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ABSTRACT   

3D face clones are used in many fields such as video games and Human-Computer Interaction. 

However, high-resolution sensors generating high quality clones are expensive and not accessible to 

all. In this paper, we propose to make a fully automated and accurate 3D reconstruction of a face with 

a low cost RGB-D camera. For each subject, we capture the depth and RGB data of their face in different 

positions while performing a rotational movement of the head. We fit a 3D Morphable Face Model on 

each frame to eliminate noise, increase resolution and provide a structured mesh. This type of mesh is 

a mesh which the semantic and topological structure is known. We propose to only keep the suitable 

parts of each mesh called Patch. This selection is performed using an error distance and the direction 

of the normal vectors. To create the 3D face clone, we merge the different patches of each mesh. These 

patches contain relevant information on the specificity of individuals and lead to the construction of a 

more accurate clone. We perform quantitative tests by comparing our clone to ground truth and 

qualitative tests by comparing visual features. These results show that our method outperforms the 

FaceWarehouse process of Cao et al [2]. This 3D face clone on a structured mesh can be used as 

pretreatment in applications such as emotion analysis [13] or facial animation. 

Keywords: Structured mesh, Patches detection and fusion, 3D Morphable Face Model, Fitting 

1 Introduction  

Face Cloning is an important area of research in Computer Vision and Graphics. Indeed, it can be used 

in many applications, such as video and serious games, e-learning and Human Computer Interaction 

where the user must be able to interact with the computers. Actually, these applications must assist 

machines to automatically detect specific information about the user such as hand, arm and face 

gestures. A lot of research is conducted to improve such applications. R.Gross et al [8], C.Soladie et al 

[11] and A.Väljamäe et al [12] show that systems which adapt to the specificities of the subjects 

perform better than generic systems. For this reason, the use of a 3D face clone of the user rather than 

a generic face model as pretreatment increases the performance of these applications, K.A.Funes Mora 

and J.Odobez[7] shows for example that the use of a 3D clone to detect the pose of the head and eyes 

provides excellent results. That is why to improve the reconstruction techniques; realistic 3D clone can 

increase the performance of these applications. Moreover, the necessary infrastructure shall be 

available to end-users at their homes. Therefore, the sensor must be inexpensive and the method must 

be fully automatic. For all these reasons, low-resolution cameras have been recently used in the field 

of facial clones. Furthermore, we must know the semantic and topological structure of meshes so that 

the 3D clones can be used in applications. We call this type of mesh, a structured mesh. For instance 

structured mesh allows the detection of characteristic points used identifying a person's emotions [13]. 
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Figure 1: Comparison of 3D shape reconstruction process 

There are several types of sensors for obtaining realistic clones. In the literature, certain methods use 

2D data (RGB) to reconstruct the 3D shape and texture. Light Stage is a 2D high-resolution scanner that 

captures the properties of light (in texture and reflectance) of any object. This technology was 

developed in California by P.Debevec [5]. This method uses the specific properties of the skin. It consists 

of several light sources (LED), several digital cameras and electronic system for controlling the light and 

the RGB camera. Highly realistic clones can be obtained but is very expensive and not accessible. The 

web service AutoDesk 123D Catch permits to create realistic clones from 2D images but it does not 

provide structured clones. In addition, we need the help of a second person to create his clone. There 

are also several types of high-resolution 3D sensors for obtaining hyper realistic clones. This type of 

sensor is used to achieve very satisfactory results in terms of accuracy and realism but they are not 

feasible for domestic use. They are used to create databases and ground truth. Indeed Inspeck Mega 

Capturor II 3D has created the basis of the Bosphorus data with an accuracy of 0.3 mm ref [9]. It makes 

it possible to acquire depth data with structured light. P.Paysan et al [10] use a coded light system 

created by ABW-3D. They measure the shape of an object using a sequence of light patterns. This 

scanner provides realistic clones with high resolution. It was used to design the database of their 

Morphable Face Model [10].  

