Page 1 of 21

European Journal of Applied Sciences – Vol. 10, No. 1

Publication Date: February 25, 2022

DOI:10.14738/aivp.101.11865. Ichidayama, K. (2022). Property of Tensor Satisfying Binary Law 4. European Journal of Applied Sciences, 10(1). 556-576.

Services for Science and Education – United Kingdom

Property of Tensor Satisfying Binary Law 4

Koji Ichidayama

Okayama 716-0002, Japan

ABSTRACT

I have already reported "Property of Tensor Satisfying Binary Law 3". This article

improved a proof part in article "Property of Tensor Satisfying Binary Law 3". The

Proposition that improvement was carried out is Proposition4-8, Proposition10-15

in article "Property of Tensor Satisfying Binary Law 3". The Proposition of article

"Property of Tensor Satisfying Binary Law 3" will become stronger by this

improvement.

Keywords: Tensor; Covariant Derivative.

INTRODUCTION

I have already reported "Property of Tensor Satisfying Binary Law 3".[2] This article improved

a proof part in article "Property of Tensor Satisfying Binary Law 3".

The Proposition that improvement was carried out is Proposition4-8, Proposition10-15 in

article "Property of Tensor Satisfying Binary Law 3".

The Proposition of article "Property of Tensor Satisfying Binary Law 3" will become stronger

by this improvement.

In addition, I performed the explanation about this improvement in Discussion chapter.

The improvement technique that I showed here was performed about other Proposition2-5

equally.

DEFINITION

Definition1 �! ≠ �!, �" ≠ �", �! = �", �" = �! is established.[1] I named �! ≠ �!, �" ≠

�", �! = �", �" = �! "������ ���" .[1]

Definition2 If �! ≠ �!, �" ≠ �", �! = �", �" = �! is established, �" = �!is established.[1]

Definition3 If �! ≠ �!, �" ≠ �", �! = �", �" = �! is established, x! = x" is established.[1]

Definition4 If �! ≠ �!, �" ≠ �", �! = �", �" = �! is established, �" = −�! is established.[1]

Definition5 If all coordinate systems �!, �", �$, �%, ⋯ satisfies �! ≠ �!, �" ≠ �", �! = �", �" =

�!,

all coordinate systems �!, �", �$, �%, ⋯ shifts to only two of �!, �".[1]

Page 2 of 21

557

Ichidayama, K. (2022). Property of Tensor Satisfying Binary Law 4. European Journal of Applied Sciences, 10(1). 556-576.

URL: http://dx.doi.org/10.14738/aivp.101.11865

Definition6 �!

! = 1, �"

! = 0: (μ ≠ ν) is establishment.[3]

Definition7 &!'"

&'# &'# &'# = � is established for &!'"

&'# &'# &'#.

Definition8 The first-order covariant derivative of the covariant vector satisfied

�!;" = &'"

&'# − �)Γ!"

) = &'"

&'# − �)

*

+ �,) ;

&-"$

&'# + &-#$

&'" − &-"#

&'$ =.[4]

Definition9 The first-order covariant derivative of the contravariant vector satisfied

�;"

! = &'"

&'# + �)Γ)"

! = &'"

&'# + �) *

+ �,! ;

&-%$

&'# + &-#$

&'% − &-%#

&'$ =.[4]

Definition10 The second-order covariant derivative of the covariant vector satisfied

�.;/;0 = 1'&;(

1') − �2;/Γ.0

2 − �.;2Γ/0

2

= 1

1') ;

1'&

1'( − �3Γ./

3 = − ;1'*

1'( − �3Γ2/

3 = Γ.0

2 − ;

1'&

1'* − �3Γ.2

3 = Γ/0

2

= 1+'&

1'(1') − 1

1') ?�3

*

+ �43 ;

1-&,

1'( + 1-(,

1'& − 1-&(

1', =@

− 1'*

1'(

*

+ �42 ;

1-&,

1') + 1-),

1'& − 1-&)

1', = + �3

*

+ �43 ;

1-*,

1'( + 1-(,

1'* − 1-*(

1', = *

+ �42 ;

1-&,

1') + 1-),

1'& − 1-&)

1', =

− &'"

&'-

*

+ �,5 ;

&-#$

&'. + &-.$

&'# − &-#.

&'$ = + �)

*

+ �,) ;

&-"$

&'- + &--$

&'" − &-"-

&'$ = *

+ �,5 ;

&-#$

&'. + &-.$

&'# − &-#.

&'$ =.[4]

Definition11 The second-order covariant derivative of the contravariant vector satisfied

�;/;0

. = 1';(

&

1') + �;/

2 Γ20

. − �;2

.

Γ/0

2

= 1

1') ;

1'&

1'( + �3Γ3/

. = + ;

1'*

1'( + �3Γ3/

2 = Γ20

. − ;

1'&

1'* + �3Γ32

.

= Γ/0

2

= &+'"

&'# &'. + &

&'. ?�) *

+ �,! ;

&-%$

&'# + &-#$

&'% − &-%#

&'$ =@

+ &'-

&'#

*

+ �,! ;

&--$

&'. + &-.$

&'- − &--.

&'$ = + �) *

+ �,5 ;

&-%$

&'# + &-#$

&'% − &-%#

&'$ = *

+ �,! ;

&--$

&'. + &-.$

&'- − &--.

&'$ =

− &'"

&'-

*

+ �,5 ;

&-#$

&'. + &-.$

&'# − &-#.

&'$ = − �) *

+ �,! ;

&-%$

&'- + &--$

&'% − &-%-

&'$ = *

+ �,5 ;

&-#$

&'. + &-.$

&'# − &-#.

&'$ =.[4]

Definition12 The third-order covariant derivative of the contravariant vector satisfied

;/;0;6

. = 1';(;)

&

1'/ + �;/;0 7 Γ76

. − �;7;0

. Γ/6

7 − �;/;7

. Γ06

7

= 1

1'/ A 1

1') ;

1'&

1'( + �3Γ3/

. = + ;

1'*

1'( + �3Γ3/

2 = Γ20

. − ;

1'&

1'* + �3Γ32

.= Γ/0

2 B

+ A 1

1') ;

1'0

1'( + �3Γ3/

7 = + ;

1'*

1'( + �3Γ3/

2 = Γ20

7 − ;

1'0

1'* + �3Γ32

7= Γ/0

2 B Γ76

.

− A 1

1') ;

1'&

1'0 + �3Γ37

. = + ;

1'*

1'0 + �3Γ37

2 = Γ20

. − ;

1'&

1'* + �3Γ32

.= Γ70

2 B Γ/6

7

− A 1

1'0 ;

1'&

1'( + �3Γ3/

. = + ;

1'*

1'( + �3Γ3/

2 = Γ27

. − ;

1'&

1'* + �3Γ32

.= Γ/7

2 B Γ06

7

= &!'"

&'# &'. &'1 + &+

&'. &'1 ?�) *

+ �,! ;

&-%$

&'# + &-#$

&'% − &-%#

&'$ =@

+ &

&'1 ?

&'-

&'#

*

+ �,! ;

&--$

&'. + &-.$

&'- − &--.

&'$ =@

+ 1

1'/ ?�3 *

+ �42 ;

1-2,

1'( + 1-(,

1'2 − 1-2(

1', = *

+ �4. ;

1-*,

1') + 1-),

1'* − 1-*)

1', =@

Page 3 of 21

558

European Journal of Applied Sciences (EJAS) Vol. 10, Issue 1, February-2022

Services for Science and Education – United Kingdom

− &

&'1 ?

&'"

&'-

*

+ �,5 ;

&-#$

&'. + &-.$

&'# − &-#.

&'$ =@

− &

&'1 ?�) *

+ �,! ;

&-%$

&'- + &--$

&'% − &-%-

&'$ = *

+ �,5 ;

&-#$

&'. + &-.$

&'# − &-#.

&'$ =@

+ &+'3

&'# &'.

*

+ �,! ;

&-3$

&'1 + &-1$

&'3 − &-31

&'$ =

+ &

&'. ?�) *

+ �,8 ;

&-%$

&'# + &-#$

&'% − &-%#

&'$ =@ *

+ �,! ;

&-3$

&'1 + &-1$

&'3 − &-31

&'$ =

+ &'-

&'#

*

+ �,8 ;

&--$

&'. + &-.$

&'- − &--.

&'$ = *

+ �,! ;

&-3$

&'1 + &-1$

&'3 − &-31

&'$ =

+�) *

+ �,5 ;

&-%$

&'# + &-#$

&'% − &-%#

&'$ = *

+ �,8 ;

&--$

&'. + &-.$

&'- − &--.

&'$ = *

+ �,! ;

&-3$

&'1 + &-1$

&'3 − &-31

&'$ =

− &'3

&'-

*

+ �,5 ;

&-#$

&'. + &-.$

&'# − &-#.

&'$ = *

+ �,! ;

&-3$

&'1 + &-1$

&'3 − &-31

&'$ =

−�) *

+ �,8 ;

&-%$

&'- + &--$

&'% − &-%-

&'$ = *

+ �,5 ;

&-#$

&'. + &-.$

&'# − &-#.

&'$ = *

+ �,! ;

&-3$

&'1 + &-1$

&'3 − &-31

&'$ =

− &+'"

&'3 &'.

*

+ �,8 ;

&-#$

&'1 + &-1$

&'# − &-#1

&'$ =

− &

&'. ?�) *

+ �,! ;

&-%$

&'3 + &-3$

&'% − &-%3

&'$ =@ *

+ �,8 ;

&-#$

&'1 + &-1$

&'# − &-#1

&'$ =

− &'-

&'3

*

+ �,! ;

&--$

&'. + &-.$

&'- − &--.

&'$ = *

+ �,8 ;

&-#$

&'1 + &-1$

&'# − &-#1

&'$ =

−�) *

+ �,5 ;

&-%$

&'3 + &-3$

&'% − &-%3

&'$ = *

+ �,! ;

&--$

&'. + &-.$

&'- − &--.

&'$ = *

+ �,8 ;

&-#$

&'1 + &-1$

&'# − &-#1

&'$ =

+ &'"

&'-

*

+ �,5 ;

&-3$

&'. + &-.$

&'3 − &-3.

&'$ = *

+ �,8 ;

&-#$

&'1 + &-1$

&'# − &-#1

&'$ =

+�) *

+ �,! ;

&-%$

&'- + &--$

&'% − &-%-

&'$ = *

+ �,5 ;

&-3$

&'. + &-.$

&'3 − &-3.

&'$ = *

+ �,8 ;

&-#$

&'1 + &-1$

&'# − &-#1

&'$ =

− &+'"

&'# &'3

*

+ �,8 ;

&-.$

&'1 + &-1$

&'. − &-.1

&'$ =

− &

&'3 ?�) *

+ �,! ;

&-%$

&'# + &-#$

&'% − &-%#

&'$ =@ *

+ �,8 ;

&-.$

&'1 + &-1$

&'. − &-.1

&'$ =

− &'-

&'#

*

+ �,! ;

&--$

&'3 + &-3$

&'- − &--3

&'$ = *

+ �,8 ;

&-.$

&'1 + &-1$

&'. − &-.1

&'$ =

−�) *

+ �,5 ;

&-%$

&'# + &-#$

&'% − &-%#

&'$ = *

+ �,! ;

&--$

&'3 + &-3$

&'- − &--3

&'$ = *

+ �,8 ;

&-.$

&'1 + &-1$

&'. − &-.1

&'$ =

+ &'"

&'-

*

+ �,5 ;

&-#$

&'3 + &-3$

&'# − &-#3

&'$ = *

+ �,8 ;

&-.$

&'1 + &-1$

&'. − &-.1

&'$ =

+�) *

+ �,! ;

&-%$

&'- + &--$

&'% − &-%-

&'$ = *

+ �,5 ;

&-#$

&'3 + &-3$

&'# − &-#3

&'$ = *

+ �,8 ;

&-.$

&'1 + &-1$

&'. − &-.1

&'$ =.

