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ABSTRACT 

A 2D hexagonal image is an array of what are called pixels which are the coordinates of the hexagonal 
lattice points decided by the linear horizontal rows and the nonlinear vertical zig-zags. A 2D 
hexagonal image could also be informally called as image slice or a matrix of pixel values arranged in a 
hexagonal array. A 3D hexagonal image is viewed as an ordered sequence of 2D hexagonal image 
slices arranged in the z-direction and the 3D arrangement of voxel values is called as a prism of voxel 
values. Most of the 3D hexagonal image processing operations are similar to those of 2D hexagonal 
image processing. 3D hexagonal images are processed with the help of 3D hexagonal scanning 
windows, whereas 2D hexagonal images are processed with the help of 2D hexagonal scanning 
windows. For instance, a 3D hexagonal image processing operation like 3D surface detection is 
carried out using analogous 2D edge detection algorithm on every image slice and the processed 
slices assembled to visualize 3D surface detected image. In fact, 2D contours of an image slice are 
called superficial features and closed surfaces of a 3D image are called volumetric features. One can 
always obtain surface detected version of a 3D hexagonal image by processing the 2D hexagonal 
image slices using 2D edge detection operation, and consequently the 3D surface detection operation 
is termed as 2.5D hexagonal image processing. One could also process the 3D hexagonal image data 
using a 3D surface detection algorithm, in which case it is termed as 3D hexagonal image processing. 
This is not the case with the operation of skeltonization. One cannot make use of 2.5D skeletonization 
operation of 2D image slices in order to get skeltonized version of the corresponding 3D image. In 
fact, one would come across discrepancies and differences when 2.5D skeletonization of 2D 
hexagonal image slices of a 3D hexagonal image is carried out instead of the direct 3D skeletonization 
of the 3D hexagonal image. This paper highlights certain 3D algorithms for processing 3D hexagonal 
images. 

Keywords: Hexagonal Lattice Grid, Hexagonal Lattice Grid Images, Hexagonal Lattice Grid Image 
Processing  

 
1 Introduction 

Regular hexagons could be tiled up as a tessellation of a hexagonal lattice in order to display digital 
images with the idea of visualizing images with better curvilinear property. The extraction of features 
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on  Rectangular lattice is done by some researches [1]-[27] in two and three dimensional grids but 
extraction of  features on  two dimensional hexagonal grid is  done by [28]-[53 ]but  extraction of 
features on  hexagonal   lattice prism is done no where in the literature.  

The technique of realizing a hexagonal lattice in Z2 grid is briefly explained in the following. 
 

1.1 Two Dimensional Image Visualization in Hexagonal Lattice of Z2 Grid 
A sample Z2 grid of size 14x25 is a two dimensional array of nodes and it is shown in Fig. 1. The 
addressing scheme of those lattice points (nodes) is also demonstrated in Fig. 1. Hexagonal lattice in a 
Z2 grid is a two dimensional array of nodes, which is shown in Fig. 2. The addressing scheme of those 
lattice points (nodes) is also demonstrated in Fig. 2. As per Fig. 2, the coordinates of the hexagonal 
lattice points are decided by the linear horizontal rows and the nonlinear vertical zig-zags. 

 

 
   Figure. 1: Two dimensional rectangular lattice points in Z2 grid     Fig. 2: Hexagonal lattice points decided 

by rows and zig-zags 

Now, each node in the hexagonal lattice (Fig. 2) is related to the corresponding node in the 
rectangular lattice (Fig. 1) by the following formulas: (i) for even row elements of the hexagonal 
lattice (0th row is an even row), <Hxi, Hyj> = <Rx2i, Ry2j> and (ii) for odd row elements of the hexagonal 
lattice <Hxi, Hyj> = <Rx2i, Ry2j+1>. Fig. 3 shows a sample image displayed on rectangular and hexagonal 
lattice points in Z2 grid. 
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Figure. 3: Sample image displayed on rectangular and hexagonal lattice points in Z2 grid 

1.2 Three Dimensional Image Visualization in Hexagonal Lattice of Z3 Grid 
Nodes in a two dimensional array are called pixels. Similarly, nodes in the three dimensional array are 
called voxels. A voxel in a 3D lattice is shown in figure 4. 

 
Figure. 4: Voxel in a 3D lattice 

Figure. 5 shows a 10x10x10 array of voxels. Each voxel could be represented by a gray tone or a color 
in terms of Red, Green and Blue. If Red, Green and Blue values are identical then the voxel is a gray 
level voxel. 

 
Figure. 5: Simple 3D array of voxels of size 10x10x10 

It is not possible to surmise a three dimensional hexagonal lattice which has a symmetry in all 
directions. One may try to construct a 3D hexagonal lattice using six regular hexagons as it is done in 
the case of 3D rectangular lattice. In fact, one can think of a hexagonal unit prism consisting of 12 
nodes fo tiling which woould evolve a three dimensional hexagonal prsim lattice. Fig. 6 shows one 
such hexagonal unit prism which could act as a fundamental building block in the constrcution of such 
a lattice and two such units concatenated. 

