
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Volume 4, No. 4; August 2016 

DOI: 10.14738/aivp.42.1960 
Publication Date: 23rd April, 2016 
URL: http://dx.doi.org/10.14738/aivp.42.1960 

 



 

 

 

 

TABLE OF CONTENTS 

 

 

 
EDITORIAL ADVISORY BOARD 

DISCLAIMER  

I 

II 

Wavelet Based Finger Knuckle and Finger Vein Authentication System   
               Sujata Kulkarni and Ranjana Raut 1 

Automatic Segmentation and Classification of Masses from Digital 
Mammograms 
                Basma A. Mohamed, Nancy M. Salem, Marwa M. Hadhoud and 

Ahmed F. Seddik 

17 

Technology-Assisted Carpal Tunnel Syndrome Rehabilitation using 
Serious Games: The Roller Ball Example 
               Loannis Pachoulakis and Diana Tsilidi 

24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Advances in  Image  and V ideo Processing Vo lume 4,  No.  4 ,  August 2016 
 

 

EDITORIAL ADVISORY BOARD 

Dr Zezhi Chen 
Faculty of Science, Engineering and Computing; Kingston University London 

United Kingdom 

Professor Don Liu 
College of Engineering and Science, Louisiana Tech University, Ruston, 

United States 

Dr Lei Cao 
Department of Electrical Engineering, University of Mississippi, 

United States 

Professor Simon X. Yang 
Advanced Robotics & Intelligent Systems (ARIS) Laboratory, University of Guelph,  

Canada 

Dr Luis Rodolfo Garcia 
College of Science and Engineering, Texas A&M University, Corpus Christi 

United States 

Dr Kyriakos G Vamvoudakis 
Dept of Electrical and Computer Engineering, University of California Santa Barbara 

United States 

Professor Nicoladie Tam 
University of North Texas, Denton, Texas 

United States 

Professor Shahram Latifi 
Dept. of Electrical & Computer Engineering University of Nevada, Las Vegas 

United States 

Professor Hong Zhou 
Department of Applied Mathematics Naval Postgraduate School Monterey, CA 

United States 

Dr Yuriy Polyakov 
Computer Science Department, New Jersey Institute of Technology, Newark 

United States 

Dr M. M. Faraz 
Faculty of Science Engineering and Computing, Kingston University London 

United Kingdom 
 

 

 

 

 
Copyr ight © Socie ty  for  Sc ience  and Educat ion Uni ted  Kingdom 3 

 

 



 

 

 

 

 

DISCLAIMER 

 

All the contributions are published in good faith and intentions to promote 
and encourage research activities around the globe. The contributions are 
property of their respective authors/owners and the journal is not 
responsible for any content that hurts someone’s views or feelings etc. 

 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 



 

 

Wavelet Based Finger Knuckle and Finger Vein 
Authentication System   
1Sujata Kulkarni and 2Ranjana Raut  

1Yeshwantrao  Chavan College of Engineering, Nagpur;  
RSTM University of Nagpur (India) 

2Electronics Department, SGM University Nagpur, India;  
taresujata@yahoo.com; r24rd164@rediffmail.com 

ABSTRACT 

Biometrics is the prominent technology for accurate and safe detection of claim identity.  This paper 
proposes a novel multimodal authentication system using finger knuckle (FK) and finger vein (FV).  
Finger Knuckle has unique bending and makes this a distinctive biometric identifier.  The vein pattern 
of all fingers of human being is not same. Each finger of same person has different vein pattern. It is 
the hidden part which is not seen by normal eye sight hence less possible to forge. The system consists 
of proposed prototype finger knuckle and finger vein image capturing devices, formation of own FK 
and FV image database acquired from proposed devices. Here feature extraction of FK images is based 
on Walsh Wavelet Transform and FV image on Hybrid Wavelet Transform. Proposed multimodal 
biometric authentications integrate transformed domain features vector of FK and FV at score level 
fusion using Bayesian and weighted sum method. The fusion of these two modalities using Bayesian 
method demonstrated the recognition accuracy of 98.3% and weighted sum 98.5 %.  Various weights 
of finger knuckle and finger vein affects the recognition accuracy. The better recognition accuracy is 
obtained at weight of 0.8 and 0.2. The performance index is improved i.e 98.5% and the Error equal 
rate is 1.5% as compare to unimodal biometric. Error equal rate is reduced by 10% than individual 
biometric system. For N user with M1 and M2 as test and training samples, for verification of one user, 
matching complexity is O (M1M2) and for N user O(M1 M2 x N). For identification, (N x M1) test 
samples and (N x M2) training samples are considered. So matching complexity is O [N (N-1) x M1] for 
each biometric. Using conventional matching the complexity is O [N (N-1) x M1 M2]. For multimodal 
biometric using FK and FV, matching complexity is O 2[N (N-1) x M1].  It shows great reduction in 
matching complexity using the proposed algorithms.    

Keywords: Finger knuckle, Finger vein, Wavelet, Hybrid Wavelet, Authentication, Fusion, Error Equal 
Rate, ROC curve  

1 Introduction 
Traditional authentication systems based on password, access card, lock and key etc. have a lot of 
issues of stolen the card, misuse of card, forgotten password and different password attacks. Today’s 
wireless world, transaction through internet is demanding from the users hence needs to develop an 
authentication system that gives more security of individual identity. Modern authentication system 
based on human physiological and behavioural detail gives security to personal information and not 
easy to forge is known as biometric recognition system. It is generally accepted that physical traits like 
iris, fingerprints, finger knuckle, finger vein, DNA finger print [1] can uniquely defined each member 
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of large population which makes them suitable for large scale identification. Reason of attraction of 
such traits is social acceptance and easy to use. Finger knuckle (FK) is user centric, contactless and 
unrestricted access control.  Texture and statistical features are available and easily extracted. It is 
independent to any behavioural aspect. No stigma of potential criminal investigation is associated 
with this approach [2]. Finger vein are  internal part hence impossible to forge, unique, reliable ,secure 
because not traceable by eye,  less failure to enroll rate (FET), no issues of wet, dry, dirt like finger 
print. Proposed paper uses finger knuckle and finger vein as two biometrics for authentication. 
Unimodal biometric authentication is performed by identifying only single trait. Each biometrics 
system is not able to enroll all types of data. Failure to enroll is big issue in unimodal biometrics. 
Unimodal biometrics trait experiences a lot of problems such as noise data, spoof attacks, intra-class 
variation and unacceptable error rate. The advanced biometric concept known as multimodal 
biometric systems are used to overcomes the limitations of unimodel biometric systems. It integrates 
multiple evidences such as multiple units, multiple samples, and multiple traits from multiple sources 
of information [3]. Multimodal system can combine correlated as well uncorrelated biometric traits.  
Multimodal biometric is more reliable and secure due to use of multiple evidences. The integration of 
multiple evidences is possible using fusion techniques at different level [4]. Categories of multimodal 
biometric depend upon the integration of different basic units. Such system requires longer 
verification time thereby causing inconvenience to the users. Due to these limitations, the number of 
identifiers (modalities) in a multimodal biometric system is usually restricted to two or three. 

The paper is organized as follows. Section 2 presents proposed multimodal system, Section 3 presents 
finger knuckle and FK database  Section  4 describe finger vein acquisition devices and FV data base,  
Section 5 discuss feature vector generation using Kekre and Hybrid wavelet transform.  Section 6 
discusses fusion of two modalities. Results and conclusion are presented in Section 7.    