Definition13 When the next conversion equation is established, �!

! is components of a tensor

of rank zero. �!

! = &'"

&'#

&'#

&'"

�"

"

Definition14 When the next conversion equation is established, �! is contravariant

components of a tensor of the first rank.[4] �! = &'"

&'# �"

Definition15 When the next conversion equation is established, �! is covariant components of

a tensor of the first rank.[4] �! = &'#

&'"

�"

Definition16 When the next conversion equation is established, �!" is contravariant

components of a tensor of the second rank.[4] �!" = &'"

&'.

&'#

&'1 �$%

Page 4 of 21

559

Ichidayama, K. (2022). Property of Tensor Satisfying Binary Law 4. European Journal of Applied Sciences, 10(1). 556-576.

URL: http://dx.doi.org/10.14738/aivp.101.11865

Definition17 When the next conversion equation is established, �!" is covariant components

of a tensor of the second rank.[4] �!" = &'.

&'"

&'1

&'# �$%

Definition18 When the next conversion equation is established, �"

! is components of the mixed

tensor of the second rank.[4] �"

! = &'"

&'.

&'1

&'# �%

$

Definition19 When the next conversion equation is established, �!"$ is covariant components

of a tensor of the third rank.[4] �!"$ = &'1

&'"

&'-

&'#

&'$

&'. �%5,

Definition20 When the next conversion equation is established, �"$

! is components of the

mixed tensor of the third rank of the second rank covariant in the first rank contravariant.[4]

�"$

! = &'"

&'1

&'-

&'#

&'$

&'. �5,

%

Definition21 When the next conversion equation is established, �"$%

! is components of the

mixed tensor of the fourth rank of the third rank covariant in the first rank contravariant.[4]

�"$%

! = &'"

&'-

&'$

&'#

&'4

&'.

&'5

&'1 �,9:

5

ABOUT COVARIANT DERIVATIVE FOR THE VECTOR IN TENSOR SATISFYING BINARY

LAW

Proposition1 �.;/ = 1'&

1'( , �.

;. = 1'&

1'&

− �/

*

+

1-&(

1'& is established in tensor satisfying Binary Law.

Proof: If all coordinate systems satisfies Binary Law in &-"$

&'# − &-"#

&'$ ,

&-"$

&'# − &-"#

&'$ = 0 (1)

is established. I get

�!;" = &'"

&'# − �)

*

+ �,) ;

&-#$

&'" = = &'"

&'# − �)

*

+

&-#

%

&'" (2)

from (1),Definision8. I get

�!;" = &'"

&'# − �)

*

+

&-#

%

&'" (3)

as if Binary Law being satisfied for all index except the dummy index of (2). If (3) is a tensor

equation, the dummy index of (3) can't make μ or ν. On the other hand, If all coordinate systems

satisfies Binary Law, dummy index of (3) should be μ or ν in consideration of Definision5. I aim

at the coexistence of these two demands. I rewrite (3) using Definision2 and get

�!

;! = &'"

&'"

− �)

*

+ ;

&-"%

&'" = = &'"

&'"

− �"

*

+ ;

&-"#

&'" =. (4)

(4) satisfies two demands mentioned above together here. I rewrite (3) using Definision4 and

get

−�!;! = − &'"

&'" + �)

*

+ ;

&-"

%

&'"= = − &'"

&'" + �"

*

+ ;

&-"

#

&'"=. (5)

(5) satisfies two demands mentioned above together here. I get

Page 5 of 21

560

European Journal of Applied Sciences (EJAS) Vol. 10, Issue 1, February-2022

Services for Science and Education – United Kingdom

−�!;! = − &'"

&'" (6)

in consideration of Definision6 for (5). Because the second term of the right side doesn't exist

in (6),

�!;" = &'"

&'# (7)

can rewrite (6) using Definision4. In addition, �!;" can't rewrite �!

;! of (4) using Definision2

because the second term of the right side exists in (4). End Proof

Proposition2 �;"

! = &'"

&'# is established in tensor satisfying Binary Law.

Proof: If all coordinate systems satisfies Binary Law in &-#$

&'% − &-%#

&'$ ,

&-#$

&'% − &-%#

&'$ = 0 (8)

is established. I get

�;"

! = &'"

&'# + �) *

+ �,! ;

&-%$

&'# = = &'"

&'# + �) *

+

&-%

"

&'# (9)

from (8),Definision9. I get

�;"

! = &'"

&'# + �) *

+

&-%

"

&'# (10)

as if Binary Law being satisfied for all index except the dummy index of (9). If (10) is a tensor

equation, the dummy index of (10) can't make μ or ν. On the other hand, If all coordinate

systems satisfies Binary Law, dummy index of (10) should be μ or ν in consideration of

Definision5. I aim at the coexistence of these two demands. I rewrite (10) using Definision2 and

get

�!;! = &'"

&'"

+ �) *

+

&-%

"

&'"

= &'"

&'"

+ �" *

+

&-#

"

&'"

. (11)

(11) satisfies two demands mentioned above together here. I get

�!;! = &'"

&'"

(12)

in consideration of Definision6 for (11). Because the second term of the right side doesn't exist

in (12),

�;"

! = &'"

&'# (13)

can rewrite (12) using Definision2. I rewrite (10) using Definision4 and get

−�;!

! = − &'"

&'" − �) *

+

&-%

"

&'" = − &'"

&'" − �" *

+

&-#

"

&'". (14)

(14) satisfies two demands mentioned above together here. I get

−�;!

! = − &'"

&'" (15)

Page 6 of 21

561

Ichidayama, K. (2022). Property of Tensor Satisfying Binary Law 4. European Journal of Applied Sciences, 10(1). 556-576.

URL: http://dx.doi.org/10.14738/aivp.101.11865

in consideration of Definision6 for (14). Because the second term of the right side doesn't exist

in (15), (13) can rewrite (15) using Definision4.

If all coordinate systems satisfies Binary Law in &-%$

&'# − &-%#

&'$ ,

&-%$

&'# − &-%#

&'$ = 0 (16)

is established. I get

�;"

! = &'"

&'# + �) *

+ �,! ;

&-#$

&'% = = &'"

&'# + �) *

+ ;

&-#

"

&'% = (17)

from (8),Definision9. I get

�;"

! = &'"

&'# + �) *

+ ;

&-#

"

&'% = (18)

as if Binary Law being satisfied for all index except the dummy index of (17). If (18) is a tensor

equation, the dummy index of (18) can't make μ or ν. On the other hand, If all coordinate

systems satisfies Binary Law, dummy index of (18) should be μ or ν in consideration of

Definision5. I aim at the coexistence of these two demands. I rewrite (18) using Definision2 and

get

�!;! = &'"

&'"

+ �) *

+ ;

&-""

&'% = = &'"

&'"

+ �" *

+ ;

&-""

&'# =. (19)

(19) satisfies two demands mentioned above together here. I rewrite (18) using Definision4

and get

−�;!

! = − &'"

&'" − �) *

+ ?

&-"

"

&'% @ = − &'"

&'" − �" *

+ ?

&-"

"

&'#@. (20)

(20) satisfies two demands mentioned above together here. I get

−�;!

! = − &'"

&'" (21)

in consideration of Definision6 for (20). Because the second term of the right side doesn't exist

in (21), (13) can rewrite (21) using Definision4. End Proof

Proposition3 �!;":" = &+'"

&'# &'# is established in tensor satisfying Binary Law.

Proof: If all coordinate systems satisfies Binary Law in

A

&-"$

&'# − &-"#

&'$ ,

&-"$

&'. − &-".

&'$ ,

&-#$

&'- − &--#

&'$ ,

&-.$

&'# − &-#.

&'$ ,

&-"$

&'- − &-"-

&'$ B,

1-&,

1'( − 1-&(

1', = 0,

1-&,

1') − 1-&)

1', = 0,

1-(,

1'* − 1-*(

1', = 0,

&-.$

&'# − &-#.

&'$ = 0,

&-"$

&'- − &-"-

&'$ = 0 (22)

is established. I get

�!;";$ = &+'"

&'# &'. − &

&'. ?�)

*

+ �,) ;

&-#$

&'" =@ − &'-

&'#

*

+ �,5 ;

&-.$

&'" =

+�)

*

+ �,) ;

&--$

&'# = *

+ �,5 ;

&-.$

&'" = − &'"

&'-

*

+ �,5 ;

&-#$

&'. = + �)

*

+ �,) ;

&--$

&'"= *

+ �,5 ;

&-#$

&'. =

= &+'"

&'# &'. − &

&'. ;�)

*

+

&-#

%

&'"= − &'-

&'#

*

+

&-.

-

&'" + �)

*

+

&--

%

&'#

*

+

&-.

-

&'" − &'"

&'-

*

+

&-#

-

&'. + �)

*

+

&--

%

&'"

*

+

&-#

-

&'. (23)

Page 7 of 21

562

European Journal of Applied Sciences (EJAS) Vol. 10, Issue 1, February-2022

Services for Science and Education – United Kingdom

from (22),Definision10. I get

�!;";" = &+'"

&'# &'# − &

&'# ;�)

*

+

&-#

%

&'"= − &'-

&'#

*

+

&-#

-

&'" + �)

*

+

&--

%

&'#

*

+

&-#

-

&'" − &'"

&'-

*

+

&-#

-

&'# + �)

*

+

&--

%

&'"

*

+

&-#

-

&'# (24)

as if Binary Law being satisfied for all index except the dummy index of (23). If (24) is a tensor

equation, the dummy index of (24) can't make μ or ν. On the other hand, If all coordinate

systems satisfies Binary Law, dummy index of (24) should be μ or ν in consideration of

Definision5. I aim at the coexistence of these two demands. I rewrite (24) using Definision2 and

get

�!

;!;! = &+'"

&'" &'"

− &

&'"

;�)

*

+

&-"%

&'" = − &'-

&'"

*

+

&-"-

&'" +�)

*

+

&--

%

&'"

*

+

&-"-

&'" − &'"

&'-

*

+

&-"-

&'"

+ �)

*

+

&--

%

&'"

*

+

&-"-

&'"

= &+'"

&'" &'"

− &

&'"

;�"

*

+

&-"#

&'" = − &'#

&'"

*

+

&-"#

&'" +�"

*

+

&-#

#

&'"

*

+

&-"#

&'" − &'"

&'#

*

+

&-"#

&'"

+ �"

*

+

&-#

#

&'"

*

+

&-"#

&'"

. (25)

(25) satisfies two demands mentioned above together here. I rewrite (24) using Definision4

and get

�!;!;! = &+'"

&'" &'" − &

&'" ;�)

*

+

&-"

%

&'"= − &'-

&'"

*

+

&-"

-

&'" +�)

*

+

&--

%

&'"

*

+

&-"

-

&'" − &'"

&'-

*

+

&-"

-

&'" + �)

*

+

&--

%

&'"

*

+

&-"

-

&'"

= &+'"

&'" &'" − &

&'" ;�"

*

+

&-"

#

&'"= − &'#

&'"

*

+

&-"

#

&'" +�"

*

+

&-#

#

&'"

*

+

&-"

#

&'" − &'"

&'#

*

+

&-"

#

&'" + �"

*

+

&-#

#

&'"

*

+

&-"

#

&'". (26)

(26) satisfies two demands mentioned above together here. I get

�!;!;! = &+'"

&'" &'" (27)

in consideration of Definision6 for (26). Because the second term of the right side doesn't exist

in (27),

�!;";" = &+'"

&'# &'# (28)

can rewrite (27) using Definision4.