  
Figure. 6: Hexagonal unit prism consisting of 12 nodes and two such units concatenated 

∆x 

∆y 
∆z 
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Figure. 7 shows a 3D hexagonal prism lattice of voxels obtained from a 3D rectangular lattice of 
voxels. Now, each node in the hexagonal lattice (Fig. 7) is related to the corresponding node in a 
rectangular lattice by the following formulas: (i) For even row elements of kth voxel array in hexagonal 
lattice (Note: 0th row is even row), <Hxi, Hyj, Hzk> = <Rx2i, Ry2j, Rz2k>, and (ii) For odd row elements of 
kth voxel array in hexagonal lattice <Hxi, Hyj, Hzk,> = <Rx2i, Ry2j+1, Rz2k>. As per Fig. 7, the coordinates of 
the hexagonal lattice points in a voxel array are decided by the linear horizontal rows and the 
nonlinear vertical zig-zags. 

 
Figure. 7: Hexagonal lattice points depicted in Z3 grid 

Figure 8 shows a sample 3D image displayed on a regular rectangular lattice points in Z2 grid and the 
same image displayed on a simulated 3D hexagonal symmetric prism lattice. 

   
Figure. 7: Sample image displayed on rectangular lattice in Z3 grid and same image displayed on hexagonal 

lattice in Z3 grid 

After visualizing 3D images on a hexagonal lattice, one would try to process the images as per 
requirement. 3D image processing is basically a complex operation even in the case of rectangular 
lattice based images. It is more complex in the case of hexagonal lattice based 3D images. This paper 
presents results of an extensive research carried out to process 3D hexagonal prism lattice based 
images and it consists of two sections, (i) processing of 3D hexagonal images using 2D algorithms and 
(ii) processing of 3D hexagonal images using 3D algorithms.  
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2 Processing of 3D hexagonal images using 2D algorithms 
Cellular logic array processing of digital images is the basic paradigm that is used to process 2D and 
3D hexagonal images. The hexagonal image to be processed is treated here as the initial configuration 
of a cellular automaton and the processed hexagonal image as its final configuration. The updating 
rule of the cellular automaton is viewed here as the desired hexagonal image processing operation. In 
this framework of cellular logic array processing one can develop algorithms for implementing 
morphological operations and also traditional operations like binarization, segmentation, and edge 
detection on hexagonal images. Most of the conventional image processing operations are carried 
out using numerical calculations, and so use of pattern directed algorithms for their implementation 
may lead to more complexity and more CPU time. So, we make use of less complex numerical 
operations like addition and subtraction wherever it is necessary in our fast operating pattern-
directed algorithms so that we achieve a high throughput image processing system. Given a 3D 
hexagonal image, one can use a 2D algorithm to process it slice by slice in order to achieve an overall 
processing effect on the image.  

This type of processing 3D images using 2D algorithms is called ‘2.5D processing’ of 3D images. As a 
test case study, the operations of 2.5D edge detection and 2.5D skeletonization are carried out on 
two real time MR images and results shown with the idea of highlighting the significance of cellular 
logic array processing. 

2.1 Two dimensional scanning windows for 2.5D processing of 3D hexagonal 
images 

The given hexagonal image is scanned by any of the 18 structuring elements shown in Fig. 8. In fact, 
one would use five structuring elements C1,4, C2,5, C3,6, D1,3,5 and D2,4,6 which are called ‘basis patterns’ 
for this purpose. Fig. 8 also shows the 5-level lattice structure consisting of the 18 patterns with the 
relation ‘contained in’ denoted by the symbol ⊂. For instance, the relation D1,3,5 ⊂ C1,3 denotes that 
the pattern D1,3,5 is contained in the pattern C1,3. Note that there are five basis patterns C1,4, C2,5, C3,6, 

D1,3,5 and D2,4,6 (shaded black) in Fig. 8. All these five basis patterns have to be used while scanning a 
hexagonal image. 

 
 

Figure. 8: Eighteen convex polygons over the basic polygon A and its lattice structure 

 
Based on the above argument, it is sufficient to make use of the neighbourhood structures C1,4, C2,5, 

C3,6, D1,3,5 and D2,4,6 (masks) for processing a 2D hexagonal image because checking for the presence of 
these five neighbourhoods in a hexagonal image ensures checking of all possible 18 convex patterns 
in a the image. 
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2.1.1 Edge detection in 2D hexagonal images using 2D algorithm 

A region that appears to have a single gray-level may really contain many adjacent gray-levels. They 
appear to be the same because of the effect of visual quantization exercised by an observer. 
Segmentation is a process of partitioning a given gray-level image into disjoint regions each of which 
appears to an observer to have a single gray-level. So, a given image is first segmented using a 
threshold-based-quantization method and after that the boundaries of the quantized regions are 
detected. On every move, the sub image enclosed by any of the five neighbourhood windows is 
examined to see whether the D (gray-distance), which is the difference between the maximum and 
the minimum gray-values analogous to that sub image, is less than or equal to a threshold value T. If 
D is equal or less than to T, then the gray-value 0 is assigned to central cell; otherwise the value in 
central cell left unchanged. This procedure is repeated till the whole hexagonal image is scanned. The 
final outcome is that the boundaries of different regions in the given hexagonal image, that appear to 
be uniform, are retained and their interior parts are removed thus giving us the edge detected edition 
of the original image. This operation is carried out by pattern directed if-then rules. In the case of 
color images, the following method is used to detect the edges. 