In this paper, we propose a system for 3D face cloning using a low-cost sensor (Kinect) and providing a 

structured high resolution 3D clone. With this sensor, we obtain noisy low-resolution depth and color 

data. Therefore, we fit a Morphable Face Model [10] on each 3D depth frame (Figure 2). This has two 

advantages: 1) it enables to increase the resolution and reduce the noise for each 3D depth frame 2) it 

enables to know the structure of 3D facial mesh. We obtain for each frame a structured 3D mesh. Our 

process is completely automatic: we have no manual training phase. In response to realism, we propose 

a method for detecting and merging parts of the obtained meshes (patches) that are adequate. Indeed, 

we identify patches contain relevant information on the specificity of an individual. Finally, we merge 

all of these patches. This approach allows us to provide a realistic 3D clone. 
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Figure 2: Our patch fusion for 3D face cloning system 

The first main contribution of this paper is at the system level. Most of the methods first perform frames 

fusion and then a Morphable Face Model (Figure 1). In the FaceWarehouse process, C. Cao et al [2] fit 

a Morphable Face Model on a mesh obtained with Kinect Fusion. The peculiarity of our method is to 

reverse the process. We first perform the fitting on each depth frame and then the fusion. Under these 

conditions, the system is less dependent on alignments and fitting errors because we merge a posteriori 

only reliable information. Our second main contribution is the patches detection and fusion technique. 

When we use a Morphable Face Model, some of the morphological specificities of the individual that 

we want to clone may disappear. Indeed, the entire Morphable Model does not contain all possible 

forms and details of the unknown new face in its entirety. The specificities of the individual can only be 

found if they belong to the database. That is why we used a method that selects small patches (carefully 

chosen set of points) that focus on the details of the specificities of the individual. That is, we identify 

the parts (patches) of each 3D meshes that are relevant using an error distance and the direction of the 

normal vectors at each point of the face. Our approach allows finding specificities of persons that are 

not found with a conventional method of fitting [16]. We use this method both on the texture and on 

the depth data.  

This article is organized as follows. In the next section, we present several methods for cloning 3D face 

that exist in the literature. In Part 3, we describe the various components of our patches detection and 

fusion algorithm on form and texture. Part 4 demonstrates the accuracy and the precision of our results 

by comparing them to other methods. Section 5 concludes the paper. 

2 Related Work 

There are several techniques for cloning 3D face with low resolution RGB-D sensors. During the past 

decade, these sensors have often been used in research because they aren't expensive and are 

accessible to general public. These methods can be classified into two categories of methods: 

techniques to obtain an unstructured mesh and those which give structured one. A structured mesh is 

a mesh for which we know the correspondence of each 3D point with the face that we want to clone 

(figure 3). 

R.A Newcombe et al [17] present a 3-D reconstruction of scenes or objects using a depth low cost 

camera. Kinect Fusion provides high quality 3D scans. The algorithm consists of 3 steps. First Iterative 

Closest Point algorithm is used to determine the position of the camera. Then, they use a surface 

volumetric representation [18]. And finally they perform a ray casting for rendering depth data. To 

increase the resolution of the depth map, Y. Cui et al [4] use a method of super-resolution [19]. This 
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method creates a high resolution depth map from multiple low resolution depth maps. It combines low 

resolution depth maps with a perspective slightly different from the static object. This approach gives 

less noisy and smoothed frames. Then each frame is aligned to reconstruct the 3D face using a 

probabilistic alignment method [20]. Q. Sun et al [15] propose a method for reconstructing a 3D face 

from RGB and depth data captured with low resolution Kinect. First, it detects the person's face by 

using the RGB data. Then they use bilinear interpolation to increase the resolution of depth frames. 

Finally, they combine four frames high resolution depth for a realistic 3D face. They use an energy 

function that will allow to combine the frames of depth but also to smooth the final result. All these 

methods enable to clone realistic faces but are limited in terms of precision of facial features. For 

example, the low resolution sensors do not reflect the accurate shape of the face at the vicinity eyes. 

Because of the infrared reflection in the eyes, the sensor does not return the shape of the eyeball 

(Figure 11). Moreover, they do not provide structured 3D clones and therefore cannot be directly used 

as a pretreatment in applications requiring knowledge of the correspondence of the mesh points with 

the face. Below, we present the teams that get this type of 3D clone.  