If all coordinate systems satisfies Binary Law in

A

&-"$

&'# − &-"#

&'$ ,

&-"$

&'. − &-".

&'$ ,

&--$

&'# − &--#

&'$ ,

&-#$

&'. − &-#.

&'$ ,

&-"$

&'- − &-"-

&'$ B,

1-&,

1'( − 1-&(

1', = 0,

1-&,

1') − 1-&)

1', = 0,

1-*,

1'( − 1-*(

1', = 0,

&-#$

&'. − &-#.

&'$ = 0,

&-"$

&'- − &-"-

&'$ = 0 (29)

is established. I get

�!;";$ = &+'"

&'# &'. − &

&'. ?�)

*

+ �,) ;

&-#$

&'" =@ − &'-

&'#

*

+ �,5 ;

&-.$

&'" =

+�)

*

+ �,) ;

&-#$

&'- = *

+ �,5 ;

&-.$

&'" = − &'"

&'-

*

+ �,5 ;

&-.$

&'# = + �)

*

+ �,) ;

&--$

&'"= *

+ �,5 ;

&-.$

&'# =

= &+'"

&'# &'. − &

&'. ;�)

*

+

&-#

%

&'"= − &'-

&'#

*

+

&-.

-

&'" + �)

*

+

&-#

%

&'-

*

+

&-.

-

&'" − &'"

&'-

*

+

&-.

-

&'# + �)

*

+

&--

%

&'"

*

+

&-.

-

&'# (30)

from (29),Definision10. I get

�!;";" = &+'"

&'# &'# − &

&'# ;�)

*

+

&-#

%

&'"= − &'-

&'#

*

+

&-#

-

&'" + �)

*

+

&-#

%

&'-

*

+

&-#

-

&'" − &'"

&'-

*

+

&-#

-

&'# + �)

*

+

&--

%

&'"

*

+

&-#

-

&'# (31)

as if Binary Law being satisfied for all index except the dummy index of (30). If (31) is a tensor

equation, the dummy index of (31) can't make μ or ν. On the other hand, If all coordinate

Page 8 of 21

563

Ichidayama, K. (2022). Property of Tensor Satisfying Binary Law 4. European Journal of Applied Sciences, 10(1). 556-576.

URL: http://dx.doi.org/10.14738/aivp.101.11865

systems satisfies Binary Law, dummy index of (31) should be μ or ν in consideration of

Definision5. I aim at the coexistence of these two demands. I rewrite (31) using Definision2 and

get

�!

;!;! = &+'"

&'" &'"

− &

&'"

;�)

*

+

&-"%

&'" = − &'-

&'"

*

+

&-"-

&'" + �)

*

+

&-"%

&'-

*

+

&-"-

&'" − &'"

&'-

*

+

&-"-

&'"

+ �)

*

+

&--

%

&'"

*

+

&-"-

&'"

= &+'"

&'" &'"

− &

&'"

;�"

*

+

&-"#

&'" = − &'#

&'"

*

+

&-"#

&'" + �"

*

+

&-"#

&'#

*

+

&-"#

&'" − &'"

&'#

*

+

&-"#

&'"

+ �"

*

+

&-#

#

&'"

*

+

&-"#

&'"

. (32)

(32) satisfies two demands mentioned above together here. I rewrite (31) using Definision4

and get

�!;!;! = &+'"

&'" &'" − &

&'" ;�)

*

+

&-"

%

&'"= − &'-

&'"

*

+

&-"

-

&'" + �)

*

+

&-"

%

&'-

*

+

&-"

-

&'" − &'"

&'-

*

+

&-"

-

&'" + �)

*

+

&--

%

&'"

*

+

&-"

-

&'"

= &+'"

&'" &'" − &

&'" ;�"

*

+

&-"

#

&'"= − &'#

&'"

*

+

&-"

#

&'" + �"

*

+

&-"

#

&'#

*

+

&-"

#

&'" − &'"

&'#

*

+

&-"

#

&'" + �"

*

+

&-#

#

&'"

*

+

&-"

#

&'". (33)

(33) satisfies two demands mentioned above together here. I get

�!;!;! = &+'"

&'" &'" (34)

in consideration of Definision6 for (33). Because the second term of the right side doesn't exist

in (34), (28) can rewrite (34) using Definision4. End Proof

Proposition4 �;":"

! = &+'"

&'# &'# is established in tensor satisfying Binary Law.

Proof: If all coordinate systems satisfies Binary Law in

A

&-#$

&'% − &-%#

&'$ ,

&-.$

&'- − &--.

&'$ ,

&-.$

&'# − &-#.

&'$ ,

&--$

&'% − &-%-

&'$ B,

&-#$

&'% − &-%#

&'$ = 0,

&-.$

&'- − &--.

&'$ = 0,

&-.$

&'# − &-#.

&'$ = 0,

&--$

&'% − &-%-

&'$ = 0 (35)

is established. I get

�;";$

! = &+'"

&'# &'. + &

&'. ?�) *

+ �,! ;

&-%$

&'# =@ + &'-

&'#

*

+ �,! ;

&--$

&'. =

+�) *

+ �,5 ;

&-%$

&'# = *

+ �,! ;

&--$

&'.= − &'"

&'-

*

+ �,5 ;

&-#$

&'. = − �) *

+ �,! ;

&-%$

&'- = *

+ �,5 ;

&-#$

&'. =

= &+'"

&'# &'. + &

&'. ;�) *

+

&-%

"

&'#= + &'-

&'#

*

+

&--

"

&'. + �) *

+

&-%

-

&'#

*

+

&--

"

&'. − &'"

&'-

*

+

&-#

-

&'. − �) *

+

&-%

"

&'-

*

+

&-#

-

&'. (36)

from (35),Definision11. I get

�;";"

! = &+'"

&'# &'# + &

&'# ;�) *

+

&-%

"

&'#= + &'-

&'#

*

+

&--

"

&'# + �) *

+

&-%

-

&'#

*

+

&--

"

&'# − &'"

&'-

*

+

&-#

-

&'# − �) *

+

&-%

"

&'-

*

+

&-#

-

&'# (37)

as if Binary Law being satisfied for all index except the dummy index of (36). If (37) is a tensor

equation, the dummy index of (37) can't make μ or ν. On the other hand, If all coordinate

systems satisfies Binary Law, dummy index of (37) should be μ or ν in consideration of

Definision5. I aim at the coexistence of these two demands. I rewrite (37) using Definision2 and

get

�!;!;! = &+'"

&'" &'"

+ &

&'"

?�) *

+

&-%

"

&'"

@ + &'-

&'"

*

+

&--

"

&'"

+ �) *

+

&-%

-

&'"

*

+

&--

"

&'"

− &'"

&'-

*

+

&-"-

&'"

− �) *

+

&-%

"

&'-

*

+

&-"-

&'"

= &+'"

&'" &'"

+ &

&'"

?�" *

+

&-#

"

&'"

@ + &'#

&'"

*

+

&-#

"

&'"

+ �" *

+

&-#

#

&'"

*

+

&-#

"

&'"

− &'"

&'#

*

+

&-"#

&'"

− �" *

+

&-#

"

&'#

*

+

&-"#

&'"

. (38)

Page 9 of 21

564

European Journal of Applied Sciences (EJAS) Vol. 10, Issue 1, February-2022

Services for Science and Education – United Kingdom

(38) satisfies two demands mentioned above together here. I get

�!;!;! = &+'"

&'" &'"

− &'"

&'#

*

+

&-"#

&'"

(39)

in consideration of Definision6 for (38). I rewrite (37) using Definision4 and get

�;!;!

! = &+'"

&'" &'" + &

&'" ;�) *

+

&-%

"

&'"= + &'-

&'"

*

+

&--

"

&'" + �) *

+

&-%

-

&'"

*

+

&--

"

&'" − &'"

&'-

*

+

&-"

-

&'" − �) *

+

&-%

"

&'-

*

+

&-"

-

&'"

= &+'"

&'" &'" + &

&'" ;�" *

+

&-#

"

&'"= + &'#

&'"

*

+

&-#

"

&'" + �" *

+

&-#

#

&'"

*

+

&-#

"

&'" − &'"

&'#

*

+

&-"

#

&'" − �" *

+

&-#

"

&'#

*

+

&-"

#

&'". (40)

(40) satisfies two demands mentioned above together here. I get

�;!;!

! = &+'"

&'" &'" (41)

in consideration of Definision6 for (40). Because the second term of the right side doesn't exist

in (41),

�;";"

! = &+'"

&'# &'# (42)

can rewrite (41) using Definision4.

If all coordinate systems satisfies Binary Law in

A

&-%$

&'# − &-%#

&'$ ,

&--$

&'. − &--.

&'$ ,

&-#$

&'. − &-#.

&'$ ,

&-%$

&'- − &-%-

&'$ B,

&-%$

&'# − &-%#

&'$ = 0,

&--$

&'. − &--.

&'$ = 0,

&-#$

&'. − &-#.

&'$ = 0,

&-%$

&'- − &-%-

&'$ = 0 (43)

is established. I get

�;";$

! = &+'"

&'# &'. + &

&'. ?�) *

+ �,! ;

&-#$

&'% =@ + &'-

&'#

*

+ �,! ;

&-.$

&'- =

+�) *

+ �,5 ;

&-#$

&'% = *

+ �,! ;

&-.$

&'- = − &'"

&'-

*

+ �,5 ;

&-.$

&'# = − �) *

+ �,! ;

&--$

&'% = *

+ �,5 ;

&-.$

&'# =

= &+'"

&'# &'. + &

&'. ;�) *

+

&-#

"

&'% = + &'-

&'#

*

+

&-.

"

&'- + �) *

+

&-#

-

&'%

*

+

&-.

"

&'- − &'"

&'-

*

+

&-.

-

&'# − �) *

+

&--

"

&'%

*

+

&-.