Repeat sliding the five structuring elements over the image  
{ Examine all pixels of a nonzero neighbourhood;  

Get the maximum Red color value Red_max;  
Get the minimum Red color value Red_min;  
Then find the difference between these two values DRed;  
Get the maximum Green color value Green_max; 
Get the minimum Green color value Green_min; 
Then find the difference DGreen; 
Get the maximum Blue color value Blue_max; 
Get minimum Blue color value Blue_min; 
Then find the difference DBlue;  
When all the values DRed, DGreen and DBlue are less than or equal to a threshold value T then substitute the 
central pixel value with R = G = B = 0, else slide the five structuring elements  

} until the structuring elements span whole of the image. 
Fig 9 shows a sample hexagonal 2D image and its edge detected version. 

   
Figure. 9: Sample hexagonal colour image and its edge detected version 

2.1.2 Skeletonization of 2D hexagonal images using 2D algorithm 

On every move, the sub image enclosed by any of the five scanning windows is examined to see 
whether the D (gray-distance), which is the difference between the maximum and the minimum gray-
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values analogous to that sub image, is less than or equal to a threshold value T. If D is equal or less 
than to T, then the gray-value of the central cell is preserved and the boundary pixel removed. This 
procedure is repeated till the whole image is scanned. The final outcome is that the boundaries of 
different regions in the given image, that appear to be uniform, are removed and their interior parts 
are retained thus giving us the skeleton edition of the original image. Note that this operation is 
carried out by pattern directed if-then rules. In the color images case, the following method is used to 
detect the edges. 

Repeat sliding the five structuring elements over the image  
{ 

Examine all pixels of a nonzero neighborhood;  
Get the maximum Red color value Red_max;  
Get the minimum Red color value Red_min;  
Then find the difference between these two values DRed;  
Get the maximum Green color value Green_max; 
Get the minimum Green color value Green_min; 
Then find the difference DGreen; 
Get the maximum Blue color value Blue_max; 
Get minimum Blue color value Blue_min; 
Then find the difference DBlue;  
When all the values DRed, DGreen and DBlue are less than or equal to a threshold value T then retain the 
central pixel value, else slide the five scanning windows  

} until the structuring element scans the entire image; repeat this procedure till there is no boundary detected.  
Figure. 10 shows a sample hexagonal 2D image and its skeletal form. 

  
Figure 10: Sample hexagonal 2D color image and its skeletal form 

2.2 Processing of 3D images using 2.5D algorithms 
One can process 3D hexagonal images using 2D algorithms slice by slice and integrate the processed 
2D slices as a 3D image. In this case also, the 2D algorithms are called 2.5D algorithms because they 
are applied to a set of 2D slices of a 3D image. Fig. 11 shows an MR image of a human heart, its 2.5D 
edge detected and 2.5D skeletonized versions. 
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Figure 11: Sample MR image of a human heart, its 2.5D edge detected and 2.5D skeletonized versions 

With reference to Fig. 11 and to an in depth study by carrying out edge detection and skeletonization 
operations on several varieties of 3D hexagonal images, it has been observed that the result of 
processing 3D hexagonal images using 2.5D algorithms slice wise does not yield precise results. 
Alternatively, it has been found that the results of processing 3D hexagonal images using 3D 
algorithms yield better results. 

3 Processing of 3D hexagonal images using 3D algorithms 
The notion of three dimensional scanning windows for 3D processing of 3D hexagonal images is 
briefly described in this section. 3D algorithms make use of one of 324 unique convex 3-D hexagonal 
polyhedrons (hexagonal prisms).  

3.1 Three dimensional scanning windows for 3D processing of 3D hexagonal 
images 

 Consider a 21- neighbourhood structure in the three-dimensional hexagonal grid as in Fig. 12. 

 
Front Plane (K-1) 

 
Central Plane (K) 

 
Rear Plane (K+1) 

Figure. 12:  21- neighbourhood structure 

One can construct a total of 324 convex polyhedrons (prisms) in the 21-neighborhood structure. 
These are listed below under seven groups among which 25 of them are basis convex hexagonal 
polyhedrons. 

Group A: No voxel is eliminated we get 1 combination  

A = {1,2,3,4,5,6,15, 16,17,18,19,20} 
Group B: Eliminating one voxel we obtain 12 combinations 
B1  =  {2,3,4,5,6,15,16,17,18,19,20}; B2  =  {1,3,4,5,6,15,16,17,18,19,20}; B3  =  {1,2,4,5,6,15,16,17,18,19,20};  
B4  =  {1,2,3,5,6,15,16,17,18,19,20}; B5  =  {1,2,3,4,6,15,16,17,18,19,20}; B6  =  {1,2,3,4,5,15,16,17,18,19,20}; 
B15  =  {1,2,3,4,5,6,16,17,18,19,20},  B16  =  {1,2,3,4,5,6,15,17,18,19,20}; B17  =  {1,2,3,4,5,6,15,16,18,19,20}; 
B18 = {1,2,3,4,5,6,15,16,17,19,20};    B19 = {1,2,3,4,5,6,15,16,17,18,20};   B20 = {1,2,3,4,5,6,15,16,17,18,19}; 
Group C: Eliminating two voxels we obtain 54 combinations 
C1,3 = {2,4,5,6,15,16,17,18,19,20};  C1,4 = {2,3,5,6,15,16,17,18,19,20};  C1,5 = {2,3,4,6,15,16,17,18,19,20}; 
C1,15 = {2,3,4,5,6,16,17,18,19,20};  C1,16 = {2,3,4,5,6,15,17,18,19,20};  C1,17 = {2,3,4,5,6,15,16,18,19,20};  
C1,18 = {2,3,4,5,6,15,16,17,19,20}; C1,19 = {2,3,4,5,6,15,16,17,18,20};  C1,20 = {2,3,4,5,6,15,16,17,18,19}; 
C2,4 = {1,3,5,6,15,16,17,18,19,20};  C2,5 = {1,3,4,6,15,16,17,18,19,20};  C2,6 = {1,3,4,5,15,16,17,18,19,20}; 
C2,15 = {1,3,4,5,6,16,17,18,19,20};  C2,16 = {1,3,4,5,6,15,17,18,19,20};  C2,17 = {1,3,4,5,6,15,16,18,19,20}; 
C2,18 = {1,3,4,5,6,15,16,17,19,20};  C2,19 = {1,3,4,5,6,15,16,17,18,20};  C2,20 = {1,3,4,5,6,15,16,17,18,19};  