Techniques using deformable models can reconstruct 3D structured clones and eliminate noise depth 

data provided by RGB-D sensors. M.Zollhöfer et al [21] present an algorithm for 3D clones from high 

resolution RGB and depth data obtained with a Kinect camera. First, they smooth depth frame 

(Gaussian filter), detect feature points from the corresponding RGB image and segment the face using 

3D depth. Then, they fit a Morphable 3D Face Model on the frame depth obtained by minimizing an 

energy term. Eventually, they project an RGB image on the 3D face reconstructed to obtain a 3D clone 

with a texture. C. Cao et al [2] create a database of 3D faces of 150 individuals. For each person, they 

capture with the RGB-D Kinect camera data from 15 different expressions included the neutral face. 

They then use Kinect fusion [17] to reconstruct the 3D face of each person. For each of these 3D faces, 

they detect 74 feature points using an Active Shape Models (ASM) [23] on the corresponding RGB 

images. Some points are manually adjusted for greater accuracy. Then, they fit a Morphable Face 

Model [10] on the 3D faces using an energy term. The model is deformed to adapt as effectively as 

possible 3D faces while matching characteristic points. Finally, they get a structured 3D mesh of each 

expression for each person. Note that their method is not fully automatic. M.Zollhöfer et al [14] 

presents an iterative method to clone the 3D face of a person. First, they detect the pose of the head 

and use a method similar to Kinect fusion to merge the different frames of depth and texture. Then, 

they detect the characteristic points of the face and they fit a statistical 3D face model [10] to 

reconstruct the shape and texture of the face. To do this, they optimize an energy term that finds the 

shape, albedo and illumination. They iterate these 4 steps for each new depth frame.  

 

Figure 3: Definition of a structured mesh 
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The resulting 3D structured mesh obtained from these methods can be used in various applications 

such as a pre-process for gaze detection. Indeed, K.A.Funes Mora and J.Odobez [7] use 3D clones to 

estimate the pose of the head and the direction of the gaze of a person. To obtain a 3D clone, they fit 

a Morphable Face Model on data captured with a Kinect camera. Their method requires manual 

placement of feature points. They then use an algorithm based on Iterative Closest Point algorithm to 

detect the laying of the head. All the methods previously described above uses a Morphable 3D Face 

Model. They can provide high resolution structured clones. These techniques depend heavily on the 

quality of the model's face. Indeed, the specificities of the individuals can only be found if they belong 

to the database. It is therefore essential to use a database composed of diversified faces. The use of 

feature points can improve the fitting. But the methods are sensitive to the precision of the detection 

of these points. That is why most of these methods need manual adjustment of the points. 

Our method of detection and fusion patches belongs to the category of techniques that use a 

Morphable Face Model but is fully automatic. Our technique is less dependent on the quality of the 

model used. Indeed, the goal of our algorithm is to improve the results of cloning using deformable 

models used in this type of methods. 

3 Patches Detection and Fusion method 

The different parts of our method are described in Figure 2. For each person, we capture various color 

and depth data of different views of the face. These data are noisy and in low resolution. We obtain a 

3D point cloud (real coordinates: X, Y, Z and color: R, G, B) giving information about the subject's face. 

Our algorithm consists of two main sections: the reconstruction of the 3D shape (section 3.1) and the 

reconstruction of the 3D texture (section 3.2). For the reconstruction of the 3D shape, we use a 

Morphable Face Model. Compared to conventional methods, our process is reversed: we first perform 

a fitting with a Model on different depth frames Dp (p = 1 to n) to increase the resolution and remove 

noise and then we perform a fusion of the structured obtained meshes Mp (p = 1 to n) (Figure 1). We 

obtain a structured clone without texture Mc. In section 3.2, we describe the steps to rebuild the 

texture of the clone Tc. We explain how we map and merge the different texture images Ip (p = 1 to n). 