2 Proposed Multimodal Authentication System 
The Proposed system uses finger knuckle and finger vein as biometric traits and integrate transformed 
domain features extracted from them at matching score level. It mainly consists of three components: 
finger knuckle unit, finger vein unit and score level fusion unit. Finger knuckle recognition is 
responsible for matching the input finger knuckle against the finger knuckle templates stored in the 
database to obtain finger knuckle matching scores. Finger vein recognition is responsible for matching 
the input finger vein against the finger vein templates to obtain finger vein matching score. This score 
is normalized using Min-max normalization. Score level fusion is obtained using weighted sum and 
Bayesian rule. It integrates matching scores from finger knuckle and finger vein recognition block and 
forms the new scores which make the final decision. The framework of proposed multimodal 
biometric authentication system shows the integration of finger knuckle and finger vein at score level 
as shown in Figure1 
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Figure 1: Framework of Proposed Multimodal System 

3 Proposed Finger Knuckle Acquisition Device 
Proposed prototype Finger knuckle capturing device is composed of light weight acrylic box with white 
background, finger supporter and digital camera (SonyDSC-W380) as shown in Figure 2. Camera 
captures the FK images with white and black background. The captured images with black background 
are darker than white background. Hence images with white background are used for reorganization. 

   

(a) (b) (c) 
Figure 2: Finger knuckle acquisition device (a) prototype device (b) frame work of device (c) Modified 

FKP device [20] 
 

During acquisition, user places finger from the notch at front side of device on finger supporter. 
Notch size is optimum, so user with any finger size can place finger on supporter and FK images 
can be acquired. During   FK images acquisition, translation or rotations of finger take place.  Such 
movement can increase the variation in finger knuckle feature of authenticate user. To overcome 
these limitations, device uses folding bar as guiding structure for finger tips and part of back side of 
finger. Finger bracket is designed for this purpose. The modification in capturing device is made with 
proper design using Solid Works 2013.    

• In modified device, finger notch is flexible and mounted on the finger supporter.  
• Modified FKP device is compact in size (140 mm x 130 mm x 90 mm), cost effective, user 

friendly and acquire FK images with high resolution (4300 x 3200 pixels).  
• Distance between the camera and knuckle is 89 mm and with white back ground.  
• The distance between the camera and supporter is 89.04 mm  
• Height of the device is reduced to 90 mm to avoid outside reflection during acquisition of FK 

images.  

The proposed proto type finger knuckle acquisition device survives under uncontrolled lighting 
conditions and deformation due to finger orientation and perspective projection.  Hence, users of the 
biometric authentication system can be relieved from the careful planning of acquisition environment 
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and unnatural hand orientation during capture. The FK images used in proposed system are acquired 
by ordinary cameras equipped on portable devices. 

3.1 Finger knuckle image database  
As per hand geometry, number of finger is available for acquisition. Proposed system indented to 
capture only the middle knuckle of right index and right middle finger.  Among five fingers, lower, 
middle and upper knuckles are present only on the four fingers except thumb. Small finger knuckle is 
too small in area. Database consists of finger knuckle of right index and middle knuckle of all classes 
to cover the entire population.  FK image database consists of 50 users (18 to 68 years) from an 
educational institute including different categories such as VIP, teaching, non-teaching, students and 
workers. To consider variant finger knuckle location and orientation, FK images are acquired in two 
phases with average interval of days and time. By using proposed image acquisition devices, Images 
from the same finger collected at different time are similar to each other while images from different 
fingers are different; this implies that FKP has potential for personal identification.   Figure 3 shows 
some of sample FK images acquired from the proposed device. 

    
User1_1index... User1_5index User1_1 middle... User1_5middle 

    
User1_1index.. User1_5index User1_1 middle... User1_5middle 

    
User1_1index… User1_5index User1_1 middle... User1_5middle 

             Figure 3: Some of sample finger Knuckle images acquired from proposed prototype acquisition 
device(a)Raw FK  (b) Cropped FK  (c) Resized FK samples  [20] 

4 Proposed Finger Vein acquisition Device 
Proposed FV image acquisition device consists of LEDs assembly, capturing unit, power supply unit, 
and display.  Finger vein acquisition device is based on NIR optical source and simple IR camera to 
capture the vein pattern. NIR assembly consists of series alignment of NIR LEDs of 750 nm non-contact 
with finger as shown in figure 4. Numbers of LEDs are chosen to cover whole finger of any person as 
thickness of finger changes person to person such as fat, medium and thin finger. Finger is placed on 
NIR assembly. When power in ON, light is radiated   from the NIR LEDs passes through the finger and 
is absorbed by haemoglobin of blood and shows dark blood vessel pattern. This pattern is captured by 
IR camera. Simple webcam without IR filter act as IR camera.  NIR imaging is safe because it penetrate 
only the superficial area of the finger. When light is radiated in the finger, temperature of the skin 
increases, but it is controlled by adjusting operational parameter of LED that make LED within safe 
temperature range [10]. In this system, finger is in non-contact with NIR LEDs and acquisition of vein 
is in milliseconds hence safer.  Here IR camera is installed on laptop. Driver of laptop are changed 
because webcam is inbuilt in laptop which senses the visible light while IR camera senses the IR light. 
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If the display screen is desktop, then driver are not changed. The physical set up finger vein acquisition 
is as shown in figure 5 

 
 

Figure 4: Optical source and camera set up of Finger vein device [21]   

 
 

                      (a)                                                                       (b)                                         (c) 
Figure 5: Physical set up of Finger Vein Device (a) Back view (b) Internal framework (c) Font 

view [21] 
 

4.1     Finger Vein Image database  
Total 50 users are considered during enrolment procedure. Ten samples of each unit are taken so total 
20 samples of each user. Database of 50 users is formed using 500 finger vein samples at different 
orientation. Database covers different categories like VIP person to worker class users and senior 
citizen. It is further classified as gender and age. Users of age of 18 to 65, fatty, weak and moderate 
health persons are involved. Finger vein samples of users with different categories are taken in order 
to analyze the failure to enrolled rate. It is noted that, three user could not enroll finger vein samples 
due to weakness whose haemoglobin level is not up to the mark. Another two users are not able to 
enroll due to their natural finger style. Alignment of vein pattern is not proper because of natural bend 
at first knuckle. Sample finger vein image are as shown in figure 6. The captured raw finger vein 
samples are of size 640 x 480 as shown in figure 6 (a) and (b). From the original vein samples middle 
part of fingers vein are cropped to obtain region of interest with finger geometry.      

 

(a) 

Power 
 Jack 

 

 IR camera 

LED assembly 

Power 
Supply 
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(b) 

Figure 6: Acquired Finger vein pattern (a) Raw finger vein pattern (b) cropped Finger vein samples 
Finger knuckle and Finger vein Enhancement 

 

Images captured from the modified FK device are raw images. These images are enhanced to get 
better clarity of unique features such as ridges, creases around the phalangeal joint of finger knuckle 
surface. This is very important step to improve the recognition. We use Weiner filter and reflection 
removal as pre-processing step to enhance the quality of FK images.  Images with many edges are 
handled by local wiener filter. Hence de noising all the FKP is done using Winner filter [17] .Original 
images has curvature surface hence results in non-uniform reflection. To obtain well distributed 
texture, we use the reflection removal technique [15]. The reflection filtered image is enhanced 
image from which feature are extracted.  Features are extraction using Kekre Wavelet Transform.  
During the enrolment stage, the raw vein pattern shows noise due to high temperature and 
transmission noise created by the IR radiation.  Actual features of vein pattern get hide due to such 
noise. Hence need to apply the pre-processing method to get better clarity from the raw samples.  

This paper explores the bilateral and median filtering techniques for noise removal. Median filter is 
used to remove noise in the form of defective pixel and make the samples noise free. Edge 
preservation is another property of median filter which is the important information for vein samples 
[19]. But edge retention using median is not applicable for all condition hence second de noising 
bilateral technique is used. Contrast adaptive histogram reduces amplified noise by clipping the 
histogram. Histogram is clipped at specific value called as clip limit. Generally amplification can be 
limited by common value between 3 and 4.The amplified part beyond the clip limit is uniformly 
redistributed among all histogram [11, 15] and get enhanced vein pattern. 

