the fragments.  A tracking method based on a combination of vessel 
direction and the eigenvector of the Hessian matrix is used for thin vessel growth to obtain a 
segmented vessel tree. The method achieves an average accuracy of 0.9328 and an average 
sensitivity of 0.7760 on the DRIVE database. 

Lupascu et al. [49] introduces another supervised method known as feature-based 
AdaBoost classifier (FABC) for vessel segmentation. The 41-D feature vector is a rich collection 
of measurements at different spatial scales (√2, 2, 2√2 and 4), including the output of various 
filters (Gaussian and derivatives of Gaussian filters, matched filters, and 2-D Gabor wavelet 
transform), and the likelihood of structures like edges and ridges via numerical estimation of 
the differential properties of the intensity surface (principal and mean curvatures, principal 
directions, and root mean square gradient). This feature vector encodes a rich description of 
vessel-related image properties, namely local (pixel’s intensity and Hessian-based measures), 
spatial (e.g., the gray-level profile of the cross section of a vessel can be approximated by a 
Gaussian curve) and structural (e.g., vessels are geometrical structures, which can be seen as 
tubular). An AdaBoost classifier is trained on 789,914 gold standard examples of vessel and 
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non-vessel pixels. The method achieves an average accuracy of 0.9597, an area under the ROC 
curve of 0.9561 and a kaapa measure of 0.72 on the DRIVE dataset. The strength of FABC lies in 
its capturing a rich collection of shape and structural information, in addition to local 
information at multiple spatial scales, in the feature vector. FABC does not discuss the issues 
related to the connection of broken vessel segments and some local ambiguities present due to 
the convergence of multiple and variously bent vessels.  

The combination of the radial projection and the semi-supervised self-training method 
using SVM is employed by X. You [50] for vessel segmentation. The vessel centerlines and the 
narrow and low contrast blood vessels are located using radial projections. A modified 
steerable complex wavelet is employed for vessel enhancement. The line strength measures 
are applied to the vessel enhanced image to generate the feature vector. The SVM classifier is 
used in a semi-supervised self-training to extract the major structure of vessels. The segmented 
vasculature is obtained by the union of the two. The algorithm self learns from human-labeled 
data and weakly labeled data therefore yielding good results with decrease in the detection of 
false vessels. The method is very good in detecting narrow and low contrast vessels but prone 
to errors in case of pathologies. The average accuracy, sensitivity and specificity on the DRIVE 
database is 0.9434, 0.7410, and 0.9751 respectively and for the STARE database 0.9497, 0.7260, 
and 0.9756 respectively. 

Marin [51] presented a neural network based supervised methodology for the 
segmentation of retinal vessels. The methodology uses a 7-D feature vector composed of gray-
level and moment invariant-based features. A multilayer feed forward neural network is utilized 
for training and classification. The input layer consists of seven neurons, the three hidden layers 
consist of fifteen neurons each and output layer is comprised of single neuron. The method 
proves to be effective and robust with different image conditions and on multiple image 
databases even if the neural network is trained on only one database. The average accuracy, 
AUC, sensitivity and specificity on the DRIVE database is 0.9452, 0.9588, 0.7067, and 0.9801 
respectively and for the STARE database 0.9526, 0.9769, 0.6944, and 0.9819 respectively. 

Fraz et. al. [52] presented an effective retinal vessel segmentation technique based on 
supervised classification using an ensemble classifier of boosted and bagged decision trees. 
Their methodology has used a nine dimensional feature vector which consists of the vessel map 
obtained from the orientation analysis of the gradient vector field, the morphological 
transformation; line strength measures and the Gabor filter response which encodes 
information to successfully handle both normal and pathological retinal images. The important 
feature of bagged ensemble is that the reliable estimates of the classification accuracy and 
feature importance are obtained during the training process without supplying the test data. 
The ensemble classifier was constructed by using 200 weak learners and is trained on 200,000 
training samples randomly extracted from the training set of the DRIVE and 75000 samples 
from STARE databases. These parameters are chosen by empirically analyzing the out-of-bag 
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classification for a given number of training samples and the decision trees. The average 
accuracy, AUC, sensitivity and specificity on the DRIVE database is 0.9480, 0.9747, 0.7406, and 
0.9807 respectively and for the STARE database 0.9534, 0.9768, 0.7548, and 0.9763 
respectively. 

Table 1: Summary of supervised classification algorithms for vessel segmentation 

Methodology Database Sensitivity Specificity Accuracy 
Area under 
ROC 

Human 
Observer 

DRIVE 0.797 0.972 0.9473 - 

STARE - - 0.9354 - 

Sinthanayothin 
Local 

Dataset 
0.833 0.91 - - 

Niemeijer DRIVE - - 0.9416  0.9294 

Staal 
DRIVE - - 0.9442  0.952 

STARE - - 0.9516 0.9614 

Soares 
DRIVE - - 0.9466 0.9614 

SATRE - - 0.9480 0.9671 

Ricci 
DRIVE - - 0.9563 0.9558 

STARE - - 0.9584 0.9602 

Osareh and 
Shadgar 

DRIVE 
(SVM) 

0.9650 0.9710 0.9675 0.974 

DRIVE(GM
M) 

0.9614 0.9484 0.9524 0.965 

Salim STARE 0.8215 0.9750 - - 

Lupascu DRIVE - - 0.9597 0.9561 

Xu and Luo DRIVE 0.7760 - 
0.9328(0.0

075) 
- 

You et al., 2011 
[50] 

DRIVE 0.7410 0.9751 0.9434  

STARE 0.7260 0.9756 0.9497  

Marin et al., 
2011 [51] 

DRIVE 0.7067 0.9801 0.9452 0.9588 

STARE 0.6944 0.9819 0.9526 0.9769 

Fraz et al. [52] DRIVE 0.7406 0.9807 0.9480 0.9747 
STARE 0.7548 0.9763 0.9534 0.9768 

 

5. CONCLUSION 

Retinal digital image analysis is able to exploit the ease with which the retinal circulation can be 

visualized, photographed, and analyzed non-invasively in vivo. Using objective, quantitative measures 

from retinal vasculature which are based on principals of optimization of a branching vasculature, studies 

have been able to improve our understanding of the effect of systemic factors on the microvasculature. 

The most commonly performed quantitative measurement from digital retinal vascular image analysis has 
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been the AVR. Whilst this has proved to be a very useful research tool to measure generalized arteriolar 

narrowing, very large epidemiological studies have been required to have sufficient statistical power to be 

able to detect associations of this entity with systemic factors. It is also unclear from current studies 

whether the detection of retinal microvascular changes has additional predictive value above current 

standardized methods. With an increasingly aged population and increased strain on medical resources, 

the use of strategies such as telemedicine and widespread screening of individuals at risk of certain 

diseases will increase. Retinal vascular digital image analysis will play an ever greater role in clinical 

ophthalmology. 
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