3.1 Mesh Reconstruction 

The first section of our process is the reconstruction of the 3D shape of the face. It is composed of two 

sub-sections: the fitting (3.1.1) and detecting and merging patches (3.1.2). The fitting and the patches 

detection are performed on each of the frames. Then we merge the obtained patches. 

3.1.1 Fitting with a Morphable Face Model  

The fitting is applied to each depth frame Dp (p = 1 to n). It is composed of a pretreatment and the 

iteration of two main stages. First, we perform preprocessing by filtering each depth frame Dp to 

remove part of the noise. Then, at each iteration, we align the depth frame Dp with the Morphable 

Face Model mesh S(α) (rigid transformation), and finally we deform the mesh S(α) so that it takes the 

shape of the depth frame Dp (non-rigid transformation). Each step is described below. 

Bilateral Filter: Each depth frame Dp is smoothed with a bilateral filter before being treated [6]. This is 

a non-linear filter which has the advantage of preserving the edges and remove noise.   

Rigid alignment: At each iteration of the fitting, we first need to align each depth frame Dp with the 

Morphable Face Model mesh S(α). The vector α is the parameter vector of the Morphable Face Model. 

We use the well-known and often used, iterative algorithm Iterative Closest Point [1], which aligns two 

3D point clouds (rigid transformation). It consists of two stages: at each iteration, we match the points 
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of S(αp) with the points of the depth frame Dp and then we estimate the rotation R and translation T 

matrix. Minimization of the error metric Eicp (equation 1) is used to estimate these two matrices.  

 Eicp(R, T) = arg minE ‖S(αp) − (R ∗ Dp − T)‖
2
 with p = 1 to n                       (1) 

The error Eicp is based on the Euclidean distance between pairs of points in 3D point clouds that we 

want to align. Finally, these transformations R and t are applied to the frame Dp at the beginning of the 

next iteration. We iterate these two steps until the error Eicp reaches a minimum threshold or until the 

maximum number of iterations is reached. There are many variants of the ICP algorithm. S. 

Rusinkiewicz et al [22] compared the convergence characteristics of several ICP variants. For example, 

they used different distances (color, Euclidean ...) to match the points of two clouds to be aligned. In 

our method, we use the point to plan ICP of Y.Chen et al [3]. It is slower than the point to point but 

provides a better alignment of the two 3D point clouds. In the ICP algorithm, it is important to reject a 

maximum incorrect pairs of points. Therefore, we use a distance criterion to determine if a match is 

correct or not. We reject 50 percent of pairs of points. 

Non-rigid transformation: After making the rigid transformation, we distort the average mesh 𝑆̅ of the 

Morphable Face Model to fit to the depth frame Dp. In our process, we use Basel Face Model [10] to 

perform the non-rigid transformation. To compute this parametric model, they have made a principal 

component analysis (PCA) on 200 3D faces. 

                   S(α) =  S̅ +  U ∗ diag(σ) ∗ α                                              (2) 

In this equation, U is the orthonormal basis of the principal components of the PCA and σ the standard 

deviation of the components. The modification of the vector α provides the ability to distort the 

average face 𝑆̅ to create a new 3D face. We compute a distance error Efit between the points of depth 

frame Dp and the mesh 𝑆(𝛼𝑝) and we are looking for the 𝛼𝑝 that minimizes this error: 

         𝐸𝑓𝑖𝑡 = arg 𝑚𝑖𝑛𝐸‖𝑊𝑝.∗ (𝑆(𝛼𝑝) − 𝐷𝑝)‖
2
 with p = 1 to n                      (3)  

First, we match the mesh points 𝑆(𝛼𝑝) and the depth frame Dp using the Euclidean distance between 

their points. It is important to eliminate incorrect pairs of points. Therefore, we use two criteria to 

reject incorrect matches based on the distance and the direction of normal vectors of the points. If the 

distance between the two points is greater than a preselected threshold and the angle of their normal 

vectors are not substantially identical, then we eliminate the pair of points. We calculate the error Efit 

using the weighted Euclidean distance Wp between pairs of selected points. Indeed, pairs of points 

with a short distance are the most important ones. That's why we use Wp weight inversely proportional 

to the distance between the matched points. Finally, we seek to change the coefficients vector α to 

find the minimum error Efit using a least squares optimization. At each iteration, the error Efit is 

recalculated. Figure 4 shows the evolution of the error on each vertex between the depth frame Dp 

and the average mesh 𝑆(𝛼𝑝) at several iterations. Each depth frame contains various information 

about the face. A depth frame front view does not have any information on the profiles and on the 

sides of the nose. That is why in the figure 4 the error is greater in some parts of face (in red). 
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Figure 4: Evolution of error during non-rigid transformation 