5 Feature Vector Extraction of Finger Knuckle  
Walsh is an orthogonal transform, so Walsh Wavelet is generated from Walsh transform [118]. 16 x 
16 Walsh Wavelet from 4 x 4 Walsh transform matrix as shown in Figure 7. 
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Figure 7: Walsh wavelet transform 

The ROI is selected to be of size 128 x 256. The Walsh wavelet transform of size 128 x 128 is selected. 
Extract all the features of knuckle from the flow shown in figure 8. These features are the energy 
coefficient calculated by following equation 1. 

 
Figure 8: Flow of Feature extraction using WWT 

𝑊𝑊𝑊𝑊𝐿𝐿𝐿𝐿 = ∑ ∑ 𝑊𝑊𝑊𝑊(𝑖𝑖, 𝑗𝑗)2𝑤𝑤−1
𝑗𝑗=0

𝑤𝑤−1
𝑖𝑖=0     (1) 

Where L=0, 1, 2; C = 0(LH), 1(HL), 2(HH) and W is the size of wavelet component in the different level 
i.e. 64, 32, 16 respectively. Similarly a set of 4 wavelet coefficients are obtained from HL and HH. The 
values of these 3 set of coefficients give 12 features from the first level, 12 from second and 12 from 
third so total 36 energy coefficients for left part of enhanced sample. The same procedure is carried 
out on right and centre block .Hence, the final feature vector has 108 feature values. The values of the 
feature vector are taken without normalization. Such feature vectors are generated for training 7 
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samples of each user and over database of 50 users.  Therefore, the training samples are 350.  A matrix 
file of all the feature vector of 350 samples is created. 

5.1 Feature Vector Extraction of Finger Vein   
Hybrid Wavelet Transform is used for combining the traits of two different orthogonal transform 
wavelets to exploit the strengths of both transform wavelets. The hybrid wavelet transform matrix of 
size N x N (say ‘TAB’) can be generated from two orthogonal transform matrices (say A and B 
respectively) with sizes p x p and q x q. where N = p*q = pq.  Hybrid transform matrix is generated 
from matrix A and B. Proposed finger vein recognition system developed the hybrid wavelet using 
Kekre and DCT for global feature extraction as represented in figure 9. 

 

                              Kekre Transform Matrix                     DCT Matrix          

 

Figure 9: Hybrid Wavelet Transform from Kekre and DCT   

Here, wavelet energy feature (WEF) is used to describe the vein texture.  Hybrid Wavelet (HW) 
Transform of the selected vein pattern ROI is taken. The wavelets will capture localized spectral 
information from the ROI. Use only ROI of size 128 X 128 pixels. At each level, Mth order Hybrid 
Wavelet matrix (M X M Size) is generated by M/4 (64X64) order Kekre Transform Matrix [24.Figure 10 
shows 1st level decomposition using Hybrid Wavelets. Take 128 X 128 finger vein Image and the first 
level The next level of decomposition is on matrix of size  N/2 X N/2 (half of the previous). This will 
continue K times for K level decomposition.  In case of Hybrid wavelets there is a problem, as the LL 
components has size less than N/2 (or M in case of MP X MP size wavelet). Next level decomposition 
becomes difficult as at every level the size is reduced by 1/P-1 factor, as well as the down sampling is 
also difficult.  
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The proposed a novel method   to overcome this issue discussed as follows.  Instead of taking the LL 
component form the Hybrid Wavelet; take low Frequency component generated by other wavelets 
like Kekre Wavelet.  As these wavelets have N/2 size component and generate separate set of Hybrid 
wavelet for each decomposition level shown in Table 1 

Table 1: Wavelet Coefficients blocks for Wavelet Energy Features 

Level 
(Image Size 
128*128) 

Kekre 
Wavelet LL 

Component Size 

Hybrid 
Wavelet LL 

Component Size 

Parameters  
used for WEF 

Generation using 
Hybrid Wavelets 

(M,P) 
 K=1 NA 32*32 M=32, P=4 

K=2 64*64 16*16 M=16, P=4 
K=3 32*32 8*8 M=8, P=4 
K=4 16*16 4*4 M=4, P=4 

 

Now, to generate the multi resolution analysis of the given Image data, here consider initial vein 
sample s i z e  as 128X128 Pixels. 

 
Figure 10: Transformed finger vein pattern using KWT and HWT 

  
 

Figure 11: Energy coefficients from the Hybrid wavelet sample 
 

   𝑊𝑊𝑖𝑖ℎ = ∑ 1𝑀𝑀
𝑥𝑥=1 ∑ (𝐻𝐻𝑖𝑖(𝑥𝑥,𝑦𝑦))2𝑁𝑁

𝑦𝑦=1                   (2) 

𝑊𝑊𝑖𝑖𝑣𝑣 = ∑ 1𝑀𝑀
𝑥𝑥=1 ∑ (𝑉𝑉𝑖𝑖(𝑥𝑥, 𝑦𝑦))2𝑁𝑁

𝑦𝑦=1                                          (3) 

  𝑊𝑊𝑖𝑖𝑑𝑑 = ∑ 1𝑀𝑀
𝑥𝑥=1 ∑ (𝐷𝐷𝑖𝑖(𝑥𝑥, 𝑦𝑦))2𝑁𝑁

𝑦𝑦=1                               (4) 

Copyr ight © Socie ty  for  Sc ience  and Educat ion Uni ted  Kingdom 9 
 

 



 
Sujata Kulkarni and Ranjana Raut; Wavelet Based Finger Knuckle and Finger Vein Authentication System. 
Advances in Image and Video Processing, Volume 4 No 4, August (2016); pp: 1-16 

 

1. Take Original Image and evaluate first level decomposition using Kekres Wavelets and Hybrid 
Wavelets. Use LH, HL, & HH Components of Hybrid Wavelets for generation of Wavelet 
Energy Distribution as per equations  

2. Use LL component of Kekre Wavelet and generate next level input using Inverse Wavelet & 
down sampling. This will be used as input for K=2. 

3. Using the input generated from Kekre Wavelet, perform Hybrid Wavelet Decomposition. For 
this level (K=2) the size of input image component is 64 x 64. Generate the Hybrid Wavelet 
by M=16 & P=4 and form the feature vector as discussed above. 

4. Repeat Steps 3 & 4 for next levels and use parameters as calculated in Table 4.6 as per the 
procedure discussed.  This procedure is shown for two levels K=1 & K=2. 

Using the above mentioned procedure the feature vector is generated, the feature vector has total 
144 coefficients for K=3(16 X 3X 3 = 144, 16 Coefficient Per Components X 3 Component Per Level X 3 
Levels of Components). Every decomposition level has reduced component size, hence the overall 
wavelet component energy goes on reducing and the value of feature vector coefficients goes on 
diminishing. Hence, the Feature Vector is normalized Each Level wise. Figure 6 shows the feature 
vector normalized level wise, here we can see the energy distribution. Three sections can be seen for 
five decomposition levels (K=3). This feature vector is used for matching of the vein pattern. These 
feature vector is matching with the enroll samples of finger knuckle and finger vein is matched with 
Euclidean distance to generate a score. 

6 Score Level Fusion using Bayesian Method 
Let   w1, w2 …. wn   represents  N  users enrolled in the database. Let x be   the feature vector 
corresponding to the primary biometric. Without loss of generality, let us assume that output of the 
primary biometric system is of the form  

                        P (𝐰𝐰𝐢𝐢| x), i  = 1, 2, · · ·, n                  (5)      

where P (wi| x) is the probability that the test user is wi| given the feature vector X.  If the output 
of the primary biometric system is a matching score, it is converted into posterior probability using 
an appropriate transformation.  