-

&'# (44)

from (43),Definision11. I get

�;";"

! = &+'"

&'# &'# + &

&'# ;�) *

+

&-#

"

&'% = + &'-

&'#

*

+

&-#

"

&'- + �) *

+

&-#

-

&'%

*

+

&-#

"

&'- − &'"

&'-

*

+

&-#

-

&'# − �) *

+

&--

"

&'%

*

+

&-#

-

&'# (45)

as if Binary Law being satisfied for all index except the dummy index of (44). If (45) is a tensor

equation, the dummy index of (45) can't make μ or ν. On the other hand, If all coordinate

systems satisfies Binary Law, dummy index of (45) should be μ or ν in consideration of

Definision5. I aim at the coexistence of these two demands. I rewrite (45) using Definision2 and

get

�!;!;! = &+'"

&'" &'"

+ &

&'"

;�) *

+

&-""

&'% = + &'-

&'"

*

+

&-""

&'- + �) *

+

&-"-

&'%

*

+

&-""

&'- − &'"

&'-

*

+

&-"-

&'"

− �) *

+

&--

"

&'%

*

+

&-"-

&'"

= &+'"

&'" &'"

+ &

&'"

;�" *

+

&-""

&'# = + &'#

&'"

*

+

&-""

&'# + �" *

+

&-"#

&'#

*

+

&-""

&'# − &'"

&'#

*

+

&-"#

&'"

− �" *

+

&-#

"

&'#

*

+

&-"#

&'"

. (46)

(46) satisfies two demands mentioned above together here. I rewrite (45) using Definision4

and get

Page 10 of 21

565

Ichidayama, K. (2022). Property of Tensor Satisfying Binary Law 4. European Journal of Applied Sciences, 10(1). 556-576.

URL: http://dx.doi.org/10.14738/aivp.101.11865

�;!;!

! = &+'"

&'" &'" + &

&'" ?�) *

+

&-"

"

&'% @ + &'-

&'"

*

+

&-"

"

&'- + �) *

+

&-"

-

&'%

*

+

&-"

"

&'- − &'"

&'-

*

+

&-"

-

&'" − �) *

+

&--

"

&'%

*

+

&-"

-

&'"

= &+'"

&'" &'" + &

&'" ?�" *

+

&-"

"

&'#@ + &'#

&'"

*

+

&-"

"

&'# + �" *

+

&-"

#

&'#

*

+

&-"

"

&'# − &'"

&'#

*

+

&-"

#

&'" − �" *

+

&-#

"

&'#

*

+

&-"

#

&'". (47)

(47) satisfies two demands mentioned above together here. I get

�;!;!

! = &+'"

&'" &'" (48)

in consideration of Definision6 for (47). Because the second term of the right side doesn't exist

in (48), (42) can rewrite (48) using Definision4. End Proof

Proposition5 �;";";"

! = &!'"

&'# &'# &'# is established in tensor satisfying Binary Law.

Proof: If all coordinate systems satisfies Binary Law in

A

&-#$

&'% − &-%#

&'$ ,

&-.$

&'- − &--.

&'$ ,

&-.$

&'# − &-#.

&'$ ,

&--$

&'% − &-%-

&'$ ,

&-1$

&'3 − &-31

&'$ ,

&-1$

&'# − &-#1

&'$ ,

&-3$

&'% − &-%3

&'$ B,

A

&-.$

&'3 − &-3.

&'$ ,

&-1$

&'. − &-.1

&'$ ,

&-3$

&'- − &--3

&'$ ,

&-3$

&'# − &-#3

&'$ B

&-#$

&'% − &-%#

&'$ = 0,

&-.$

&'- − &--.

&'$ = 0,

&-.$

&'# − &-#.

&'$ = 0,

&--$

&'% − &-%-

&'$ = 0,

&-1$

&'3 − &-31

&'$ = 0,

&-1$

&'# − &-#1

&'$ = 0,

&-3$

&'% − &-%3

&'$ = 0,

&-.$

&'3 − &-3.

&'$ = 0,

&-1$

&'. − &-.1

&'$ = 0,

&-3$

&'- − &--3

&'$ = 0,

&-3$

&'# − &-#3

&'$ = 0 (49)

is established. I get

;/;0;6

. = 1!'&

1'(1')1'/ + 1+

1')1'/ ?�3 *

+ �4. ;

1-2,

1'( =@ + 1

1'/ ?

1'*

1'(

*

+ �4. ;

1-*,

1') =@

+ &

&'1 ?�) *

+ �,5 ;

&-%$

&'# = *

+ �,! ;

&--$

&'. =@ − &

&'1 ?

&'"

&'-

*

+ �,5 ;

&-#$

&'. =@ − &

&'1 ?�) *

+ �,! ;

&-%$

&'- = *

+ �,5 ;

&-#$

&'. =@

+ &+'3

&'# &'.

*

+ �,! ;

&-3$

&'1 = + &

&'. ?�) *

+ �,8 ;

&-%$

&'# =@ *

+ �,! ;

&-3$

&'1 = + &'-

&'#

*

+ �,8 ;

&--$

&'.= *

+ �,! ;

&-3$

&'1 =

+�) *

+ �,5 ;

&-%$

&'# = *

+ �,8 ;

&--$

&'. = *

+ �,! ;

&-3$

&'1 = − &'3

&'-

*

+ �,5 ;

&-#$

&'. = *

+ �,! ;

&-3$

&'1 =

−�) *

+ �,8 ;

&-%$

&'- = *

+ �,5 ;

&-#$

&'. = *

+ �,! ;

&-3$

&'1 = − &+'"

&'3 &'.

*

+ �,8 ;

&-#$

&'1 =

− &

&'. ?�) *

+ �,! ;

&-%$

&'3 =@ *

+ �,8 ;

&-#$

&'1 = − &'-

&'3

*

+ �,! ;

&--$

&'.= *

+ �,8 ;

&-#$

&'1 =

−�) *

+ �,5 ;

&-%$

&'3 = *

+ �,! ;

&--$

&'.= *

+ �,8 ;

&-#$

&'1 = + &'"

&'-

*

+ �,5 ;

&-3$

&'. = *

+ �,8 ;

&-#$

&'1 =

+�) *

+ �,! ;

&-%$

&'- = *

+ �,5 ;

&-3$

&'. = *

+ �,8 ;

&-#$

&'1 = − &+'"

&'# &'3

*

+ �,8 ;

&-.$

&'1 =

− &

&'3 ?�) *

+ �,! ;

&-%$

&'# =@ *

+ �,8 ;

&-.$

&'1 = − &'-

&'#

*

+ �,! ;

&--$

&'3= *

+ �,8 ;

&-.$

&'1 =

−�) *

+ �,5 ;

&-%$

&'# = *

+ �,! ;

&--$

&'3= *

+ �,8 ;

&-.$

&'1 = + &'"

&'-

*

+ �,5 ;

&-#$

&'3 = *

+ �,8 ;

&-.$

&'1 =

+�) *

+ �,! ;

&-%$

&'- = *

+ �,5 ;

&-#$

&'3 = *

+ �,8 ;

&-.$

&'1 =

= &!'"

&'# &'. &'1 + &+

&'. &'1 ;�) *

+

&-%

"

&'#= + &

&'1 ;

&'-

&'#

*

+

&--

"

&'.= + &

&'1 ;�) *

+

&-%

-

&'#

*

+

&--

"

&'.= − &

&'1 ;

&'"

&'-

*

+

&-#

-

&'.=

− &

&'1 ;�) *

+

&-%

"

&'-

*

+

&-#

-

&'.= + &+'3

&'# &'.

*

+

&-3

"

&'1 + &

&'. ;�) *

+

&-%

3

&'#= *

+

&-3

"

&'1 + &'-

&'#

*

+

&--

3

&'.

*

+

&-3

"

&'1

+�) *

+

&-%

-

&'#

*

+

&--

3

&'.

*

+

&-3

"

&'1 − &'3

&'-

*

+

&-#

-

&'.

*

+

&-3

"

&'1 − �) *

+

&-%

3

&'-

*

+

&-#

-

&'.

*

+

&-3

"

&'1 − &+'"

&'3 &'.

*

+

&-#

3

&'1

− &

&'. ;�) *

+

&-%

"

&'3= *

+

&-#

3

&'1 − &'-

&'3

*

+

&--

"

&'.

*

+

&-#

3

&'1 − �) *

+

&-%

-

&'3

*

+

&--

"

&'.

*

+

&-#

3

&'1 + &'"

&'-

*

+

&-3

-

&'.

*

+

&-#

3

&'1

Page 11 of 21

566

European Journal of Applied Sciences (EJAS) Vol. 10, Issue 1, February-2022

Services for Science and Education – United Kingdom

+�) *

+

&-%

"

&'-

*

+

&-3

-

&'.

*

+

&-#

3

&'1 − &+'"

&'# &'3

*

+

&-.

3

&'1 − &

&'3 ;�) *

+

&-%

"

&'#= *

+

&-.

3

&'1 − &'-

&'#

*

+

&--

"

&'3

*

+

&-.

3

&'1

−�) *

+

&-%

-

&'#

*

+

&--

"

&'3

*

+

&-.

3

&'1 + &'"

&'-

*

+

&-#

-

&'3

*

+

&-.

3

&'1 + �) *

+

&-%

"

&'-

*

+

&-#

-

&'3

*

+

&-.

3

&'1 (50)

from (49),Definision12. I get

�;";";"

! = &!'"

&'# &'# &'# + &+

&'# &'# ;�) *

+

&-%

"

&'#= + &

&'# ;

&'-

&'#

*

+

&--

"

&'#= + &

&'# ;�) *

+

&-%

-

&'#

*

+

&--

"

&'#=

− &

&'# ;

&'"

&'-

*

+

&-#

-

&'#= − &

&'# ;�) *

+

&-%

"

&'-

*

+

&-#

-

&'#= + &+'3

&'# &'#

*

+

&-3

"

&'# + &

&'# ;�) *

+

&-%

3

&'#= *

+

&-3

"

&'#

+ &'-

&'#

*

+

&--

3

&'#

*

+

&-3

"

&'# + �) *

+

&-%

-

&'#

*

+

&--

3

&'#

*

+

&-3

"

&'# − &'3

&'-

*

+

&-#

-

&'#

*

+

&-3

"

&'# − �) *

+

&-%

3

&'-

*

+

&-#

-

&'#

*

+

&-3

"

&'#

− &+'"

&'3 &'#

*

+

&-#

3

&'# − &

&'# ;�) *

+

&-%

"

&'3= *

+

&-#

3

&'# − &'-

&'3

*

+

&--

"

&'#

*

+

&-#

3

&'# − �) *

+

&-%

-

&'3

*

+

&--

"

&'#

*

+

&-#

3

&'#

+ &'"

&'-

*

+

&-3

-

&'#

*

+

&-#

3

&'# + �) *

+

&-%

"

&'-

*

+

&-3

-

&'#

*

+

&-#

3

&'# − &+'"

&'# &'3

*

+

&-#

3

&'# − &

&'3 ;�) *

+

&-%

"

&'#= *

+

&-#

3

&'#

− &'-

&'#

*

+

&--

"

&'3

*

+

&-#

3

&'# − �) *

+

&-%

-

&'#

*

+

&--

"

&'3

*

+

&-#

3

&'# + &'"

&'-

*

+

&-#

-

&'3

*

+

&-#

3

&'# + �) *

+

&-%

"

&'-

*

+

&-#

-

&'3

*

+

&-#

3

&'# (51)

as if Binary Law being satisfied for all index except the dummy index of (50). If (51) is a tensor

equation, the dummy index of (51) can't make μ or ν. On the other hand, If all coordinate

systems satisfies Binary Law, dummy index of (51) should be μ or ν in consideration of

Definision5. I aim at the coexistence of these two demands. I rewrite (51) using Definision2 and

get

�!;!;!;! = &!'"