3.1.2 Patches Detection and Fusion on the shape  

After making the fitting on each of the depth frames Dp, we obtain several structured meshes Mp. The 

aim of this second part is to detect the locations of the structured meshes Mp that are adequate: these 

places are called "patches". Then we merge these patches to create a mesh Mc. 

Patches Detection: A structured mesh Mp which was created from a depth frame in right profile does 

not recover information of the left profile of the person as shown in Figure 5. For this reason, we want 

to keep only the parts of meshes that are adequate and accurate. For example, for a depth frame in 

right profile we want to keep the mesh patch that matches the right profile. We call "patch" all isolated 

points of each mesh we want to keep. Camera RGB-D captures more precisely the zones where the 

optical axis is perpendicular to the surface object. Therefore, we use a double condition. For a point to 

be preserved it must have a normal vector parallel to the optical axis of the camera and the distance 

between the mesh Mp and the depth frame Dp have to be smaller than a threshold. The value of this 

threshold is used to modify the precision of patches. Thus we get a patch for each mesh Mp. In Figure 

5, we see two examples of patch detection on the 3D shape. We note that for a depth frame front view, 

we do not obtain all the information of the nose. Indeed, the error is large on the sides of the nose. For 

a frame in left profile, the error is very large to the right side of the face but little on the left side of the 

nose. The two depth frames of the figure 5 give different information. 

 

 
Figure 5: Example of patches detection on the shape. 
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Patches fusion: We want to merge the different patches we have detected to generate a complete 3D 

clone Mc (see Figure 2). All meshes Mp are structured. Therefore, we know the exact position of each 

patch on the face (eyes, forehead ...). For each point of the clone, there may be several overlapping 

patches (As the forehead of the face in the figure 5). That is why we make a fusion of points of these 

patches. We tested four types of fusion: the average, median, weighted average and robust average. 

For the average, we perform the average of overlapping points. For the median, we keep the midpoint. 

When there are not enough points (less than 3), the use of the median is not relevant. This is why we 

use the average value in this case. For the weighted average, the weights are the distances calculated 

in the step of fitting (section 3.1.1). For the fourth type of merger (robust average), we do not take into 

account the outliers in the calculation of the average. We eliminate the points that are away from the 

median value with a threshold (2mm). Figure 6 shows the result obtained with several depth frames 

Dp. 

 

Figure 6: Patches Fusion on 3D shape (weighted average fusion) 

 

At the end of this first step, we reconstructed the 3D shape of the face. We obtained a MC clone which 

will be used in the following step in order to reconstruct the texture (Figure 2). 

3.2 Texture reconstruction 

The second part of our method is the reconstruction of the texture. We use the same process as for 

the sub-section 3.1.2. This step is composed of two sub-sections: the texture mapping (3.2.1) and the 

patches detection and fusion on the texture (3.2.2). 

3.2.1 Texture mapping  

In this sub-section, we map the texture images Ip (p = 1 to n) on the structured Mc clone (Figure 2). We 

want several clones Tp (p = 1 to n) with n different textures Ip. Figure 7 shows an example of mapping 

for two frames, a frame profile view and frame front view. First, we align with the Mc clone each depth 

frame Dp using the ICP algorithm (described in paragraph 3.1.1). Camera RGB-D provides the mapping 

between the texture Ip and depth Dp. Then we map the textures Ip on the Mc clone using just this 

correspondence: for each vertex of the clone Mc, we map the texture corresponding to the closest 

point of the depth frame Dp. So we have several clones Tp with different textures. 