For the secondary biometric system, we can consider P (wi| x) as the prior probability of the test user 
being user ωi. 

Let y =[𝑦𝑦1,𝑦𝑦2,…,𝑦𝑦𝑘𝑘,𝑦𝑦𝑘𝑘+1,𝑦𝑦𝑘𝑘+2,…𝑦𝑦𝑚𝑚 ] be the second biometric feature vector, where 

𝑦𝑦1  through 𝑦𝑦𝑘𝑘  are continuous variables and 𝑦𝑦𝑘𝑘+1  through 𝑦𝑦𝑚𝑚 are discrete variables. The final 
matching probability of user  wi , given the primary biometric feature vector X and the second 
biometric feature vector Y, i.e., P (wi| x, y) is calculated using the Bayesian rule as [22] 

      𝑃𝑃(wi|𝑥𝑥,𝑦𝑦) = 𝑝𝑝�𝑦𝑦�wi�𝑃𝑃(wi|𝑥𝑥)
∑ 𝑝𝑝�𝑦𝑦�wi�𝑃𝑃(wi|𝑥𝑥)𝑛𝑛
𝑖𝑖=1

                            (6) 

Where X = input image feature vector 

P (wi|x))= Euclidean distance in terms of probability (Primary finger knuckle biometric) 

P (y|wi)) = Euclidean distance in terms of probability (Secondary finger vein biometric) 
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Theses Euclidean distances are converted in probability form in order to fuse at score level in the range 
of 0 to 1 

P (wi|x))  is the probability (FK) of user  given the primary biometric, 

P (y|wi)) Where y is the probability (FV) of user given the identity claimed by the user . The scores 
of both primary and secondary biometric are normalized by Min-max normalization. Post score 
normalization, normalized average score is calculated and considered as the new score for multimodal 
identification system. If the correlation of claim user is less than new score, it is accepted else it is 
rejected from the decision module 

Given a set of matching distance of finger knuckle recognition are {dfk}, for k =1, 2, 3…, n, the 
normalization scores are given by, 

 
(7) 

Where  dfk, Sfk are matching distances and matching score after normalization of finger knuckle 

respectively. Similarly dfvv, Sfv are the matching distances and matching score after normalization of 
finger vein biometric calculated using following equation as [feig]. 

 
(8) 

 

The fusion method is tested on own finger knuckle and finger vein database consisting of   500 samples 
each with 10 samples of each user and each trait. So in total 1000 finger knuckles and finger veins are 
considered. The experimental test has shown the great improvement in the recognition accuracy of 
multimodal over individual biometric system which is represented in terms of TAR vs. TRR and 
threshold   graph as shown in Figure12. 

  

(a) (b) 

 Figure 12:  Recognition accuracy using Bayesian method        
  

The graphical representation shows that the true acceptance rate increases using Bayesian fusion 
method. So indirectly the Error equal rate (EER) reduces as compared to the individual finger knuckle 
and finger vein. Table 2 shows the recognition accuracy of finger knuckle and finger vein using 
Bayesian method.  
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Table 2: Recognition Accuracy of Multimodal system using Bayesian method 

 

 

  

 

6.1 Score Level Fusion using Weighted Sum Method 
Matching algorithms for finger knuckle and finger vein based recognition system are different. In 
both the cases, Euclidean distances are used for matching results of finger knuckle and finger vein 
recognition. Therefore, matching results scores of finger vein recognition are normalized. The Min-
max normalization [6] simplest technique is used. The matching score obtained from Hybrid Wavelet 
Transform and Walsh Wavelet Transform are fused at score level. The fusion is done using weighted 
sum technique. 

Let Wfk and Wfv are weights of finger knuckle (WWT) and finger vein (HWT) respectively. The weights 
are given by 

 
(9) 

 
(10) 

 

Where Cfk  = (TAR / total images) * 100; for Walsh wavelet transform 

              Cfv = (TAR / total images)*100;   for Hybrid wavelet transform 

 Mfk and Mfv  are matching score of finger knuckle (WWT) and  finger vein (HWT) respectively. The 
final score obtained after fusion [22]is as follows 

 
(11) 

 

Here Wfk and Wfv are their weights is the fusion score. The weights Wfk and Wfv   are varied over 

the range [0, 1], such that the constraint Wfk + Wfv + =1 is satisfied [22].  

Table 3 presents the recognition accuracy of fusion at different weights of finger knuckle and finger 
vein. Here, weight for finger knuckle is the range (0.9 - 0.5) and finger vein in the range (0.1 -0.5) are 

changed such that constraint Wfk + Wfv =1 is satisfied. 

Table 3 presents the recognition accuracy of fusion at different weights of finger knuckle and finger 
vein. Here, weight for finger knuckle is the range (0.9 - 0.5) and finger vein in the range (0.1 -0.5) are 
changed such that constraint + =1 is satisfied. 

It is observed that for recognition accuracy using multimodal recognition system is in the range of 96.5 
% to 97.5% depending on the weight used for finger knuckle and finger vein traits.  For finger knuckle 
weight in the range of 0.7 to 0.8, system has maximum recognition accuracy of 98.3 % to 98.5 %.  For 
equal weight, recognition accuracy is 97.5 %. The recognition accuracy of unimodal system using finger 
knuckle and finger vein by using different algorithms is in the range of 90 %. The recognition accuracy 

Biometric Fusion Recognition Rate (%) 
TAR FAR 

Finger  knuckle (WWT) 88.67 11.33 
Finger Vein(HWT) 88.22 11.88 

Score Fusion 98.3 1.7 
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of unimodal system using finger knuckle and finger vein by using different algorithms is in the range 
of 90 to 93 %. 

Table 3 Recognition Accuracy of Multimodal system using Bayesian method at different weights  

Wfk Wfv Fusion Recognition 
Rate (%) 

0.9 0.1 96.5 
0.8 0.2 98.5 
0.7 0.3 98.3 
0.6 0.4 97.3 
0.5 0.5 97.5 

Figure 13 shows the performance of multi modal recognition system in terms of TAR Vs TRR using the 
weighted sum rule. Table 4 presents the recognition accuracy of multimodal system using score fusion 
level 

             

(a)                                                                           (b) 

Figure 13:  Recognition accuracy of multimodal biometric system using weighted sum        

Table 4.  Comparison of Recognition accuracy of multimodal system  

 

 

 
 

 

The ROC plot is a graphical representation of Genuine Acceptance Rate (GAR) and False Acceptance 
Rate (FAR). Matching decision depends upon the threshold value that shows similar or correlates the 
claim template to stored template. ROC curve of figure 14 shows the comparison of score fusion 

 

 

Figure 14: ROC Curve for score fusion 

Multimodal 
Biometric 

Fusion Recognition Rate   
performance (%) 

TAR FAR 

Weighted Sum 98.5 1.5 

Bayesian 98.3 1.7 
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ROC curve shows the better performance in recognition of genuine user using weighted fusion 
compared to Bayesians fusion. Score level fusion using weighted sum and Bayesian achieved less 
False Acceptance of imposters compared to individual finger knuckle or finger vein. 

The complexity of the proposed algorithm is summarized a under. Let N represent total number of 
user and each user has M samples. Let M1 and M2 represents number of test and training samples 
used such that M1+ M2 = M. So we select (M1 x N) test samples and (M2 x N) samples. For verification, 
each test sample Ti (Ti for i = 1 to 3) is compared with all training samples Trj ( Trj for j =1 to 7), So for 
one user matching complexity is O(M1M2) and for N user O(M1M2 x N). 