&'" &'" &'"

+ &+

&'" &'"

?�) *

+

&-%

"

&'"

@ + &

&'"

?

&'-

&'"

*

+

&--

"

&'"

@ + &

&'"

?�) *

+

&-%

-

&'"

*

+

&--

"

&'"

@

− &

&'"

?

&'"

&'-

*

+

&-"-

&'"

@ − &

&'"

?�) *

+

&-%

"

&'-

*

+

&-"-

&'"

@ + &+'3

&'" &'"

*

+

&-3

"

&'"

+ &

&'"

?�) *

+

&-%

3

&'"

@ *

+

&-3

"

&'"

+ &'-

&'"

*

+

&--

3

&'"

*

+

&-3

"

&'"

+ �) *

+

&-%

-

&'"

*

+

&--

3

&'"

*

+

&-3

"

&'"

− &'3

&'-

*

+

&-"-

&'"

*

+

&-3

"

&'"

− �) *

+

&-%

3

&'-

*

+

&-"-

&'"

*

+

&-3

"

&'"

− &+'"

&'3 &'"

*

+

&-"3

&'"

− &

&'"

;�) *

+

&-%

"

&'3= *

+

&-"3

&'"

− &'-

&'3

*

+

&--

"

&'"

*

+

&-"3

&'"

− �) *

+

&-%

-

&'3

*

+

&--

"

&'"

*

+

&-"3

&'"

+ &'"

&'-

*

+

&-3

-

&'"

*

+

&-"3

&'"

+ �) *

+

&-%

"

&'-

*

+

&-3

-

&'"

*

+

&-"3

&'"

− &+'"

&'" &'3

*

+

&-"3

&'"

− &

&'3 ?�) *

+

&-%

"

&'"

@ *

+

&-"3

&'"

− &'-

&'"

*

+

&--

"

&'3

*

+

&-"3

&'"

− �) *

+

&-%

-

&'"

*

+

&--

"

&'3

*

+

&-"3

&'"

+ &'"

&'-

*

+

&-"-

&'3

*

+

&-"3

&'"

+ �) *

+

&-%

"

&'-

*

+

&-"-

&'3

*

+

&-"3

&'"

= &!'"

&'" &'" &'"

+ &+

&'" &'"

?�" *

+

&-#

"

&'"

@ + &

&'"

?

&'#

&'"

*

+

&-#

"

&'"

@ + &

&'"

?�" *

+

&-#

#

&'"

*

+

&-#

"

&'"

@

− &

&'"

?

&'"

&'#

*

+

&-"#

&'"

@ − &

&'"

?�" *

+

&-#

"

&'#

*

+

&-"#

&'"

@ + &+'#

&'" &'"

*

+

&-#

"

&'"

+ &

&'"

?�" *

+

&-#

#

&'"

@ *

+

&-#

"

&'"

+ &'#

&'"

*

+

&-#

#

&'"

*

+

&-#

"

&'"

+ �" *

+

&-#

#

&'"

*

+

&-#

#

&'"

*

+

&-#

"

&'"

− &'#

&'#

*

+

&-"#

&'"

*

+

&-#

"

&'"

− �" *

+

&-#

#

&'#

*

+

&-"#

&'"

*

+

&-#

"

&'"

− &+'"

&'# &'"

*

+

&-"#

&'"

− &

&'"

;�" *

+

&-#

"

&'#= *

+

&-"#

&'"

− &'#

&'#

*

+

&-#

"

&'"

*

+

&-"#

&'"

− �" *

+

&-#

#

&'#

*

+

&-#

"

&'"

*

+

&-"#

&'"

+ &'"

&'#

*

+

&-#

#

&'"

*

+

&-"#

&'"

+ �" *

+

&-#

"

&'#

*

+

&-#

#

&'"

*

+

&-"#

&'"

− &+'"

&'" &'#

*

+

&-"#

&'"

− &

&'# ?�" *

+

&-#

"

&'"

@ *

+

&-"#

&'"

− &'#

&'"

*

+

&-#

"

&'#

*

+

&-"#

&'"

− �" *

+

&-#

#

&'"

*

+

&-#

"

&'#

*

+

&-"#

&'"

+ &'"

&'#

*

+

&-"#

&'#

*

+

&-"#

&'"

+ �" *

+

&-#

"

&'#

*

+

&-"#

&'#

*

+

&-"#

&'"

. (52)

(52) satisfies two demands mentioned above together here. I get

Page 12 of 21

567

Ichidayama, K. (2022). Property of Tensor Satisfying Binary Law 4. European Journal of Applied Sciences, 10(1). 556-576.

URL: http://dx.doi.org/10.14738/aivp.101.11865

�!;!;!;! = &!'"

&'" &'" &'"

− &

&'"

?

&'"

&'#

*

+

&-"#

&'"

@ − &+'"

&'# &'"

*

+

&-"#

&'"

− &+'"

&'" &'#

*

+

&-"#

&'"

+ &'"

&'#

*

+

&-"#

&'#

*

+

&-"#

&'"

(53)

in consideration of Definision6 for (52). I rewrite (51) using Definision4 and get

−�;!;!;!

! = − &!'"

&'" &'" &'" − &+

&'" &'" ;�) *

+

&-%

"

&'"= − &

&'" ;

&'-

&'"

*

+

&--

"

&'"= − &

&'" ;�) *

+

&-%

-

&'"

*

+

&--

"

&'"=

+ &

&'" ;

&'"

&'-

*

+

&-"

-

&'"= + &

&'" ;�) *

+

&-%

"

&'-

*

+

&-"

-

&'"= − &+'3

&'" &'"

*

+

&-3

"

&'" − &

&'" ;�) *

+

&-%

3

&'"= *

+

&-3

"

&'"

− &'-

&'"

*

+

&--

3

&'"

*

+

&-3

"

&'" − �) *

+

&-%

-

&'"

*

+

&--

3

&'"

*

+

&-3

"

&'" + &'3

&'-

*

+

&-"

-

&'"

*

+

&-3

"

&'" + �) *

+

&-%

3

&'-

*

+

&-"

-

&'"

*

+

&-3

"

&'"

+ &+'"

&'3 &'"

*

+

&-"

3

&'" + &

&'" ;�) *

+

&-%

"

&'3= *

+

&-"

3

&'" + &'-

&'3

*

+

&--

"

&'"

*

+

&-"

3

&'" + �) *

+

&-%

-

&'3

*

+

&--

"

&'"

*

+

&-"

3

&'"

− &'"

&'-

*

+

&-3

-

&'"

*

+

&-"

3

&'" − �) *

+

&-%

"

&'-

*

+

&-3

-

&'"

*

+

&-"

3

&'" + &+'"

&'" &'3

*

+

&-"

3

&'" + &

&'3 ;�) *

+

&-%

"

&'"= *

+

&-"

3

&'"

+ &'-

&'"

*

+

&--

"

&'3

*

+

&-"

3

&'" + �) *

+

&-%

-

&'"

*

+

&--

"

&'3

*

+

&-"

3

&'" − &'"

&'-

*

+

&-"

-

&'3

*

+

&-"

3

&'" − �) *

+

&-%

"

&'-

*

+

&-"

-

&'3

*

+

&-"

3

&'"

= − &!'"

&'" &'" &'" − &+

&'" &'" ;�" *

+

&-#

"

&'"= − &

&'" ;

&'#

&'"

*

+

&-#

"

&'"= − &

&'" ;�" *

+

&-#

#

&'"

*

+

&-#

"

&'"=

+ &

&'" ;

&'"

&'#

*

+

&-"

#

&'"= + &

&'" ;�" *

+

&-#

"

&'#

*

+

&-"

#

&'"= − &+'#

&'" &'"

*

+

&-#

"

&'" − &

&'" ;�" *

+

&-#

#

&'"= *

+

&-#

"

&'"

− &'#

&'"

*

+

&-#

#

&'"

*

+

&-#

"

&'" − �" *

+

&-#

#

&'"

*

+

&-#

#

&'"

*

+

&-#

"

&'" + &'#

&'#

*

+

&-"

#

&'"

*

+

&-#

"

&'" + �" *

+

&-#

#

&'#

*

+

&-"

#

&'"

*

+

&-#

"

&'"

+ &+'"

&'# &'"

*

+

&-"

#

&'" + &

&'" ;�" *

+

&-#

"

&'#= *

+

&-"

#

&'" + &'#

&'#

*

+

&-#

"

&'"

*

+

&-"

#

&'" + �" *

+

&-#

#

&'#

*

+

&-#

"

&'"

*

+

&-"

#

&'"

− &'"

&'#

*

+

&-#

#

&'"

*

+

&-"

#

&'" − �" *

+

&-#

"

&'#

*

+

&-#

#

&'"

*

+

&-"

#

&'" + &+'"

&'" &'#

*

+

&-"

#

&'" + &

&'# ;�" *

+

&-#

"

&'"= *

+

&-"

#

&'"

+ &'#

&'"

*

+

&-#

"

&'#

*

+

&-"

#

&'" + �" *

+

&-#

#

&'"

*

+

&-#

"

&'#

*

+

&-"

#

&'" − &'"

&'#

*

+

&-"

#

&'#

*

+

&-"

#

&'" − �" *

+

&-#

"

&'#

*

+

&-"

#

&'#

*

+

&-"

#

&'". (54)

(54) satisfies two demands mentioned above together here. I get

−�;!;!;!

! = − &!'"

&'" &'" &'" (55)

in consideration of Definision6 for (54). Because the second term of the right side doesn't exist

in (55),

�;";";"

! = &!'"

&'# &'# &'# (56)

can rewrite (55) using Definision4.

If all coordinate systems satisfies Binary Law in

A

&-%$

&'# − &-%#

&'$ ,

&--$

&'. − &--.

&'$ ,

&-#$

&'. − &-#.

&'$ ,

&-%$

&'- − &-%-

&'$ ,

&-3$

&'1 − &-31

&'$ ,

&-#$

&'1 − &-#1

&'$ ,

&-%$

&'3 − &-%3

&'$ B,

A

&-3$

&'. − &-3.

&'$ ,

&-.$

&'1 − &-.1

&'$ ,

&--$

&'3 − &--3

&'$ ,

&-#$

&'3 − &-#3

&'$ B,

&-%$

&'# − &-%#

&'$ = 0,

&--$

&'. − &--.

&'$ = 0,

&-#$

&'. − &-#.

&'$ = 0,

&-%$

&'- − &-%-

&'$ = 0,

&-3$

&'1 − &-31

&'$ = 0,

&-#$

&'1 − &-#1

&'$ = 0,

&-%$

&'3 − &-%3

&'$ = 0,

&-3$

&'. − &-3.

&'$ = 0,

&-.$

&'1 − &-.1

&'$ = 0,

&--$

&'3 − &--3

&'$ = 0,

&-#$

&'3 − &-#3

&'$ = 0 (57)

is established. I get

;";$;%

! = &!'"

&'# &'. &'1 + &+

&'. &'1 ?�) *

+ �,! ;

&-#$

&'% =@ + &

&'1 ?

&'-

&'#

*

+ �,! ;

&-.$

&'- =@

+ &

&'1 ?�) *

+ �,5 ;

&-#$

&'% = *

+ �,! ;

&-.$

&'- =@ − &

&'1 ?