3.2.3 Texture Patches Detection and Fusion 

This sub-section consists of two stages: patches detection and patches fusion on the texture. We use 

the same procedure as for the 3D shape (see paragraph 3.1.2). 
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Patches Detection: We want to detect on each clone Tp, the texture patch that are adequate. Indeed, 

a Tp clone that was created from a texture image profile Ip does not recover the texture information 

on the left profile of the person as shown in Figure 7. To find out which texture points are relevant, we 

use the 3D shape of clones Tp and depth frames Dp. As in Section 3.1.2, we use two conditions: error 

distance between the clone Tp and the depth frame Dp and direction of normal vectors of their points. 

In Figure 7, we see two examples of patch detection on the texture. We note that for a left profile image 

Ip, we are not recovering the texture of the right profile. We observe that the shape error between the 

frame Dp and the clones Tp is relevant. 

 

 
Figure 7: Example of patches detection on the texture. 

Patches fusion: In this sub-step, we merge the patches detected in the previous step. We use the same 

method as in Section 3.1.2 to merge texture patches (RGB color of each point of the patches). We 

always use structured meshes Tp, which allows us to make the point to point fusion. We merge these 

patches for a complete facial texture. We also compare four types of fusion: average, median, weighted 

average and robust average. Figure 8 shows that the melting texture patches have been obtained with 

several images Ip using the median fusion. 

 

Figure 8: Patch Fusion on texture (median fusion) 

Finally, our method allows reconstructing the 3D shape and texture of the face. We get a TC clone 

(Figure 2). 

4 Experimental results 
 

In this section, we first present the tools we have used (4.1 and 4.2) as well as our acquisition protocol 

(Section 4.3), then our results. We tested our method using Basel Face Model [10] and a Kinect camera. 

We compare our results qualitatively with other methods in the literature (section 4.5.1) and 

quantitatively using a ground truth (section 4.5.2). 
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4.1 Experimental protocol 

We use a Kinect camera version 1 which is equipped with a color sensor and a depth sensor. It offers a 

resolution of 480 * 640 to 30 fps and it has a range at 0.5 meters. It does not work on reflective surfaces 

(the pupil) and in the presence of sunlight. For the fitting, we use the Basel Face Model (BFM) [10]. It 

was created from a training set of 200 scans of faces (100 women and 100 men). Each scan has a high 

resolution of 53,490 vertices (face and profile). The shape is statistically modeled by principal 

component analysis. Our acquisition protocol is simple and fast. Acquisitions are performed in a room 

with an ambient light. The subject performs a rotational movement of the head in front of the camera 

at 0.5 meter. He must do a neutral expression during the acquisition of data. For each person, the 

Kinect capture the texture Ip and the depth Dp. Our database of test consists of 6 subjects (Figure 13). 

4.2 Comparisons of different fusions 

For the reconstruction of the shape, we compared four methods of fusion: average, weighted mean, 

median and robust average. Figure 9 shows the clones obtained with the different methods for one 

subject. The method that uses the average does not eliminate outliers (artifacts) and the clone contains 

a lot of noise. The weighted average gives more importance to points of patches that are supposed to 

be correct, that are why it improves the results. With the median we get a better result. Indeed, one 

can see that there is less noise in areas without contour (cheek, forehead). However, we note that the 

eyebrows are more smoothed. We get the best results using the robust average. In fact, it eliminates a 

lot of noise (artifact) keeping details of faces: it removes the noise on the parts of the face without 

contour (cheek, forehead) while keeping the contour information (eyebrows ...). Indeed, it does not 

take into account certain items which are noisy patches in calculating the average. 

 

 
Figure 9: Comparison of different Patch Fusion on the texture 

For the reconstruction of the texture, we also tested these four methods of fusion (Figure 10). We 

obtain a blur image of the texture when we use the average and the weighted average. The robust 

average slightly improves the results. Fusion with a median eliminates blur part of the texture and gives 

the best results. The low resolution of Kinect sensor (480 * 640) does not provide a high quality texture.  