Mohd. Sherfuddin Khan, E. G. Rajan, Vijay H. Mankar; Three Dimensional Image Processing in Hexagonal Prism 
Lattice of Z3 Grid, Advances in Image and Video Processing, Volume 5 No 3, June (2017); pp: 54-69 
3 

URL: http://dx.doi.org/10.14738/aivp.53.3241              62 
 

  

C3,5 = {1,2,4,6,15,16,17,18,19,20};  C3,6 = {1,2,4,5,15,16,17,18,19,20};  C3,15 = {1,2,4,5,6,16,17,18,19,20}; 
C3,16 = {1,2,4,5,6,15,17,18,19,20};  C3,17 = {1,2,4,5,6,15,16,18,19,20};  C3,18 = {1,2,4,5,6,15,16,17,19,20}; 
C3,19 = {1,2,4,5,6,15,16,17,18,20};  C3,20 = {1,2,4,5,6,15,16,17,18,19};  C4,6 = {1,2,3,5,15,16,17,18,19,20}; 
C4,15 = {1,2,3,5,6,16,17,18,19,20};  C4,16 = {1,2,3,5,6,15,17,18,19,20};  C4,17 = {1,2,3,5,6,15,16,18,19,20};  
C4,18 = {1,2,3,5,6,15,16,17,19,20};  C4,19 = {1,2,3,5,6,15,16,17,18,20};  C4,20 = {1,2,3,5,6,15,16,17,18,19}; 
C5,15 = {1,2,3,4,6,16,17,18,19,20};  C5,16 = {1,2,3,4,6,15,17,18,19,20};  C5,17 = {1,2,3,4,6,15,16,18,19,20}; 
C5,18 = {1,2,3,4,6,15,16,17,19,20};  C5,19 = {1,2,3,4,6,15,16,17,18,20};  C5,20 = {1,2,3,4,6,15,16,17,18,19}; 
C6,15 = {1,2,3,4,5,16,17,18,19,20};  C6,16 = {1,2,3,4,5,15,17,18,19,20};  C6,17 = {1,2,3,4,5,15,16,18,19,20};  
C6,18 = {1,2,3,4,5,15,16,17,19,20};  C6,19 = {1,2,3,4,5,15,16,17,18,20};  C6,20 = {1,2,3,4,5,15,16,17,18,19}; 
C15,17 = {1,2,3,4,5,6,16,18,19,20};  C15,18 = {1,2,3,4,5,6,16,17,19,20};  C15,19 = {1,2,3,4,5,6,16,17,18,20}; 
C16,18 = {1,2,3,4,5,6,15,17,19,20};  C16,19 = {1,2,3,4,5,6,15,17,18,20};  C16,20 = {1,2,3,4,5,6,16,17,18,19}; 
C17,19 = {1,2,3,4,5,6,15,16,18,20};  C17,20 = {1,2,3,4,5,6,16,16,18,19};  C18,20 = {1,2,3,4,5,6,16,16,17,19}; 
Group D: Eliminating three voxels we obtain 112 combinations 
D1,3,5 = {2,4,6,15,16,17,18,19,20}; D1,3,15 = {2,4,5,6,16,17,18,19,20}; D1,3,16 = {2,4,5,6,15,17,18,19,20} 
D1,3,17 = {2,4,5,6,15,16,18,19,20}; D1,3,18 = {2,4,5,6,15,16,17,19,20}; D1,3,19 = {2,4,5,6,15,16,17,18 ,20}  
D1,3,20 = {2,4,5,6,15,16,17,18,19}; D1,4,15 = {2,3,5,6,16,17,18,19,20}; D1,4,16 = {2,3,5,6,15,17,18,19,20} 
D1,4,17 = {2,3,5,6,15,16,18,19,20}; D1,4,18 = {2,3,5,6,15,16,17,19,20}; D1,4,19 = {2,3,5,6,15,16,17,18,20} 
D1,4,20 = {2,3,5,6,15,16,17,18,19}; D1,5,15 = {2,3,4,6,16,17,18,19,20}; D1,5,16 = {2,3,4,6,15,17,18,19,20} 
D1,5,17 = {2,3,4,6,15,16,18,19,20}; D1,5,18 = {2,3,4,6,15,16,17,19,20}; D1,5,19 = {2,3,4,6,15,16,17,18,20}  
D1,5,20 = {2,3,4,6,15,16,17,18,19}; D1,15,17 = {2,3,4,5,6,16,18,19,20}; D1,15,18 = {2,3,4,5,6,16,17,19,20} 
D1,15,19 = {2,3,4,5,6,16,17,18,20}; D1,16,18 = {2,3,4,5,6,15,17,19,20}; D1,16.19 = {2,3,4,5,6,15,17,18,20} 
D1,16,20 = {2,3,4,5,6,15,17,18,19}; D1,17,19 = {2,3,4,5,6,15,16,18,20}; D1,17,20 = {2,3,4,5,6,15,16,18,19} 
D1,18,20 = {2,3,4,5,6,15,16,17,19}; D2,4,6 = {1,3,5,15,16,17,18,19,20}; D2,4,15 = {1,3,5,6,16,17,18,19,20}  
D2,4,16 = {1,3,5,6,15,17,18,19,20}; D2,4,17 = {1,3,5,6,15,16,18,19,20}; D2,4,18 = {1,3,5,6,15,16,17,19,20} 