&'"

&'-

*

+ �,5 ;

&-.$

&'# =@ − &

&'1 ?�) *

+ �,! ;

&--$

&'% = *

+ �,5 ;

&-.$

&'# =@

Page 13 of 21

568

European Journal of Applied Sciences (EJAS) Vol. 10, Issue 1, February-2022

Services for Science and Education – United Kingdom

+ &+'3

&'# &'.

*

+ �,! ;

&-1$

&'3 = + &

&'. ?�) *

+ �,8 ;

&-#$

&'% =@ *

+ �,! ;

&-1$

&'3 = + &'-

&'#

*

+ �,8 ;

&-.$

&'- = *

+ �,! ;

&-1$

&'3 =

+�) *

+ �,5 ;

&-#$

&'% = *

+ �,8 ;

&-.$

&'- = *

+ �,! ;

&-1$

&'3 = − &'3

&'-

*

+ �,5 ;

&-.$

&'# = *

+ �,! ;

&-1$

&'3 =

−�) *

+ �,8 ;

&--$

&'% = *

+ �,5 ;

&-.$

&'# = *

+ �,! ;

&-1$

&'3 = − &+'"

&'3 &'.

*

+ �,8 ;

&-1$

&'# =

− &

&'. ?�) *

+ �,! ;

&-3$

&'% =@ *

+ �,8 ;

&-1$

&'# = − &'-

&'3

*

+ �,! ;

&-.$

&'- = *

+ �,8 ;

&-1$

&'# =

−�) *

+ �,5 ;

&-3$

&'% = *

+ �,! ;

&-.$

&'- = *

+ �,8 ;

&-1$

&'# = + &'"

&'-

*

+ �,5 ;

&-.$

&'3 = *

+ �,8 ;

&-1$

&'# =

+�) *

+ �,! ;

&--$

&'% = *

+ �,5 ;

&-.$

&'3 = *

+ �,8 ;

&-1$

&'# = − &+'"

&'# &'3

*

+ �,8 ;

&-1$

&'. =

− &

&'3 ?�) *

+ �,! ;

&-#$

&'% =@ *

+ �,8 ;

&-1$

&'. = − &'-

&'#

*

+ �,! ;

&-3$

&'- = *

+ �,8 ;

&-1$

&'. =

−�) *

+ �,5 ;

&-#$

&'% = *

+ �,! ;

&-3$

&'- = *

+ �,8 ;

&-1$

&'. = + &'"

&'-

*

+ �,5 ;

&-3$

&'# = *

+ �,8 ;

&-1$

&'. =

+�) *

+ �,! ;

&--$

&'% = *

+ �,5 ;

&-3$

&'# = *

+ �,8 ;

&-1$

&'. =

= 1!'&

1'(1')1'/ + 1+

1')1'/ ;�3 *

+

1-(

&

1'2 = + 1

1'/ ;

1'*

1'(

*

+

1-)

&

1'* = + 1

1'/ ;�3 *

+

1-(

*

1'2

*

+

1-)

&

1'* = − &

&'1 ;

&'"

&'-

*

+

&-.

-

&'#=

− &

&'1 ;�) *

+

&--

"

&'%

*

+

&-.

-

&'#= + &+'3

&'# &'.

*

+

&-1

"

&'3 + &

&'. ;�) *

+

&-#

3

&'%= *

+

&-1

"

&'3 + &'-

&'#

*

+

&-.

3

&'-

*

+

&-1

"

&'3

+�) *

+ �,5 ;

&-#$

&'% = *

+

&-.

3

&'-

*

+

&-1

"

&'3 − &'3

&'-

*

+

&-.

-

&'#

*

+

&-1

"

&'3 − �) *

+

&--

3

&'%

*

+

&-.

-

&'#

*

+

&-1

"

&'3 − &+'"

&'3 &'.

*

+

&-1

3

&'#

− &

&'. ;�) *

+

&-3

"

&'% = *

+

&-1

3

&'# − &'-

&'3

*

+

&-.

"

&'-

*

+

&-1

3

&'# − �) *

+

&-3

-

&'%

*

+

&-.

"

&'-

*

+

&-1

3

&'# + &'"

&'-

*

+

&-.

-

&'3

*

+

&-1

3

&'#

+�) *

+

&--

"

&'%

*

+

&-.

-

&'3

*

+

&-1

3

&'# − &+'"

&'# &'3

*

+

&-1

3

&'. − &

&'3 ;�) *

+

&-#

"

&'% = *

+

&-1

3

&'. − &'-

&'#

*

+

&-3

"

&'-

*

+

&-1

3

&'.

−�) *

+

&-#

-

&'%

*

+

&-3

"

&'-

*

+

&-1

3

&'. + &'"

&'-

*

+

&-3

-

&'#

*

+

&-1

3

&'. + �) *

+

&--

"

&'%

*

+

&-3

-

&'#

*

+

&-1

3

&'. (58)

from (57),Definision12. I get

�;";";"

! = &!'"

&'# &'# &'# + &+

&'# &'# ;�) *

+

&-#

"

&'% = + &

&'# ;

&'-

&'#

*

+

&-#

"

&'- = + &

&'# ;�) *

+

&-#

-

&'%

*

+

&-#

"

&'-=

− &

&'# ;

&'"

&'-

*

+

&-#

-

&'#= − &

&'# ;�) *

+

&--

"

&'%

*

+

&-#

-

&'#= + &+'3

&'# &'#

*

+

&-#

"

&'3 + &

&'# ;�) *

+

&-#

3

&'%= *

+

&-#

"

&'3

+ &'-

&'#

*

+

&-#

3

&'-

*

+

&-#

"

&'3 + �) *

+

&-#

-

&'%

*

+

&-#

3

&'-

*

+

&-#

"

&'3 − &'3

&'-

*

+

&-#

-

&'#

*

+

&-#

"

&'3 − �) *

+

&--

3

&'%

*

+

&-#

-

&'#

*

+

&-#

"

&'3

− &+'"

&'3 &'#

*

+

&-#

3

&'# − &

&'# ;�) *

+

&-3

"

&'%= *

+

&-#

3

&'# − &'-

&'3

*

+

&-#

"

&'-

*

+

&-#

3

&'# − �) *

+

&-3

-

&'%

*

+

&-#

"

&'-

*

+

&-#

3

&'#

+ &'"

&'-

*

+

&-#

-

&'3

*

+

&-#

3

&'# + �) *

+

&--

"

&'%

*

+

&-#

-

&'3

*

+

&-#

3

&'# − &+'"

&'# &'3

*

+

&-#

3

&'# − &

&'3 ;�) *

+

&-#

"

&'% = *

+

&-#

3

&'#

− &'-

&'#

*

+

&-3

"

&'-

*

+

&-#

3

&'# − �) *

+

&-#

-

&'%

*

+

&-3

"

&'-

*

+

&-#

3

&'# + &'"

&'-

*

+

&-3

-

&'#

*

+

&-#

3

&'# + �) *

+

&--

"

&'%

*

+

&-3

-

&'#

*

+

&-#

3

&'# (59)

as if Binary Law being satisfied for all index except the dummy index of (58). If (59) is a tensor

equation, the dummy index of (59) can't make μ or ν. On the other hand, If all coordinate

systems satisfies Binary Law, dummy index of (59) should be μ or ν in consideration of

Definision5. I aim at the coexistence of these two demands. I rewrite (59) using Definision2 and

get

�!;!;!;! = &!'"

&'" &'" &'"

+ &+

&'" &'"

;�) *

+

&-""

&'% = + &

&'"

?

&'-

&'"

*

+

&-""

&'- @ + &

&'"

;�) *

+

&-"-

&'%

*

+

&-""

&'- =

− &

&'"

?

&'"

&'-

*

+

&-"-

&'"

@ − &

&'"

?�) *

+

&--

"

&'%

*

+

&-"-

&'"

@ + &+'3

&'" &'"

*

+

&-""

&'3 + &

&'"

;�) *

+

&-"3

&'% = *

+

&-""

&'3

Page 14 of 21

569

Ichidayama, K. (2022). Property of Tensor Satisfying Binary Law 4. European Journal of Applied Sciences, 10(1). 556-576.

URL: http://dx.doi.org/10.14738/aivp.101.11865

+ &'-

&'"

*

+

&-"3

&'-

*

+

&-""

&'3 + �) *

+

&-"-

&'%

*

+

&-"3

&'-

*

+

&-""

&'3 − &'3

&'-

*

+

&-"-

&'"

*

+

&-""

&'3 − �) *

+

&--

3

&'%

*

+

&-"-

&'"

*

+

&-""

&'3

− &+'"

&'3 &'"

*

+

&-"3

&'"

− &

&'"

;�) *

+

&-3

"

&'%= *

+

&-"3

&'"

− &'-

&'3

*

+

&-""

&'-

*

+

&-"3

&'"

− �) *

+

&-3

-

&'%

*

+

&-""

&'-

*

+

&-"3

&'"

+ &'"

&'-

*

+

&-"-

&'3

*

+

&-"3

&'"

+ �) *

+

&--

"

&'%

*

+

&-"-

&'3

*

+

&-"3

&'"

− &+'"

&'" &'3

*

+

&-"3

&'"

− &

&'3 ;�) *

+

&-""

&'% = *

+

&-"3

&'"

− &'-

&'"

*

+

&-3

"

&'-

*

+

&-"3

&'"

− �) *

+

&-"-

&'%

*

+

&-3

"

&'-

*

+

&-"3

&'"

+ &'"

&'-

*

+

&-3

-

&'"

*

+

&-"3

&'"

+ �) *

+

&--

"

&'%

*

+

&-3

-

&'"

*

+

&-"3

&'"

= &!'"

&'" &'" &'"

+ &+

&'" &'"

;�" *

+

&-""

&'# = + &

&'"

?

&'#

&'"

*

+

&-""

&'# @ + &

&'"

;�" *

+

&-"#

&'#

*

+

&-""

&'# =

− &

&'"

?

&'"

&'#

*

+

&-"#

&'"

@ − &

&'"

?�" *

+

&-#

"

&'#

*

+

&-"#

&'"

@ + &+'#

&'" &'"

*

+

&-""

&'# + &

&'"

;�" *

+

&-"#

&'# = *

+

&-""

&'#

+ &'#

&'"

*

+

&-"#

&'#

*

+

&-""

&'# + �" *

+

&-"#

&'#

*

+

&-"#

&'#

*

+

&-""

&'# − &'#

&'#

*

+

&-"#

&'"

*

+

&-""

&'# − �" *

+

&-#

#

&'#

*

+

&-"#

&'"

*

+

&-""

&'#

− &+'"

&'# &'"

*

+

&-"#

&'"

− &

&'"

;�" *

+

&-#

"

&'#= *

+

&-"#

&'"

− &'#

&'#

*

+

&-""

&'#

*

+

&-"#

&'"

− �" *

+

&-#

#

&'#

*

+

&-""

&'#

*

+

&-"#

&'"

+ &'"

&'#

*

+

&-"#

&'#

*

+

&-"#

&'"

+ �" *

+

&-#

"

&'#

*

+

&-"#

&'#

*

+

&-"#

&'"

− &+'"

&'" &'#

*

+

&-"#

&'"

− &

&'# ;�" *

+

&-""

&'# = *

+

&-"#

&'"

− &'#

&'"

*

+

&-#

"

&'#

*

+

&-"#

&'"

− �" *

+

&-"#

&'#

*

+

&-#

"

&'#

*

+

&-"#

&'"

+ &'"

&'#

*

+

&-#

#

&'"

*

+

&-"#

&'"

+ �" *

+

&-#

"

&'#

*

+

&-#

#

&'"

*

+

&-"#

&'"

. (60)

(60) satisfies two demands mentioned above together here. I get

�!;!;!;! = &!'"