For identification, (N xM1) test samples and (NX M2) training samples are considered. So matching 
complexity is O [N (N-1) x M1] for each biometric. Using conventional matching the complexity is O [N 
(N-1) X M1 M2]. For multimodal biometric using FK and FV, matching complexity is O 2[N (N-1) x M1].  
For N = 50 users and M1 = 3 (test samples) and M2 = 7(training samples), complexity using 
conventional method is 51450 tests need to perform. Proposed algorithms performed 7350 tests for 
matching, which shows great improvement in time complexity. However the complexities of 
algorithms depend on number of features used to represents the samples in the database.  If each 
sample is represented by P features, then the complexity of the algorithm is O [P x N (N-1) x M1]. In 
the proposed multimodal recognition algorithm, 500 finger knuckle and 500 finger vein samples are 
used . For fusion at score level using weighted sum, requires 500 additions and 1000 multiplications. 
In general, number of additions and multiplication required would be N and 2N. 

7 Results and Conclusion 
Proposed multimodal biometric authentication integrates transformed finger knuckle and finger vein 
features using score level fusion. To demonstrate the efficiency recognition, experiments based on 
own finger knuckle and finger vein database performed.  The finger knuckle and finger vein features 
are successfully integrated using Bayesian and weighted sum method. The recognition accuracy of 
integrated biometric is improved as compared to individual finger knuckle and finger vein. The fusion of 
these two modalities using Bayesian method demonstrated the recognition accuracy of 98.3%. Various 
weights of finger knuckle and finger vein affects the recognition accuracy. The better recognition 
accuracy is obtained at weight of finger knuckle is 0.8 and finger vein is 0.2. The performance index is 
improved i.e. 98.5% and the Error Equal Rate is 1.5%. The multimodal biometric recognition accuracy 
improved by these two fusion methods. Error equal rate is reduced by 10% than individual biometric 
system. The weighted sum fusion reduces error equal rate by 0.2 % as compared to Bayesian method.  
However multimodal system has the limitations of high setup cost, high computational complexity and 
non-standard classification rule.  In the proposed algorithm, matching complexity is O [N (N-1) x M1] 
for each biometric. Using conventional matching the complexity is O [N (N-1) x M1 M2]. For multimodal 
biometric using FK and FV, matching complexity is O 2[N(N-1) x M1].  It shows great reduction in 
matching complexity using the proposed algorithms.    
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ABSTRACT   

Breast cancer is one of the leading causes of death among female cancer patients. Mammography is 
the most efficient method for the early detection of abnormalities that are associated with breast 
cancer. Masses and micro calcifications are the most popular abnormalities that indicate breast 
cancer. The proposed paper intends to develop an automated system for assisting the analysis of 
digital mammograms. First, a preprocessing step is applied to enhance images followed by a 
segmentation step that is based on morphological operations and Otsu’s thresholding techniques. 
Thereafter, shape features are extracted from the segmented region and used in the classification 
process. Finally, the classification step to classify the segmented shape as round, oval, lobular, or 
irregular. The algorithm is tested using 270 mammogram images from the Women Health Care 
Program (WHC) and 142 publicly available images from the Digital Database for Screening 
Mammography (DDSM). Results show that the proposed technique effectively detects and segments 
masses from mammogram images. The shape of segmented masses is classified into either round, 
oval, lobular, or irregular. Round and oval shapes are classified with 100% accuracy while lobular and 
irregular shapes results in accuracy of 93% using the ANN for the WHC dataset and 100%. On the other 
hand, accuracy for images from the DDSM is 100% and 91.3% respectively. 

Keywords: Breast Cancer, Digital Mammograms, Otsu’s threshold, BI-RADS™ Categories.   

1 Introduction  
Breast cancer is the most commonly detected type of cancer among women all over the world. Due 
to the unawareness, there is an increase in the cases that are detected and diagnosed in advanced 
stages of the cancer [1]. To help in the early detection of this type of cancer, screening programs are 
required to detect the early signs of the breast cancer. Currently, mammography is a very effective 
method for the early detection of masses or abnormalities. It can detect 85 to 90 percent of all breast 
cancers. Masses and micro calcifications are signs that indicate breast cancer.  

According to Breast Imaging Reporting and Data System (BIRADS), the shape, size, margins, and 
density are the features that are used to characterize masses [2-4]. The shape could be round, oval, 
lobular, or irregular. The shape and margin properties play an important role in classifying the masses. 
It is observed that benign tumors have a round, oval or lobular shapes while malignant have irregular 
or lobular shapes with a speculated margin. With the advances in computer technology, Computer-
aided detection systems (CAD) have been developed to improve breast cancer screening and 
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diagnosis. The CAD system helps in processing large number of images and it involves digital image 
processing, image analysis, artificial intelligence, and software development. 

In the literature, many methods have been developed for the detection and classification of masses 
or microcalcifications [5-13]. For the detection of masses, the Growing Neural Gas (GNG) has been 
used with the Supported Vector Machine (SVM) [5]. A sensitivity of 89.3% is reported when using a 
set of 997 images from the DDSM database. In the work proposed by Tzikopoulosa et al. [6], the breast 
density estimation and the asymmetry detection are used for the segmentation and classification of 
mammograms from the mini-MIAS database. Statistical features for pair of mammograms were 
computed and the difference is used to define the asymmetry followed by SVM with a success rate of 
84.47%.  

Region growing and Wavelet Transform are used in the work proposed in [7]. Features are extracted 
and the classification is performed using the SVM. Images were used from the MIAS database and a 
local dataset from the hospital of Istanbul University (I.U.) in Turkey. The K-means clustering method 
is used in [8] to detect masses. A set of 650 images from the DDSM database is used and results in a 
sensitivity of 83.24%, and a specificity of 84.14%. The Artificial Neural Network (ANN) is used with 
shape and texture features in [9]. A set of 226 images (109 malignant and 117 benign masses) were 
used. The sensitivity and specificity are 78.1% and 79.1% respectively.  

Regarding the shape of the masses, Vadivel and Surendiran [10, 11] developed an algorithm for 
classifying masses into the four basic shapes; round, oval, lobular, and irregular. Shape features have 
been extracted and then the feature vector is applied to the C5.0 decision tree algorithm and fuzzy 
inference systems. The algorithm is tested using 224 mammogram masses from DDSM database. They 
achieved accuracy of 87.76% in differentiating the four mass shapes, 100% in differentiating between 
round and oval masses, and accuracy 93.29% in differentiating between lobular and irregular masses 
[11].  

The SVM and the Linear Discriminant Analysis (LDA) have been used to classify 200 and 3600 regions 
of interest from the MIAS and DDSM databases respectively. Results from the two classifiers are 
compared and results show a better performance for the SVM as reported by Costa et al. [12]. 

In this paper, a new method to segment and classify masses from digital mammograms is proposed. 
This paper is organized as follows: Section 2 presents the proposed detection and classification 
method. Section 3 describes the experimental results and the conclusion is given in Section 4. 

2 Proposed Method 
This section describes the proposed method for detection and classification of mases from digital 
mammograms. Figure 1 shows a block diagram of the proposed method and its four main stages. In 
the beginning, a preprocessing is applied to enhance images followed by a segmentation stage that is 
based on morphological operations and Otsu’s thresholding techniques to detect masses. Thereafter, 
shape and texture features are extracted from the segmented region. Finally, the classification stage 
which consists of two sequential steps; the first one to distinguish masses as either regular or irregular. 
The second step is applied to distinguish the regular mass as either oval or round and the irregular 
mass as either lobular or irregular. Three different classifiers have been used in the classification stage 
which are: the ANN, the SVM and the K-Nearest Neighbor classifier (KNN). 
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 Figure 1: Block diagram of the proposed method.   