D2,4.19 = {1,3,5,6,15,16,17,18,20}; D2,4,20 = {1,3,5,6,15,16,17,18,19}; D2,5,15 = {1,3,4,6,16,17,18,19,20} 
D2,5,16 = {1,3,4,6,15,17,18,19,20}; D2,5,17 = {1,3,4,6,15,16,18,19,20}; D2,5,18 = {1,3,4,6,15,16,17,19,20} 
D2,5,19 = {1,3,4,6,15,16,17,18,20}; D2,5,20 = {1,3,4,6,15,16,17,18,19}; D2,6,15 = {1,3,4,5,16,17,18,19,20}  
D2,6,16 = {1,3,4,5,15,17,18,19,20}; D2,6,17 = {1,3,4,5,15,16,18,19,20}; D2,6,18 = {1,3,4,5,15,16,17,19,20} 
D2,6,19 = {1,3,4,5,15,16,17,18,20}; D2,6,20 = {1,3,4,5,15,16,17,18,19}; D2,15,17 = {1,3,4,5,6,16,18,19,20} 
D2,15,18 = {1,3,4,5,6,16,17,19,20}; D2,15,19 = {1,3,4,5,6,16,17,18,20}; D2,16,18 = {1,3,4,5,6,16,17,19,20} 
D2,16,19 = {1,3,4,5,6,16,17,18,20}; D2,16,20 = {1,3,4,5,6,16,17,18,19}; D2,17,19 = {1,3,4,5,6,15,16,18,20}  
D2,17,20 = {1,3,4,5,6,15,16,18,19}; D2,18,20 = {1,3,4,5,6,15,16,17,19}; D3,5,15 = {1,2,4,6,16,17,18,19,20} 
D3,5,16 = {1,2,4,6,15,17,18,19,20}; D3,5,17 = {1,2,4,6,15,16,18,19,20}; D3,5,18 = {1,2,4,6,15,16,17,19,20} 
D3,5,19 = {1,2,4,6,15,16,17,18,20}; D3,5,20 = {1,2,4,6,15,16,17,18,19}; D3,6,15 = {1,2,4,5,16,17,18,19,20} 
D3,6,16 = {1,2,4,5,15,17,18,19,20}; D3,6,17 = {1,2,4,5,15,16,18,19,20}; D3,6,18 = {1,2,4,5,15,16,17,19,20}  
D3,6,19 = {1,2,4,5,15,16,17,18,20}; D3,6,20 = {1,2,4,5,15,16,17,18,19}; D3,15,17 = {1,2,4,5,6,16,18,19,20} 
D3,15,18 = {1,2,4,5,6,16,17,19,20}; D3,15,19 = {1,2,4,5,6,16,17,18,20}; D3,16,18 = {1,2,4,5,6,15,17,19,20} 
D3,16,19 = {1,2,4,5,6,15,17,18,20}; D3,16,20 = {1,2,4,5,6,15,17,18,19}; D3,17,19 = {1,2,4,5,6,15,16,18,19,20} 
D3,17,20 = {1,2,4,5,6,15,16,18,19}; D3,18,20 = {1,2,4,5,6,15,16,17,19}; D4,6,15 = {1,2,3,5,16,17,18,19,20}  
D4,6,16 = {1,2,3,5,15,17,18,19,20}; D4,6,17 = {1,2,3,5,15,16,18,19,20}; D4,6,18 = {1,2,3,5,15,16,17,19,20} 
D4,6,19 = {1,2,3,5,15,16,17,18,20};     D4,6,20 = {1,2,3,5,15,16,17,18,19};     D4,15,17 = {1,2,3,5,6,16,18,19,20} 
D4,15,18 = {1,2,3,5,6,16,17,19,20};  D4,15,19 = {1,2,3,5,6,16,17,18,20};   D4,16,18 = {1,2,3,5,6,15,17,19,20} 
D4,16,19 = {1,2,3,5,6,15,17,18,20};  D4,16,20 = {1,2,3,5,6,15,17,18,19};   D4,17,19 = {1,2,3,5,6,15,16,18,20}  
D4,17,20 = {1,2,3,5,6,15,16,18,19};  D4,18,20 = {1,2,3,5,6,15,16,17,19};   D5,15,17 = {1,2,3,4,6,16,18,19,20} 
D5,15,18 = {1,2,3,4,6,16,17,19,20};  D5,15,19 = {1,2,3,4,6,16,17,18,20};   D5,16,18 = {1,2,3,4,6,15,17,19,20} 
D5,16,19 = {1,2,3,4,6,15,17,18,20};  D5,16,20 = {1,2,3,4,6,15,17,18,19};   D5,17,19 = {1,2,3,4,6,15,16,18,20} 
D5,17,20 = {1,2,3,4,6,15,16,18,19};  D5,18,20 = {1,2,3,4,6,15,16,17,19};   D6,15,17 = {1,2,3,4,5,16,18,19,20}  
D6,15,18 = {1,2,3,4,5,16,17,19,20};  D6,15,19 = {1,2,3,4,5,16,17,18,20};   D6,16,18 = {1,2,3,4,5,15,17,19,20} 
D6,16,19 = {1,2,3,4,5,15,17,18,20};  D6,16,20 = {1,2,3,4,5,15,17,18,19};   D6,17,19 = {1,2,3,4,5,15,16,18,20} 
D6,17,20 = {1,2,3,4,5,15,16,18,19};  D6,18,20 = {1,2,3,4,5,15,16,17,19};   D15,17,19 = {1,2,3,4,5,6,16,18,20} 
D16,18,20 = {1,2,3,4,5,6,15,17,19} 
 