 
Figure 10: Comparison of several data fusion methods. 
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4.5 Results comparisons 

We compared qualitatively (4.3.1) and quantitatively (4.3.2) our method with other methods in the 

literature. The qualitative comparison is used to compare the realism of the different results: we 

compared our results with the results of Kinect Fusion [17] and the FaceWarehouse process [2]. The 

FaceWarehouse process that we used consists of two steps: the merger of depth frames using Kinect 

Fusion and the fitting using the Basel Face Model (BFM) [10]. For fitting, we did not use the error term 

calculated with the feature points and the regularization term. Indeed, it is necessary that the detection 

of the feature points is very precise for the use of this error term is relevant. Methods for detecting the 

fully automatic feature points do not seem quite efficient (Active Shape Models (ASM) [23]…). 

Moreover, we do not use that regularization term because the algorithm converges without this term 

and the results obtained have fewer physical characteristics of the face. The quantitative comparison 

allows to know the accuracy of the results: we compared the results obtained with the FaceWarehouse 

process [2] and those obtained with our method with a ground truth. 

4.3.1. Qualitative comparison 

 

Figure 11: Qualitative comparison our results 

Figure 11 shows the rendering of Kinect Fusion, FaceWarehouse process and our method on one 

subject. Kinect Fusion provides a clone with the specifics of the individual, but the facial features are 

not particularly strongly marked for instance at eye level. Ocular lobe does not appear on the 3D clone 

because the Kinect camera does not capture well the depth at eye level. Infrared rays are not efficient 

on the surfaces that reflect light (mirror, eyes ...). In addition, Kinect Fusion does not give a structured 

mesh. So it cannot be used directly in an application of gaze detection type [7] or facial animation for 

example. The FaceWarehouse process provides a structured clone where the facial features are 

pronounced. For example, the ocular lobe is not realistic. The clone obtained with the FaceWarehouse 

process has less of specifics of the individual. Indeed, Morphable Face Models are global models. In 

addition, they do not contain all possible forms and details of the subject's face and their learning 

databases are limited (200 faces for Basel Face Model). Our method is a compromise between the two 

previous methods. It provides that the facial features are well marked while also having more specifics 

of individual that a 3D clone created by FaceWarehouse process. For example, we can see that the eyes 

are smaller than obtained with the FaceWarehouse process. Hence, eyes of our 3D clone are more 

realistic.  
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4.3.2. Quantitative comparison 

 
Figure 12: Quantitative comparison with ground truth 

We also compared the results of our method and FaceWarehouse process with a ground truth. We do 

not make this comparison for our entire test database because we have the ground truth for only one 

subject. We did not calculate the error at eye level because the ground truth is not correct on this face 

area. First, we matched each point of the clone that we want to compare with the closest to the ground 

truth points. Then we calculated the overall error of distance between pairs of points (Figure 12). This 

figure shows the local error distance between each point of the two clones and the closest to the 

ground truth points. We can observe that the error is smaller with our method especially at the 

forehead and the chin. The error is larger at the level eye of 3D clone because the eyeball does not 

appear clearly on the ground truth. We observe that the overall error is smaller with our method (Error: 

1.97) than with FaceWarehouse process (Error = 2.08). Figure 13 shows the results of our method on 

six subjects. It gives consistent results for different subjects. 
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Figure 13: Results of our method on 6 people. 

5 Conclusion 

Face cloning is used in the field of video games and Human-Computer Interaction. Some applications 

require a system with low cost and easily accessible. Our method allows cloning faces with a low-cost 

sensor. We use a Morphable Face Model that allows obtaining structured 3D clones. The two 

contributions of our method are inversion process (fitting and fusion) and the use of shape and texture 

patches. We reverse the process to be less dependent on the alignment and assembly error. The use 

of patches makes it easier to find the specifics of an individual's face. We also observed that the 

reconstruction of the texture of the eyes is not correct. Therefore, we want to work in the future on 

the improvement of the quality of the texture. Using an interpolation could improve the results 

obtained with our method of texture mapping. In our future work, we also want to use the super 

resolution methods to increase the resolution of the data Kinect and improve the quality of our results. 

Finally, we wish to work on the cloning of facial expressions. 
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