2.1 Datasets 
In this study, two different databases are used. 270 images have been collected from Women Health 
Care Program (WHC) [14], which is a large-scale initiative for women's healthcare comprising digital 
mammograms for early detection of breast cancer. These images were previously investigated and 
labelled by expert radiologists based on technical experience and biopsy. The database contains 270 
mammograms including 185 malignant and 85 benign cases (73 are round, 83 are oval, 18 are lobular 
and 96 are irregular). All images are digitized at a resolution of 2294x1914 pixels. 142 mammograms 
have also been used from the DDSM digital image database [15] that contains 96 malignant and 46 
benign masses (7 are round, 17 are oval, 21 are lobular and 96 are irregular).  

2.2 Pre-processing 
A pre-processing stage is required to improve the image quality and to enhance the segmentation 
results. Image border cleaning is applied to remove any artifacts like the pectoral muscle and any 
labels attached to the border of the image. Then the intensity adjustment is applied to improve the 
contrast between the mass structures and surrounding texture of the breast tissues. These steps are 
shown in Figure 2. 

 

Figure 2: The preprocessing stage: (a) Original mammogram, (b) Border clearing, and (c) Contrast 
adjustment. 

2.3 Mass Segmentation  
The goal of segmentation stage is to identify the region of interest (mass) and this is achieved by 
applying the Otsu’s threshold [16] and morphological operations [17] such as erosion and opening to 
extract this region. In this paper, the Otsu’s threshold technique alone is not efficient enough to get a 
good result in identifying the mass region, so a constant is added to a global threshold that can be 
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used to convert an intensity image to a binary image. The constant value lies between 0 and 1. Figure 
3 shows segmented masses. 

 

Figure 3: Examples of extracted masses. 

2.4 Feature Extraction  
Feature extraction is very important in the classification of masses. There are many different features 
that are used in mass classification; the most common features are texture and shape features. The 
BIRADS specifies that benign masses are round, oval, lobular and malignant masses are lobular or 
irregular shape. In this work, shape and texture features such as area, perimeter, major axis, minor 
axis, thinness ration, eccentricity, equivdiameter, dispersion, compactness, circularity, roundness, 
elongation, shape index and entropy. These features are extracted from segmented regions and then 
the features are normalized and ranked using absolute value two-sample t-test to select the most 
effective features.  

2.5 Classification   
In this stage, the segmented mass is firstly classified as either regular or irregular; then the regular 
masses are classified into round or oval and the irregular masses into lobular or irregular. In this paper, 
a comparison is performed between ANN [18], K-Nearest Neighbor [19] and SVM. 

3 Experiments and Results 
The MATLAB 2015 software is used to implement the proposed algorithm. In the beginning, the 
pectoral muscle removal and image enhancement were applied to improve the mass segmentation. 
As mammograms have different intensity contrast levels as a result of various breast density levels for 
different patients, it is difficult to select an optimal image enhancement technique. Masses were 
brighter than the surrounding area, so it can be detected and segmented by thresholding. The Otsu 
threshold is used to obtain a binary image followed by morphological operators to remove isolated 
pixels that are not related to the mass. Experiments show that results of the mass detection improved 
when adding a predefined constant the threshold value obtained by the Otsu threshold algorithm. 

For images from the WHC, the segmentation results in masses detection with 100% accuracy. For 
images from the DDSM, accuracy of 90% is obtained. 

Segmented masses are used to extract 15 shape and margin features. These features are extracted 
from segmented regions and then features are normalized and ranked using absolute value two-
sample t-test to know the most significant features.  The features are ranked as follows: 
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Thinness ratio Major axes /minor axes 
Compactness Perimeter 

Elongation Area/perimeter 
Shape index Major axes 
Circularity 1 Dispersion 

Entropy Equiv diameter 
Eccentricity Area 

 Minor axes 
 

The classification stage consists of two steps; first step is to classify masses as either regular or 
irregular. Experimental results for classifying the masses as either regular or irregular of the first and 
second databases are shown in Figure 4. Different numbers of features have been used with three 
different classifiers. As shown in Figure 4-a for the WHC dataset, when using the thinness ratio only, a 
result of 100% is obtained with the three classifiers. Best results obtained when using the ANN with 
less number of features and then decreased with increasing the number of features. Second best 
results obtained when using the SVM classifier. The KNN has better performance with two to four 
features only.  

As shown in Figure 4-b for mammograms from the DDSM dataset, best results obtained when using a 
feature vector of seven to 11 feature with the ANN or the SVM. Results using the KNN is about 93%. 

  
(a) (b) 

Figure 4: First classification step using: (a) WHC dataset, and (b) DDSM dataset 

The second step of the classification is used to classify regular masses into round or oval and irregular 
masses into lobular or irregular. Results of this step are summarized in Table 1 when one feature 
(roundness) only is used. A comparison between the proposed method and other methods from the 
literature is summarized in Table 2.  

Results are compared to these reported in [10, 11]. The proposed algorithm used less number of 
features for the first classification step. It is important to declare that a very good performance is 
obtained when using thickness ratio as one feature in the first step with the ANN, SVM and KNN with 
the WHC dataset. A set of seven to eleven features were enough to get good performance with the 
DDSM dataset.  On the other hand, there is only one feature is used in the second step of classification  

Table 1: Performance of the second classification step. 

Dataset Shape Accuracy % 
ANN KNN SVM 

WHC dataset 
Round vs. oval 100  % 100  % 98.7  % 

Lobular vs. 
irregular 93  % 92  % 84  % 

DDSM dataset 
Round vs. oval 100  % 100  % 92.9  % 

Lobular vs. 
irregular 91.3  % 90  % 85  % 
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Table 2: Performance comparison 

Methods Database 
No. of 

Features Classifier 
Accuracy 

RO IL 
Surendiran [10] DDSM 19 ANN 98.32 % NA 

Vadivel [11] DDSM 17 Fuzzy inference 
system 100 % 93.29 % 

Proposed method 
 

WHC Local 
dataset 15 

ANN 100 % 93 % 
KNN 100 % 92 % 
SVM 98.7 % 84 % 

DDSM 15 
ANN 100 % 91.3 % 
KNN 100 % 90 % 
SVM 92.9 % 85 % 

Where I = Irregular, L= Lobular , R= Round and O = Oval 
  

4 Conclusion  
In this paper, an algorithm for automated detection and classification of masses in digital 
mammograms is proposed. The method consists of four main stages, preprocessing, segmentation, 
feature extraction, and classification. The proposed algorithm is tested using a set of 270 digital 
mammogram images from the WHC and 142 mammograms from the DDSM digital image database. 
Results show that the proposed technique effectively detects and segments all masses from the 
mammogram images with accuracy of 100 % and 90% for the WHC and DDSM datasets respectively. 
The classification stage consists of two steps. Comparable results were obtained when using the ANN 
classifier to other methods in the literature. In this paper, three different classifiers were tested and 
results show a good performance for the ANN compared to the KNN and SVM. 
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ABSTRACT 

The adverse effects of improper posture and unhealthy computer usage habits on human physiology 
have been well documented. Prominent among these, the Carpal Tunnel Syndrome (CTS) is a medical 
condition where the median nerve passing through the wrist’s carpal tunnel is compressed causing 
pain, numbness and tingling in affected parts of the hand. Depending on the severity of the symptoms, 
treatment may include physiotherapy and/or surgery. The present paper discusses possibilities that 
technology-driven physiotherapy based on serious games can augment a more traditional 
physiotherapy exercise curriculum. Accordingly, we present a Unity3D game called Roller Ball, the 
scenario of which combines CTS-specific physiotherapy exercises in a natural scenario-based way to 
guide a ball across a bridge in a 3D scene. The game employs the Leap Motion sensor, whose detailed 
wrist and hand (including fingers) tracking abilities make it a promising hardware platform for 
rehabilitation oriented exercises intended for patients suffering from CTS. 