Group E: Eliminating four voxels we obtain 105 combinations 
E1,3,5,15 = {2,4,6,16,17,18,19,20}; E1,3,5,16 = {2,4,6,15,17,18,19,20}; E1,3,5,17 = {2,4,6,15,16,18,19,20} 
E1,3,5,18 = {2,4,6,15,16,17,19,20}; E1,3,5,19 = {2,4,6,15,16,17,18,20}; E1,3,5,20 = {2,4,6,15,16,17,18,19}  
E1,3,15,17 = {2,4,5,6,16,18,19,20}; E1,3,15,18 = {2,4,5,6,16,17,19,20}; E1,3,15,19 = {2,4,5,6,16,17,18,20} 
E1,3,16,18 = {2,4,5,6,15,17,19,20}; E1,3,16,19 = {2,4,5,6,15,17,18,20}; E1,3,16,20 = {2,4,5,6,15,17,18,19} 
E1,3,17,19 = {2,4,5,6,15,16,18,20}; E1,3,17,20 = {2,4,5,6,15,16,17,20}; E1,3,18,20 = {2,4,5,6,15,16,17,19} 
E1,4,15,17 = {2,3,5,6,16,18,19,20}; E1,4,15,18 = {2,3,5,6,16,17,19,20}; E1,4,15,19 = {2,3,5,6,16,17,18,20}  
E1,4,16,18 = {2,3,5,6,15,17,19,20}; E1,4,16,19 = {2,3,5,6,15,17,18,20}; E1,4,16,20 = {2,3,5,6,15,17,18,19} 
E1,4,17,19 = {2,3,5,6,15,16,18,20}; E1,4,17,20 = {2,3,5,6,15,16,18,19}; E1,4,18,20 = {2,3,5,6,15,16,18,19} 
E1,5,15,17 = {2,3,4,6,16,18,19,20}; E1,5,15,18 = {2,3,4,6,16,17,19,20}; E1,5,15,19 = {2,3,4,6,16,17,18,20} 
E1,5,16,18 = {2,3,4,6,15,17,19,20}; E1,5,16,19 = {2,3,4,6,15,17,18,20}; E1,5,16,20 = {2,3,4,6,15,17,18,19}  
E1,5,17,19 = {2,3,4,6,15,16,18,20}; E1,5,17,20 = {2,3,4,6,15,16,18,19}; E1,5,18,20 = {2,3,4,6,15,16,17,19} 
E1,15,17,19 = {2,3,4,5,6,16,18,19}; E1,16,18,20 = {2,3,4,5,6,15,17,19}; E2,4,6,15 = {1,3,5,16,17,18,19,20} 
E2,4,6,16 = {1,3,5,15,17,18,19,20}; E2,4,6,17 = {1,3,5,15,16,18,19,20}; E2,4,6,18 = {1,3,5,15,16,17,19,20} 
E2,4,6,19 = {1,3,5,15,16,17,18,20}; E2,4,6,20 = {1,3,5,15,16,17,18,19}; E2,4,15,17 = {1,3,5,6,16,18,19,20}  
E2,4,15,18 = {1,3,5,6,16,17,19,20}; E2,4,15,19 = {1,3,5,6,16,17,18,20}; E2,4,16,18 = {1,3,5,6,15,17,19,20} 
E2,4,16,19 = {1,3,5,6,15,17,18,20}; E2,4,16,20 = {1,3,5,6,15,17,18,19}; E2,4,17,19 = {1,3,5,6,15,16,18,20} 
E2,4,17,20 = {1,3,5,6,15,16,18,19}; E2,4,18,20 = {1,3,5,6,15,16,17,19}; E2,5,15,17 = {1,3,4,6,16,18,19,20} 
E2,5,15,18 = {1,3,4,6,16,17,19,20}; E2,5,15,19 = {1,3,4,6,16,17,18,20}; E2,5,16,18 = {1,3,4,6,15,17,19,20}  
E2,5,16,19 = {1,3,4,6,15,17,18,20}; E2,5,16,20 = {1,3,4,6,15,17,18,19}; E2,5,17,19 = {1,3,4,6,15,16,18,20} 
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E2,5,17,20 = {1,3,4,6,15,16,18,19}; E2,5,18,20 = {1,3,4,6,15,16,17,19}; E2,6,15,17 = {1,3,4,5,16,18,19,20} 
E2,6,15,18 = {1,3,4,5,16,17,19,20}; E2,6,15,19 = {1,3,4,5,16,17,18,20}; E2,6,16,18 = {1,3,4,5,15,17,19,20} 
E2,6,16,19 = {1,3,4,5,15,17,18,20}; E2,6,16,20 = {1,3,4,5,15,17,18,19}; E2,6,17,19 = {1,3,4,5,15,16,18,20}  