&'" &'" &'"

+ &+

&'" &'"

;�" *

+

&-""

&'# = + &

&'"

?

&'#

&'"

*

+

&-""

&'# @ + &

&'"

;�" *

+

&-"#

&'#

*

+

&-""

&'# =

− &

&'"

?

&'"

&'#

*

+

&-"#

&'"

@ + &+'#

&'" &'"

*

+

&-""

&'# + &

&'"

;�" *

+

&-"#

&'# = *

+

&-""

&'# + &'#

&'"

*

+

&-"#

&'#

*

+

&-""

&'#

+�" *

+

&-"#

&'#

*

+

&-"#

&'#

*

+

&-""

&'# − &'#

&'#

*

+

&-"#

&'"

*

+

&-""

&'# − &+'"

&'# &'"

*

+

&-"#

&'"

− &'#

&'#

*

+

&-""

&'#

*

+

&-"#

&'"

+ &'"

&'#

*

+

&-"#

&'#

*

+

&-"#

&'"

− &+'"

&'" &'#

*

+

&-"#

&'"

− &

&'# ;�" *

+

&-""

&'# = *

+

&-"#

&'"

(61)

in consideration of Definision6 for (60). I rewrite (59) using Definision4 and get

−�;!;!;!

! = − &!'"

&'" &'" &'" − &+

&'" &'" ?�) *

+

&-"

"

&'%@ − &

&'" ?&'-

&'"

*

+

&-"

"

&'- @ − &

&'" ?�) *

+

&-"

-

&'%

*

+

&-"

"

&'- @

+ &

&'" ;

&'"

&'-

*

+

&-"

-

&'"= + &

&'" ;�) *

+

&--

"

&'%

*

+

&-"

-

&'"= − &+'3

&'" &'"

*

+

&-"

"

&'3 − &

&'" ;�) *

+

&-"

3

&'% = *

+

&-"

"

&'3

− &'-

&'"

*

+

&-"

3

&'-

*

+

&-"

"

&'3 − �) *

+

&-"

-

&'%

*

+

&-"

3

&'-

*

+

&-"

"

&'3 + &'3

&'-

*

+

&-"

-

&'"

*

+

&-"

"

&'3 + �) *

+

&--

3

&'%

*

+

&-"

-

&'"

*

+

&-"

"

&'3

+ &+'"

&'3 &'"

*

+

&-"

3

&'" + &

&'" ;�) *

+

&-3

"

&'% = *

+

&-"

3

&'" + &'-

&'3

*

+

&-"

"

&'-

*

+

&-"

3

&'" + �) *

+

&-3

-

&'%

*

+

&-"

"

&'-

*

+

&-"

3

&'"

− &'"

&'-

*

+

&-"

-

&'3

*

+

&-"

3

&'" − �) *

+

&--

"

&'%

*

+

&-"

-

&'3

*

+

&-"

3

&'" + &+'"

&'" &'3

*

+

&-"

3

&'" + &

&'3 ?�) *

+

&-"

"

&'%@ *

+

&-"

3

&'"

+ &'-

&'"

*

+

&-3

"

&'-

*

+

&-"

3

&'" + �) *

+

&-"

-

&'%

*

+

&-3

"

&'-

*

+

&-"

3

&'" − &'"

&'-

*

+

&-3

-

&'"

*

+

&-"

3

&'" − �) *

+

&--

"

&'%

*

+

&-3

-

&'"

*

+

&-"

3

&'"

= − &!'"

&'" &'" &'" − &+

&'" &'" ?�" *

+

&-"

"

&'#@ − &

&'" ?

&'#

&'"

*

+

&-"

"

&'#@ − &

&'" ?�" *

+

&-"

#

&'#

*

+

&-"

"

&'#@

+ &

&'" ;

&'"

&'#

*

+

&-"

#

&'"= + &

&'" ;�" *

+

&-#

"

&'#

*

+

&-"

#

&'"= − &+'#

&'" &'"

*

+

&-"

"

&'# − &

&'" ;�" *

+

&-"

#

&'#= *

+

&-"

"

&'#

− &'#

&'"

*

+

&-"

#

&'#

*

+

&-"

"

&'# − �" *

+

&-"

#

&'#

*

+

&-"

#

&'#

*

+

&-"

"

&'# + &'#

&'#

*

+

&-"

#

&'"

*

+

&-"

"

&'# + �" *

+

&-#

#

&'#

*

+

&-"

#

&'"

*

+

&-"

"

&'#

Page 15 of 21

570

European Journal of Applied Sciences (EJAS) Vol. 10, Issue 1, February-2022

Services for Science and Education – United Kingdom

+ &+'"

&'# &'"

*

+

&-"

#

&'" + &

&'" ;�" *

+

&-#

"

&'#= *

+

&-"

#

&'" + &'#

&'#

*

+

&-"

"

&'#

*

+

&-"

#

&'" + �" *

+

&-#

#

&'#

*

+

&-"

"

&'#

*

+

&-"

#

&'"

− &'"

&'#

*

+

&-"

#

&'#

*

+

&-"

#

&'" − �" *

+

&-#

"

&'#

*

+

&-"

#

&'#

*

+

&-"

#

&'" + &+'"

&'" &'#

*

+

&-"

#

&'" + &

&'# ?�" *

+

&-"

"

&'#@ *

+

&-"

#

&'"

+ &'#

&'"

*

+

&-#

"

&'#

*

+

&-"

#

&'" + �" *

+

&-"

#

&'#

*

+

&-#

"

&'#

*

+

&-"

#

&'" − &'"

&'#

*

+

&-#

#

&'"

*

+

&-"

#

&'" − �" *

+

&-#

"

&'#

*

+

&-#

#

&'"

*

+

&-"

#

&'". (62)

(62) satisfies two demands mentioned above together here. I get

−�;!;!;!

! = − &!'"

&'" &'" &'" (63)

in consideration of Definision6 for (62). Because the second term of the right side doesn't exist

in (63), (56) can rewrite (63) using Definision4. End Proof

ABOUT A COORDINATE TRANSFORMATIONS EQUATION IN TENSOR SATISFYING

BINARY LAW

Proposition6 When all coordinate systems satisfies Binary Law, �!

! = �"

" is established for �!

!

components of a tensor satisfying Binary law of rank zero.

Proof: If all coordinate systems satisfies Binary Law, I get

�!

! = &'"

&'#

&'#

&'"

�"

" (64)

from Definision13. Because (64) accords in Definision13, the components of a tensor of rank

zero is equivalent with components of a tensor satisfying Binary law of rank zero. If all

coordinate systems satisfies Binary Law, I get

�! = &'"

&'# �" (65)

from Definision14. Because (65) accords in Definision14, the contravariant components of a

tensor of the first rank is equivalent with contravariant components of a tensor satisfying

Binary law of the first rank. If all coordinate systems satisfies Binary Law, I get

�! = &'#

&'"

�" (66)

from Definision15. Because (66) accords in Definision15, the covariant components of a tensor

of the first rank is equivalent with covariant components of a tensor satisfying Binary law of

the first rank. End Proof

Proposition7 When all coordinate systems satisfies Binary Law, �!" = �"! is established for

�!" contravariant components of a tensor satisfying Binary law of the second rank.

Proof: I get

�!" = &'"

&'.

&'#

&'1 �$% (67)

as if Binary Law being satisfied for all index except the dummy index of Definision16. If all

coordinate systems satisfies Binary Law, dummy index of (67) should be μ or ν in consideration

of Definision5. Thus, I rewrite dummy index of (67) and get

�!" = &'"

&'"

&'#

&'# �!" = �!", (68)

Page 16 of 21

571

Ichidayama, K. (2022). Property of Tensor Satisfying Binary Law 4. European Journal of Applied Sciences, 10(1). 556-576.

URL: http://dx.doi.org/10.14738/aivp.101.11865

�!" = &'"

&'#

&'#

&'# �"" = &'"

&'# �"", (69)

�!" = &'"

&'#

&'#

&'"

�"!, (70)

�!" = &'"

&'"

&'#

&'"

�!! = &'#

&'"

�!!. (71)

I decide not to handle (68),(69),(71) because &'"

&'" ,

&'#

&'# exists in (68),(69),(71). I rewrite (70)

using Definision2,Definision3 and get

�!

! = &'"

&'#

&'"

&'#

�"

". (72)

I rewrite �!" = �!", �"! = �"! using Definision2,Definision3 and get

�!" = �!

!

, �"! = �"

". (73)

I get

&'"

&'#

&'#

&'"

�"! = &'"

&'#

&'"

&'#

�"

"

= &'"

&'#

&'"

&'#

�"! (74)

from (70),(72),(73). I get

�!" = �!

! = �"

" = �"! (75)

from (72),(73). End Proof

Proposition8 When all coordinate systems satisfies Binary Law, �!" = �"! is established for

�!" covariant components of a tensor satisfying Binary law of the second rank.

Proof: I get

�!" = &'.

&'"

&'1

&'# �$% (76)

as if Binary Law being satisfied for all index except the dummy index of Definision17. If all

coordinate systems satisfies Binary Law, dummy index of (76) should be μ or ν in consideration

of Definision5. Thus, I rewrite dummy index of (76) and get

�!" = &'"

&'"

&'#

&'# �!" = �!", (77)

�!" = &'#

&'"

&'#

&'# �"" = &'#

&'"

�"", (78)

�!" = &'#

&'"

&'"

&'# �"!, (79)

�!" = &'"

&'"

&'"

&'# �!! = &'"

&'# �!!. (80)

I decide not to handle (77),(78),(80) because &'"

&'" ,

&'#

&'# exists in (77),(78),(80). I rewrite (79)

using Definision2,Definision3 and get

�"

" = &'"

&'#

&'"

&'# �!

!

. (81)

I rewrite �!" = �!", �"! = �"! using Definision2,Definision3 and get

�!" = �"

", �"! = �!

!

. (82)

I get

&'#

&'"

&'"

&'# �"! = &'"

&'#

&'"

&'# �!

!

Page 17 of 21

572

European Journal of Applied Sciences (EJAS) Vol. 10, Issue 1, February-2022

Services for Science and Education – United Kingdom

= &'"

&'#

&'"

&'# �"! (83)

from (79),(81),(82). I get

�!" = �"

" = �!

! = �"! (84)

from (81),(82). End Proof

Proposition9 When all coordinate systems satisfies Binary Law, �"

! = &'"

&'#

&'"

&'# �!

" is established

for �"

! components of the mixed tensor satisfying Binary law of the second rank.

Proof: I get

�"

! = &'"

&'.

&'1

&'# �%

$ (85)

as if Binary Law being satisfied for all index except the dummy index of Definision18. If all

coordinate systems satisfies Binary Law, dummy index of (85) should be μ or ν in consideration

of Definision5. Thus, I rewrite dummy index of (85) and get

�"

! = &'"

&'"

&'#

&'# �"

! = �"

!

