Page 1 of 13
European Journal of Applied Sciences – Vol. 9, No. 4
Publication Date: August 25, 2021
DOI:10.14738/aivp.94.10718. Feng, C. (2021). Periodic Oscillation for an Eight-Neuron Bam Neural Network Model With Discrete Delays. European Journal of
Applied Sciences, 9(4). 258-270.
Services for Science and Education – United Kingdom
Periodic Oscillation for an Eight-Neuron BAM Neural Network
Model with Discrete Delays
Chunhua Feng
Department of Mathematics and Computer Science,
Alabama State University, Montgomery, AL, USA, 36104
ABSTRACT
This paper investigates the existence of periodic oscillations for an eight-neuron
BAM neural network model with discrete delays. Two theorems are provided to
guarantee the existence of periodic oscillations for this model by using
mathematical analysis method, which is simpler than bifurcation method. The
criteria for selecting of the parameters in this network are provided. Computer
simulation examples are presented to demonstrate the correctness of this method.
Keywords: eight-neuron BAM network model, delay, instability, periodic solution
INTRODUCTION
Due to various applications of neural networks, the dynamics behaviors of neural networks
with delays have attracted great attention of many researchers [1-21]. In particular, there are
extensive literatures on simplified bidirectional associative memory (BAM) neural networks.
Various interesting results on periodic solution have been reported. For example, in 2006, Yu
and Cao have considered the Hope bifurcation for the following four-neuron BAM neural
network model with discrete delays [1]:
⎩
⎨
⎧ �!
" (�) = −�!�!(�) + �!!�!!(�!(� − �#)) + �!$�!$(�$(� − �#)),
�$
" (�) = −�$�$(�) + �$!�$!(�!(� − �%)) + �$$�$$(�$(� − �%)),
�!
" (�) = −�#�!(�) + �!!�!!(�!(� − �!)) + �!$�!$(�$(� − �$)),
�$
" (�) = −�%�$(�) + �$!�$!(�!(� − �!)) + �$$�$$(�$(� − �$)).
(1)
The existence of Hopf bifurcation, a formula for determining of the Hopf bifurcation and the
stability of bifurcating periodic solution have been obtained. Ge and Xu have investigated a five- neuron BAM network model with delays as follows [2]:
⎩
⎪
⎨
⎪
⎧�!
" (�) = −��!(�) + �!!�(�!(� − �#)) + �!$�(�$(� − �#)) + �!#�(�#(� − �#)),
�$
" (�) = −��$(�) + �$!�(�!(� − �%)) + �$$�(�$(� − �%)) + �$#�(�#(� − �%)),
�!
"(�) = −��!(�) + �!!�(�!(� − �!)) + �!$�(�$(� − �$)),
�$
" (�) = −��$(�) + �$!�(�!(� − �!)) + �$$�(�$(� − �$),
�#
" (�) = −��#(�) + �#!�(�!(� − �!)) + �#$�(�$(� − �$).
(2)
Some sufficient conditions for the synchronization and bifurcation were exhibited. The global
attractively of the trivial solution were also established. Xu et al. extended model (1) to six
dimensional delayed BAM network system [3]:
Page 2 of 13
259
Feng, C. (2021). Periodic Oscillation for an Eight-Neuron Bam Neural Network Model With Discrete Delays. European Journal of Applied Sciences,
9(4). 258-270.
URL: http://dx.doi.org/10.14738/aivp.94.10718
⎩
⎪⎪
⎨
⎪⎪
⎧�!
" (�) = −�!�!(�) + �!!�!!(�!(� − �%)) + �!$�!$(�$(� − �%)) + �!#�!#(�#(� − �%)),
�$
" (�) = −�$�$(�) + �$!�$!(�!(� − �&)) + �$$�$$(�$(� − �&)) + �$#�$#(�#(� − �&)),
�#
" (�) = −�#�#(�) + �#!�#!(�!(� − �')) + �#$�#$(�$(� − �')) + �##�##(�#(� − �')),
�!
"(�) = −�%�!(�) + �%!�%!(�!(� − �!)) + �%$�%$(�$(� − �$)) + �%#�%#(�#(� − �#)),
�$
" (�) = −�&�$(�) + �&!�&!(�!(� − �!)) + �&$�&$(�$(� − �$)) + �&#�&#(�#(� − �#)),
�#
" (�) = −�'�!(�) + �'!�'!(�!(� − �!)) + �'$�'$(�$(� − �$)) + �'#�'#(�#(� − �#)).