Keywords: Carpal Tunnel Syndrome, Physical Therapy, Leap Motion, Sensors, Serious Games. 

1 Introduction 
Carpal tunnel syndrome (CTS) is a medical condition in which the median nerve is compressed as it 
travels through the wrist’s carpal tunnel, causing pain, numbness and tingling in parts of the hand that 
receive sensation from the median nerve [1]. Many patients resort to physiotherapy to reduce the 
pain and follow an exercise schedule for mobility and strength. Conservative management of 
symptoms related to CTS include exercises which involve tendon gliding of the finger flexor tendons 
and nerve gliding of the median nerve [2], [3]. Individualized therapy may also include additional 
exercises to increase muscle strength in the hand, fingers and forearm – and in some cases, the trunk 
and postural back muscles – as well as stretching exercises to improve flexibility in the wrist, hand and 
fingers. The goal of physical therapy is to reduce the severity of symptoms, to possibly eliminate the 
need for surgery and to permit the patient to be active and functional in everyday life. Physical therapy 
is also important following CTS surgery to help patients restore strength to the wrist and to retrain 
them to stray from the bad habits that may have led to the symptoms in the first place [4]. However, 
physical therapy is a slow process and it often takes weeks or months before positive effects are felt. 
During therapy, patients have to perform time consuming, repetitive and, as a result, boring exercises. 
Whereas in some cases the presence of a physical therapist may not be strictly necessary after the 
first few establishing sessions, in other cases mounting physiotherapy expenses may make it difficult 
to schedule sessions as frequently as may be required. It is fairly common for patients to attend a 
number of intensive physiotherapy sessions and then be given an exercise curriculum and schedule to 
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follow at home on a regular basis, checking with the physiotherapist more sparingly. As lack of 
motivation arising from the repeatability and predictability of the exercises sets in, patients begin to 
neglect to perform their exercise program at home as regularly as they should [5]. Therefore, 
transforming traditional physiotherapy exercises into interesting and hopefully fun games carries a 
special promise to unsupervised therapy, as goal oriented, highly interactive games can provide the 
necessary motivation to carry out and complete an exercise schedule at home. In addition, game 
features such as being in control of a 3D world, combined with elements such as achievements, high 
scores, rewards and positive feedback, can draw patients to lengthier game sessions and thus speed 
up their recovery [6]. 

The effectiveness of a therapeutic game system is commonly based on assessing patient progress 
during rehabilitation. Sensor technology has matured sufficiently to persuasively and un-obstructively 
be integrated in game solutions. Indeed, three ubiquitous motion tracking sensors in today’s games 
(Nintendo’s Wii, Microsoft’s Kinect and the Leap Motion sensor) have different philosophies and 
follow different approaches to bring motion capture to their host game platforms. Nintendo’s Wii, 
released in 2006, was the first home video game console to use motion-sensing technology [7]. The 
primary Wii remote controller detects movement in three dimensions. In addition to the usual 
buttons, it has a built-in accelerometer combined with infrared camera which allows it to sense its 
position in 3D space and detect acceleration along three axes. The remote controller connects to Wii 
using Bluetooth with an approximate range of 9 meters. Additional Wii-compatible controllers include 
the Nunchuck (which features an accelerometer and a traditional analog stick with trigger buttons) as 
well as a Balance Board which contains several sensors that calculate the mass of the player standing 
on it and his/her center of gravity. There have been attempts to combine the benefits of Nintendo’s 
Wii with other projects to produce new integrated rehabilitation systems [8]. 

Wii has a large user base and has been effective in exercising the entire human body. For example, 
post-stroke patient condition has shown to improve after the use of Wii Fit Balance Board for 
rehabilitation. Whereas many Wii-based games make use of the Balance Board extension, it is a risky 
piece of hardware for Parkinson’s disease patients, as it may lead to falls [9]. In addition, all Wii games 
require a handheld controller to capture the player’s movement, which may be troublesome for some 
patients. In addition, excessive game play, tiredness and the enthusiasm of group play may lead to 
injuries related to falls or player body part collisions. Cases reported include acute tendonitis of right 
infraspinatus, dislocation of left patella, medial meniscal tear, and acute onset of carpel tunnel 
syndrome (see for example [10], also [11]). Finally, Wii’s remote control is supposed to be grasped and 
does not allow delicate hand movements (flexions, extensions, deviations). 

Microsoft’s Kinect is a motion sensor bar initially built as an alternative input device to a remote 
control to the Xbox 360 video game console and later also released for Windows PCs. Kinect uses a 
Natural User Interface (NUI) to enable user interaction with the game environment through gestures 
or voice commands. The sensor bar contains an RGB camera and a depth sensor composed of an 
infrared emitter and a monochrome CMOS to offer robust 3D data capturing as well as a multi-array 
microphone used to isolate players’ voices from the noise in the room. The supporting Software 
Development Kit (SDK) enables recognition of six players and can provide continuous skeletal tracking 
of two of them and can be programmed in C++, C#, and Visual Basic.Net [12]. 

Evaluation of the Kinect sensor in medical applications requiring a motion capture device show that it 
is capable of sufficiently precise skeleton joint tracking in many physical therapy and rehabilitation 
treatments requiring large “macroscopic” movements of body parts. At the same time, there are some 
skeleton tracking issues arising from data noise and false recognition of some scene objects. As an 
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example, confusing a chair’s leg with a siting patient’s leg incapacitates the development of 
applications for individuals using wheelchairs or walkers. The results of clinical experiments with 
volunteers asked to perform arm and leg abductions and flexions showed that Kinect tracks movement 
accurately but it may underestimate arm movements and overestimate leg movements by up to 30% 
[13].  

Techniques such as computational algorithms are also used to reduce tracking errors and improve 
Kinect’s motion tracking accuracy. However, due to the appreciable random positional errors involved, 
the Kinect sensor is an appropriate therapeutic tool for wrist/hand joint tracking. 

At present, the most promising candidate sensor for technology-based CTS-oriented rehabilitation 
seems to be the Leap Motion controller, a small USB peripheral device which is commonly placed on 
a table, facing upward. Using two monochromatic IR cameras and three infrared LEDs, the device 
commands a roughly hemispherical area out to a distance of about 1 meter from the sensor. The LEDs 
generate pattern-less IR light and the cameras generate frames of reflected data at a rate of close to 
300 fps. This data stream is fed to the host computer through a USB cable, where Leap Motion’s 
supporting software combines concurrent 2D frames generated by the two IR cameras to generate 
accurate synthetic 3D position data for the hand 

 

Figure 1: Sample screen-shot from the Roller Ball game tailored to Carpal Tunneling Syndrome 
rehabilitation. Using CTS specific exercises such as extension/flexion and radial/ulnar deviation, the patient 
has to successfully guide a ball on a continuously reconfigurable bridge, while avoiding a number of moving 
obstacles. The insert in the bottom right part of the screen-shot shows the wrist currently in an extension 

gesture to hold the ball back from moving ahead. 