, (86)

�"

! = &'"

&'#

&'#

&'# �"

" = &'"

&'# �"

", (87)

�"

! = &'"

&'#

&'"

&'# �!

", (88)

�"

! = &'"

&'"

&'"

&'# �!

! = &'"

&'# �!

!

. (89)

I decide not to handle (86),(87),(89) because &'"

&'" ,

&'#

&'# exists in (86),(87),(89). End Proof

Proposition10 When all coordinate systems satisfies Binary Law, �!"" = &'#

&'"

&'"

&'#

&'"

&'# �"!! is

established for �!"" covariant components of a tensor satisfying Binary law of the third rank.

Proof: I get

�!"" = &'1

&'"

&'-

&'#

&'$

&'# �%5, (90)

as if Binary Law being satisfied for all index except the dummy index of Definision19. If all

coordinate systems satisfies Binary Law, dummy index of (90) should be μ or ν in consideration

of Definision5. Thus, I rewrite dummy index of (90) and get

�!"" = &'"

&'"

&'#

&'#

&'#

&'# �!"" = �!"", (91)

�!"" = &'#

&'"

&'#

&'#

&'#

&'# �""" = &'#

&'"

�""", (92)

�!"" = &'#

&'"

&'"

&'#

&'#

&'# �"!" = &'#

&'"

&'"

&'# �"!", (93)

�!"" = &'#

&'"

&'"

&'#

&'"

&'# �"!!, (94)

�!"" = &'"

&'"

&'"

&'#

&'"

&'# �!!! = &'"

&'#

&'"

&'# �!!!, (95)

�!"" = &'"

&'"

&'#

&'#

&'"

&'# �!"! = &'"

&'# �!"!. (96)

I decide not to handle (91),(92),(93),(95),(96) because &'"

&'" ,

&'#

&'# exists in

(91),(92),(93),(95),(96). Because two same index is existing in �!"", �"!! of (94), it is a problem.

I rewrite (94) using Definision2,Definision3 and get

Page 18 of 21

573

Ichidayama, K. (2022). Property of Tensor Satisfying Binary Law 4. European Journal of Applied Sciences, 10(1). 556-576.

URL: http://dx.doi.org/10.14738/aivp.101.11865

�""

" = &'"

&'#

&'"

&'#

&'"

&'# �!!

! . (97)

Two same index is existing in �""

" , �!!

! of (97), but the problem doesn't occur because one is

dummy index. Because (97) could rewrite (94), the problem of (94) was solved. I rewrite �!"" =

�!"", �"!! = �"!! using Definision2,Definision3 and get

�!"" = �""

" , �"!! = �!!

! . (98)

I get

&'#

&'"

&'"

&'#

&'"

&'# �"!! = &'"

&'#

&'"

&'#

&'"

&'# �!!

!

= &'"

&'#

&'"

&'#

&'"

&'# �"!! (99)

from (94),(97),(98). End Proof

Proposition11 When all coordinate systems satisfies Binary Law, �""

! = &'#

&'"

�!!

" is established

for �""

! components of the mixed tensor satisfying Binary law of the third rank of the second

rank covariant in the first rank contravariant.

Proof: I get

�""

! = &'"

&'1

&'-

&'#

&'$

&'# �5,

% (100)

as if Binary Law being satisfied for all index except the dummy index of Definision20. If all

coordinate systems satisfies Binary Law, dummy index of (100) should be μ or ν in

consideration of Definision5. Thus, I rewrite dummy index of (100) and get

�""

! = &'"

&'"

&'#

&'#

&'#

&'# �""

! = �""

! , (101)

�""

! = &'"

&'#

&'#

&'#

&'#

&'# �""

" = &'"

&'# �""

" , (102)

�""

! = &'"

&'#

&'"

&'#

&'#

&'# �!"

" = &'"

&'#

&'"

&'# �!"

" , (103)

�""

! = &'"

&'#

&'"

&'#

&'"

&'# �!!

" , (104)

�""

! = &'"

&'"

&'"

&'#

&'"

&'# �!!

! = &'"

&'#

&'"

&'# �!!

! , (105)

�""

! = &'"

&'"

&'#

&'#

&'"

&'# �"!

! = &'"

&'# �"!

! . (106)

I decide not to handle (101),(102),(103),(105),(106) because &'"

&'" ,

&'#

&'# exists in

(101),(102),(103),(105),(106). Because two same index is existing in �""

! , �!!

" of (104), it is a

problem. I rewrite (104) using Definision4 and get

�!!

! = &'"

&'#

&'#

&'"

&'#

&'"

�""

" . (107)

Two same index is existing in �!!

! , �""

" of (107), but the problem doesn't occur because one is

dummy index. Because (107) could rewrite (104), the problem of (104) was solved. I rewrite

�""

! = �""

! , �!!

" = �!!

" using Definision4 and get

�""

! = �!!

! , �!!

" = �""

" . (108)

I get

Page 19 of 21

574

European Journal of Applied Sciences (EJAS) Vol. 10, Issue 1, February-2022

Services for Science and Education – United Kingdom

&'"

&'#

&'"

&'#

&'"

&'# �!!

" = &'"

&'#

&'#

&'"

&'#

&'"

�""

"

= &'"

&'#

&'#

&'"

&'#

&'# �!!

" (109)

from (104),(107),(108). I get

&'"

&'#

&'"

&'# = &'#

&'"

&'#

&'" (110)

from (109). End Proof

Proposition12 When all coordinate systems satisfies Binary Law, �"""

! = �!!!

" is established

for �"""

! components of the mixed tensor satisfying Binary law of the fourth rank of the third

rank covariant in the first rank contravariant.

Proof: I get

�"""

! = &'"

&'-

&'$

&'#

&'4

&'#

&'5

&'# �,9:

5 (111)

as if Binary Law being satisfied for all index except the dummy index of Definision21. If all

coordinate systems satisfies Binary Law, dummy index of (111) should be μ or ν in

consideration of Definision5. Thus, I rewrite dummy index of (111) and get

�"""

! = &'"

&'"

&'#

&'#

&'#

&'#

&'#

&'# �"""

! = �"""

! , (112)

�"""

! = &'"

&'#

&'#

&'#

&'#

&'#

&'#

&'# �"""

" = &'"

&'# �"""

" , (113)

�"""

! = &'"

&'#

&'"

&'#

&'#

&'#

&'#

&'# �!""

" = &'"

&'#

&'"

&'# �!""

" , (114)

�"""

! = &'"

&'#

&'"

&'#

&'"

&'#

&'#

&'# �!!"

" = &'"

&'#

&'"

&'#

&'"

&'# �!!"

" , (115)

�"""

! = &'"

&'#

&'"

&'#

&'"

&'#

&'"

&'# �!!!

" , (116)

�"""

! = &'"

&'"

&'"

&'#

&'"

&'#

&'"

&'# �!!!

! = &'"

&'#

&'"

&'#

&'"

&'# �!!!

! , (117)

�"""

! = &'"

&'"

&'#

&'#

&'"

&'#

&'"

&'# �"!!

! = &'"

&'#

&'"

&'# �"!!

! , (118)

�"""

! = &'"

&'"

&'#

&'#

&'#

&'#

&'"

&'# �""!

! = &'"

&'# �""!

! . (119)

I decide not to handle (112),(113),(114),(115),(117),(118),(119) because &'"

&'" ,

&'#

&'# exists in

(112),(113),(114),(115),(117),(118),(119). Because three same index is existing in �"""

! , �!!!

" of

(116), it is a problem. I rewrite (116) using Definision4 and get

�!!"

! = &'"

&'#

&'#

&'"

&'#

&'"

&'"

&'# �""!

" . (120)

Two same index is existing in �!!"

! , �""!

" of (120), but the problem doesn't occur because one is

dummy index. Because (120) could rewrite (116), the problem of (116) was solved. I rewrite

�"""

! = �"""

! , �!!!

" = �!!!

" using Definision4 and get

�"""

! = �!!"

! , �!!!

" = �""!

" . (121)

I get

&'"

&'#

&'"

&'#

&'"

&'#

&'"

&'# �!!!

" = &'"

&'#

&'#

&'"

&'#

&'"

&'"

&'# �""!

"

Page 20 of 21

575

Ichidayama, K. (2022). Property of Tensor Satisfying Binary Law 4. European Journal of Applied Sciences, 10(1). 556-576.

URL: http://dx.doi.org/10.14738/aivp.101.11865

= &'"

&'#

&'#

&'"

&'#

&'"

&'"

&'# �!!!

" (122)

from (116),(120),(121). I get

&'"

&'#

&'"

&'# = &'#

&'"

&'#

&'" (123)

from (122). I get

�"""

! = �!!"

! = �""!

" = �!!!

" ,

�"""

! = �!" = �"! = �!!!

" (124)

from (120),(121). I get

�"""

! = �!" = �"

" = �!

! = �"! = �!!!

" (125)

from (84),(124). I rewrite (125) by consideration of �///

. → �;/;/;/

. , �!!!

" → �;!;!;! " , �!" → �!;",

�"! → �";!, �"

" → �"

;"

, �!

! → �!

;!

,(4),(7),(56), μ, ν-inversion form of (4),(7),(56) and get

&!'"

&'# &'# &'# = &'"

&'# = &'#

&'#

− �!

*

+ ;

&-#"

&'# =

= &'"

&'"

− �"

*

+ ;

&-"#

&'" = = &'#

&'" = &!'#

&'" &'" &'". (126)

I get

&!'"

&'# &'# &'# = &'"

&'# = &'#

&'#

− �!

*

+ ;

&-#"

&'# =

= &'"

&'"

− �"

*

+ ;

&-"#

&'" = = &'#

&'" = &!'#

&'" &'" &'" = � (127)

from (126),Definision7. End Proof

DISCUSSION

About Proposition1

If all coordinate systems satisfies Binary Law, I get

�!;" = &'"

&'# − �"

*

+ �"" ;

&-"#

&'# + &-##

&'" − &-"#

&'# =

= &'"

&'# − �"

*

+ �"" ;

&-##

&'" = = &'"

&'# − �"

*

+

&-#

#

&'" (128)

from Definision8. At first I applied Binary Law only for a part to show in

�!;" = &'"

&'# − �)

*

+ �,) ?

&-"$

&'#

E + &-#$

&'" − &-"#

&'$

E @ (129)

for Definision8 and got (2) in this article. Then, I applied Binary Law only for a part to show in

�!<;"= = &'"6

&'#6 − �)

*

+

&-#6

%

&'"6 (130)

for (2) and got (3). I get (128) as if Binary Law being satisfied for all index of (3).

(128) isn't tensor satisfying Binary Law here. On the other hand, I rewrite (3) using Definision2

and get (4). (4) is tensor satisfying Binary Law here.

Page 21 of 21

576

European Journal of Applied Sciences (EJAS) Vol. 10, Issue 1, February-2022

Services for Science and Education – United Kingdom

References

Ichidayama, K., Introduction of the Tensor Which Satisfied Binary Law, Jounal of Modern Physics, 2017. 8: p. 126-

132.

Ichidayama, K., Property of Tensor Satisfying Binary Law 3, Advanced Studies in Theoretical Physics, 2021.

15(4): p. 201-234.

Dirac, P.A.M, General Theory of Relativity, Tokyo Tosho, 1988.

Fleisch, D., A Student’s Guide to Vector and Tensors, Iwanami Shoten, 2014.