E2,6,17,20 = {1,3,4,5,15,16,18,20}; E2,6,18,20 = {1,3,4,5,15,16,17,19}; E2,15,17,19 = {1,3,4,5,6,16,18,20} 
E2,16,18,20 = {1,3,4,5,6,15,17,19}; E3,5,15,17 = {1,2,4,6,16,18,19,20}; E3,5,18 = {1,2,4,6,16,17,19,20} 
E3,5,15,19 = {1,2,4,6,16,17,18,20}; E3,5,16,18 = {1,2,4,6,15,17,19,20}; E3,5,16,19 = {1,2,4,6,15,17,18,20} 
E3,5,16,20 = {1,2,4,6,15,17,18,19}; E3,5,17,19 = {1,2,4,6,15,16,18,20}; E3,5,17,20 = {1,2,4,6,15,16,18,19}  
E3,5,18,20 = {1,2,4,6,15,16,17,19}; E3,6,15,17 = {1,2,4,5,16,18,19,20}; E3,6,15,18 = {1,2,4,5,16,17,19,20} 
E3,6,15,19 = {1,2,4,5,16,17,18,20}; E3,6,16,18 = {1,2,4,5,15,17,19,20}; E3,6,16,19 = {1,2,4,5,15,17,18,20} 
E3,6,16,20 = {1,2,4,5,15,17,18,19}; E3,6,17,19 = {1,2,4,5,15,16,18,20}; E3,6,17,20 = {1,2,4,5,15,16,18,19} 
E3,6,18,20 = {1,2,4,5,15,16,17,19}; E3,15,17,19 = {1,2,4,5,6,16,18,20}; E3,15,18,20 = {1,2,4,5,6,16,17,19}  
E4,6,15,17 = {1,2,3,5,16,18,19,20}; E4,6,15,18 = {1,2,3,5,16,17,19,20} 
Group F: Eliminating five voxels we obtain 36 combinations 
F1,3,5,15,17 = {2,4,6,16,18,19,20}; F1,3,5,15,18 = {2,4,6,16,17,19,20}; F1,3,5,15,19 = {2,4,6,16,17,18,20} 
F1,3,5,16,18 = {2,4,6,15,17,19,20}; F1,3,5,16,19 = {2,4,6,15,17,18,20}; F1,3,5,16,20 = {2,4,6,15,16,17,19}  
F1,3,5,17,19 = {2,4,6,15,16,18,20}; F1,3,5,17,20 = {2,4,6,15,16,18,19}; F1,3,5,18,20 = {2,4,6,15,16,17,19} 
F1,3,15,17,19 = {2,4,5,6,16,18,20}; F1,3,16,18,20 = {2,4,5,6,15,17,19}; F1,4,15,17,19 = {2,3,5,6,16,18,20} 
F1,4,16,18,,20 = {2,3,5,6,16,18,19}; F1,5,15,17,19 = {2,3,4,6,16,18,20}; F1,5,16,18,20 = {2,3,4,6,15,17,19} 
F2,4,6,15,17 = {1,3,5,16,18,19,20}; F2,4,6,15,18 = {1,3,5,16,17,19,20}; F2,4,6,15,19 = {1,3,5,16,17,18,20}  
F2,4,6,16,18 = {1,3,5,15,17,19,20}; F2,4,6,16,19 = {1,3,5,15,17,18,20}; F2,4,6,16,20 = {1,3,5,15,17,18,19} 
F2,4,6,17,19 = {1,3,5,15,16,18,20}; F2,4,6,17,20 = {1,3,5,15,16,18,19}; F2,4,6,18,20 = {1,3,5,15,16,17,19} 
F2,4,15,17,19 = {1,3,5,6,16,18,20}; F2,4,16,18,20 = {1,3,5,6,15,17,19}; F2,5,15,17,19 = {1,3,4,6,16,18,20} 
F2,5,15,17,20 = {1,3,4,6,16,18,19}; F2,6,15,17,19 = {1,3,4,5,16,18,20}; F2,6,16,18,20 = {1,3,4,5,15,17,19}  
F3,5,15,17,19 = {1,2,4,6,16,18,20}; F3,5,16,18,20 = {1,2,4,6,15,17,19}; F3,6,15,17,19 = {1,2,4,5,16,18,20} 
F3,6,16,18,20 = {1,2,4,5,15,17,19}; F4,6,15,17,19 = {1,2,3,5,16,18,20}; F4,6,16,18,20 = {1,2,3,5,15,17,19} 
Group G: Eliminating six voxels we obtain 4 combinations 
G1,3,5,15,17,19 = {2,4,6,16,18,20}; G1,3,5,16,18,20 = {2,4,6,15,17,19}; G2,4,6,15,17,19 = {1,3,5,16,18,20} 
G2,4,6,16,18,20 = {1,3,5,15,17,19} 
 