(3)
By analyzing the associated characteristic transcendental equation, the linear stability of the
model and Hopf bifurcation were demonstrated by using the normal form method and center
manifold theory. However, it was pointed out that by using the bifurcating method to discuss
the existence of bifurcating periodic solution it is necessary to make some restrictive conditions
such that the neural network contains only one delay. For example, in model (3) the authors
assumed that,
�! + �% = �$ + �& = �# + �' = �, and let �!(�) = �!(� − �!), �$(�) = �$(� − �$), �#(�) =
�#(� − �#), �%(�) = �!(�), �&(�) = �$(�), �'(�) =
�#(�), and then model (3) changes to only one delay system as the follows:
⎩
⎪⎪
⎨
⎪⎪
⎧�!
" (�) = −�!�!(�) + �!!�!!(�%(� − �)) + �!$�!$(�&(� − �)) + �!#�!#(�'(� − �)),
�$
" (�) = −�$�$(�) + �$!�$!(�%(� − �)) + �$$�$$(�&(� − �)) + �$#�$#(�'(� − �)),
�#
" (�) = −�#�#(�) + �#!�#!(�%(� − �)) + �#$�#$(�&(� − �)) + �##�##(�'(� − �)),
�&
" (�) = −�%�%(�) + �%!�%!(�!(�)) + �%$�%$(�$(�)) + �%#�%#(�#(�)),
�&
" (�) = −�&�&(�) + �&!�&!(�!(�)) + �&$�&$(�$(�)) + �&#�&#(�#(�)),
�'
" (�) = −�'�'(�) + �'!�'!(�!(�)) + �'$�'$(�$(�)) + �'#�'#(�#(�)).
(4)
Thus, the bifurcating equation can be discussed. In this paper, we extend model (3) to an eight- neuron BAM system:
⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧ �!
" (�) = −�!�!(�) + �!!�!!(�!(� − �&)) + �!$�!$(�$(� − �')) + �!#�!#(�#(� − �()) + �!%�!%(�%(� − �))),
�$
" (�) = −�$�$(�) + �$!�$!(�!(� − �&)) + �$$�$$(�$(� − �')) + �$#�$#(�#(� − �()) + �$%�$%(�%(� − �))),
�#
" (�) = −�#�#(�) + �#!�#!(�!(� − �&)) + �#$�#$(�$(� − �')) + �##�##(�#(� − �()) + �#%�#%(�%(� − �))),
�%
" (�) = −�%�%(�) + �%!�%!(�!(� − �&)) + �%$�%$(�$(� − �')) + �%#�%#(�#(� − �()) + �%%�%%(�%(� − �))),
�!
"(�) = −�&�!(�) + �&!�&!(�!(� − �!)) + �&$�&$(�$(� − �$)) + �&#�&#(�#(� − �#)) + �&%�&%(�%(� − �%))
�$
" (�) = −�'�$(�) + �'!�'!(�!(� − �!)) + �'$�'$(�$(� − �$)) + �'#�'#(�#(� − �#)) + �'%�'%(�%(� − �%)),
,
�#
" (�) = −�(�#(�) + �(!�(!(�!(� − �!)) + �($�($(�$(� − �$)) + �(#�(#(�#(� − �#)) + �(%�(%(�%(� − �%)),
�%
"(�) = −�)�%(�) + �)!�)!(�!(� − �!)) + �)$�)$(�$(� − �$)) + �)#�)#(�#(� − �#)) + �)%�)%(�%(� − �%)).
(5)
where −�* < 0 (� = 1, 2, ... , 8). Our goal is to consider the dynamical behavior of model (5).
Noting that system (5) has eight delays. If those delays are different positive numbers, then the
bifurcating method is extremely hard to deal with model (5). Because one cannot solve the
bifurcating equation which is an eight variables transcendental equation. In order to discuss
the existence of periodic solutions for system (5), we adopt the generalized Chafee's criterion
[23], and the appendix of [24]. and this particular instability of the unique equilibrium point
and the boundedness of the solutions will force system (5) to generate a limit cycle, namely, a
periodic solution. In this paper, by using the mathematical analysis method, the existence of
periodic solutions has been established.