In a study conducted by [14], the Leap Motion sensor was employed in an open source (JavaScript) 
version of the game Fruit Ninja for stroke patient rehabilitation. The original game was modified for 
the needs of the study and mouse events were replaced by hand movement tracking. The pilot study 
involved 14 patients with stroke, who were asked to play the game for one minute, while they were 
able to choose the appropriate difficulty level for their condition. The results showed a general 
satisfaction of the users, who considered this way of rehabilitation engaging, useful and would use it 
at home. In this work we explore key advantages and capabilities of the Leap Motion sensor for the 
creation of CTS-oriented serious games. Accordingly, we have created a 3D serious game called Roller 
Ball – a relevant screen-shot of which appears in Figure 1 – which requires users to perform CTS-
specific exercises (extensions/flexions and radial/ulnar deviations of the wrist, shown in Figure 2) to 
successfully guide a ball over a continuously reconfigurable bridge without falling in the void below. 
The bridge is made of planks, some of which periodically move to form gaps and discontinuities. In 
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addition, a number of moving obstacles must be avoided to make it to the other end of the bridge 
without being knocked out of it. 

 

Figure 2: The left column presents four wrist physiotherapy exercises commonly used to treat Carpal 
Tunnel Syndrome. Each exercise is detected in the game as a gesture and is mapped onto an action on the 

ball as shown in the right column. 

 
2 Roller Ball: A Serious Game tailored to Carpal Tunnel Syndrome 

based on the Leap Motion Sensor 
The Roller Ball game is developed in Unity3D and uses CTS-specific physiotherapy exercises to guide a 
ball across a 3D scene along a bridge, while trying to avoid moving obstacles or fall off the bridge. 
Relevant game scenes appear in Figures 1, 3 and 4. The CTS-specific exercises used to guide of the ball 
appear in Figure 2 and include Flexion/Extension for the Go/Stop ball movement and Radial/Ulnar 
deviation to move the ball to the left/right, respectively (depending on which hand is being exercised). 
To make the game more challenging to the user, if one of the above gestures is not detected, the ball 
moves forward along a straight path at a low constant speed. Leap Motion’s supporting software 
combines concurrent 2D frames generated by two IR cameras to generate accurate synthetic 3D 
position data for the hand. For each such frame, the Leap Motion API (discussed for example in [15]) 
uses the frame () method to expose captured motion tracking data to the application developer. This 
data is organized in the form of physical entities: hands, fingers and tools. A frame buffer maintains 
the most recent 60 frames so that a “history” parameter to the frame () method can be used to 
retrieve a required number frames starting from the current frame. In addition, the Frame class 
defines several functions that extracts useful frame data, such as a hand’s position, orientation, 
posture, and motion: 

• isRight, isLeft – parameters that identify the hand being tracked. 
• Palm Position – the distance from the center of the palm to the origin of the sensor in 

millimeters. 
• Palm Velocity – the speed and direction of movement of the palm in millimeters per second. 
• Palm Normal – a vector perpendicular to the plane formed by the palm of the hand pointing 

downward and out of the palm. 
• Direction – a vector pointing from the center of the palm toward the fingers.  
• grabStrength, pinchStrength – parameters that describe the posture of the hand. 
• Motion factors – a parameter group that provides relative scale, rotation, and translation 

factors for movement between two frames. 
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Finally, the Vector class defines functions for getting the pitch (angle around the x-axis), yaw (angle 
around the y-axis), and roll (angle around the z-axis). 

 

  
Figure 3: The top figure (a) is a screen capture showing a game scene that requires turning the ball to 

the left. This can be accomplished either by radial deviation of the right hand or an ulnar deviation of the 
left hand, depending on which hand is being exercised. Similarly, to turn the ball to the right as is 

required in the game scene shown in the bottom figure (b), the player must employ either an ulnar 
deviation of the right hand or a radial deviation of the left hand 

 
Some customization in the response of the game to patient input is dictated by the fact that, even for 
a healthy hand and wrist, the angular extent for radial deviation is more limited than that for an ulnar 
deviation (Figure 2Figure 1). This affected the set of parameter values responsible for successful 
gesture detection (radial versus ulnar deviation). Further customization is naturally possible on a 
perpatient basis depending on the severity of the symptoms to permit exercising to the fullest range 
of motion that is possible to a particular patient. 

  

Figure 4: An obstacle in the game scene that requires wrist flexion or extension (flexion will move the 
ball forward, while extension will stop the ball’s movement) 

 

The game scene and the obstacles were designed to serve a game scenario that demands repetitive 
player actions, since in traditional physiotherapy the patient has to repeat certain movements at a 
specific pace. Figure 3 relates two sample game scenes. The game scene shown in Figure 3(a) requires 
that the player guides the ball to a left turn through either an ulnar deviation of the left hand or via a 
radial deviation of the right hand. By comparison, the game scene in Figure 3(b) requires that the 
player guides the ball to a right turn through either a radial deviation of the left hand or via an ulnar 
deviation of the right hand. Extension stops the movement of the ball, while flexion moves the ball 
forward. These wrist-hand postures can be used in game contexts such as those displayed in Figure 4. 
At this point it should be mentioned that the patient should use one hand for a given session so that 
both hands can perform the prescribed exercises correctly.  

The obstacles situated in the game scene add to a more interesting and at the same time challenging 
game environment. Obstacles can be avoided and challenges can be surpassed by carefully timing and 
maintaining wrist-hand postures such as wrist flexion/extension and/or radial/ulnar deviation. At the 
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same time, these obstacles urge patients to use flexion and extension of the wrist, i.e. rotation of the 
wrist downwards and upwards. For example, Figure 4(a) shows a board further down the bridge that 
constantly moves from right to left and back so that the patient must time the movement of the ball 
in a way that it passes over that moving plank quickly while it connects to the previous and next planks. 

Another challenge appears in Figure 4(b), where a swinging vertical plank may knock the ball off the 
bridge. To avoid this, the patient must combine flexion and extension to time a safe passage of the 
ball across the obstacle. In addition, whereas in some cases the player can freely choose the 
movement, in other cases and depending on the form and movement of the obstacle, the player has 
to use specific a hand movement to avoid the particular obstacle. For example, more challenging 
scenarios allow for a sloped bridge where the ball develops may pick up or lose speed due to gravity. 
In these cases the user will be forced to perform prescribed exercises to greater deviations in a natural 
scenario-dependent manner. 

3 Discussion and Future Work 
In this work we investigate the potential of the Leap Motion sensor as a hardware platform on which 
to base serious games for the rehabilitation of patients suffering from Carpal Tunnel Syndrome (CTS). 
Accordingly we have presented the Roller Ball game which has been developed Unity3D to explore 
the possibilities and limitations of the sensor and concluded that the tracking accuracy of the sensor 
is sufficient to detect and track certain wrist-hand postures required by physiotherapy exercises used 
to alleviate CTS symptoms. Limitations in the applicability of the sensor for the intended purpose arise 
naturally in CTS-specific exercises where the wrist-hand posture causes part of the hand (e.g., fingers) 
to be physically occulted by other parts. In some of these cases the obstacles can be alleviated by 
removing the sensor from the default location (table top) and attaching it to a fixture that allows its 
re-orientation so as to view the hand from another point of view (e.g., from the top or one side). 

The use of Leap Motion sensor in physical therapy and rehabilitation may appear limited, because it 
appropriately tracks the lower arm, hand and fingers. However this is sufficient for serious games 
tailored to CTS patients. In addition, the sensor can be used in conjunction with other existing 
platforms to be allow the calculation of additional metrics and detect and track a richer set of gestures 
[5]. For example, the Leap Motion sensor can be paired with Microsoft’s Kinect to provide the required 
precision in the detection of hand gestures like pronation/supination and flexion/extension of 
metacarpophalangeal and the proximal interphalangeal joints of the hand, while Kinect provides 
larger scale body tracking. Finally, technology-enabled rehabilitation can offer measurable results as 
games can be designed to collect performance data and use these to calculate and store appropriate 
performance metrics. This possibility should allow therapists to assess long term progress and to 
mitigate a sense of accomplishment to the patients which can be very beneficial during treatment 
[16]. 
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