Out of these 324 convex 3D hexagonal polyhedrons, 25 convex hexagonal polyhedrons (prisms).form 
the basis polyhedrons.  

Basis Polyhedrons from E Group 
E1, 4, 15,18; E1, 4, 16,19; E1, 4, 17,20; E2, 5, 15,18; E2, 5, 16,19; E2, 5, 17,20; E3, 6, 15,18; E3, 6, 16,19; E3, 6, 17,20 

Basis Polyhedrons from F Group 
F1, 4, 15,17,19; F1, 4, 16,18,20; F2, 5, 15,17,19; F2, 5, 16,18,20; F2, 5, 15,17,19; F2, 5, 15,17,19; F1, 3, 5,15,18; F1, 3, 5,16,19; F1, 3, 5,17,20; F2, 4, 6,15,18; F2, 4, 

6,16,19; F2, 4, 6,17,20 

Basis Polyhedrons from G Group 
G1,3,5,15,17,19 ; G1,3,5,16,18,20 ; G2,4,6,15,17,19 ; G2,4,6,16,18,20 
Three dimensional (3-D) convex hexagonal polyhedrons discussed above can be used as masks in the 
traditional processing and as structuring elements for morphological processing of three dimensional 
hexagonal images. Operationally 3-D morphological operations are identical to those of 2-D, with the 
difference that the image is traced with a 3-D structuring element where as in 2-D morphological 
operations, 2-D structuring element is used.  

Three dimensional (3-D) structuring elements play a vital role in the processing of three dimensional 
volumetric images like 3-D medical images. These structuring elements are used in 3-D mathematical 
morphological operations such as erosion, dilation etc. Any of these 324 hexagonal prisms could be 
used to process a 3D hexagonal image. Usually one uses one of the 25 basis hexagonal structuring 
elements to do the job. For example, algorithms of edge detection and skeletonization are outlined in 
the following. 

3.1.1 Edge detection in 3D hexagonal images using 3D algorithm 

A region that appears to have a single gray-level may really contain many adjacent gray-levels. They 
appear to be the same because of the effect of visual quantization exercised by an observer. 
Segmentation is a process of partitioning a given gray-level image into disjoint regions each of which 
appears to an observer to have a single gray-level. So, a given hexagonal image is first segmented 
using a threshold-based-quantization method and after that the boundaries of the quantized regions 
are detected. The given hexagonal image is scanned by the 25 basis patterns discussed above. It is 
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sufficient to make use of these 25 neighbourhood structures (masks) for processing a 3D hexagonal 
image, especially in the case of edge detection because checking for the presence of these 25 
neighbourhoods in a hexagonal image ensures checking of all possible 324 convex 3D hexagonal 
patterns in the hexagonal image. On every move, the sub image enclosed by any of these 25 
neighbourhood windows is examined to see whether the D (gray-distance), which is the difference 
between the maximum and the minimum gray-values analogous to that sub image, is less than or 
equal to a threshold value T. If D is equal or less than to T, then the gray-value 0 is assigned to central 
voxel; otherwise the value in central cell left unchanged. This procedure is repeated till the whole 3D 
hexagonal image is scanned. The final outcome is that the boundaries of different regions in the given 
image, that appear to be uniform, are retained and their interior parts are removed thus giving us the 
edge detected edition of the original 3D hexagonal image. Note that this operation is carried out by 
pattern directed if-then rules. In the case of color images, the following method is used to detect the 
edges. 

Repeat sliding the 25 structuring elements over the 3D hexagonal image  
{  

Examine all voxels of a nonzero neighborhood;  
Get the maximum Red color value Red_max;  
Get the minimum Red color value Red_min;  
Then find the difference between these two values DRed;  
Get the maximum Green color value Green_max; 
Get the minimum Green color value Green_min; 
Then find the difference DGreen; 
Get the maximum Blue color value Blue_max; 
Get minimum Blue color value Blue_min; 
Then find the difference DBlue;  
When all the values DRed, DGreen and DBlue are less than or equal to a threshold value T then substitute the central 
pixel value with R = G = B = 0, else slide the neighbourhood windows  

} until the structuring element spans whole of the image. 

3.1.2 Skeletonization of 3D hexagonal images using 3D algorithm 

On every move, the sub image enclosed by any of the 25 neighbourhood window is examined to see 
whether the D (gray-distance), which is the difference between the maximum and the minimum gray-
values analogous to that sub image, is less than or equal to a threshold value T. If D is equal or less 
than to T, then the central voxel is retained; otherwise the value in central voxel is not considered. 
This procedure is repeated till the whole 3D image is scanned. The final outcome is that the 
boundaries of different regions in the given image, that appear to be uniform, are retained and their 
interior parts are removed thus giving us the edge detected edition of the original 3D image. 

Note that this operation is carried out by pattern directed if-then rules. In the color images case, the 
following method is used to detect the edges. 

Repeat sliding the 25 structuring elements over the 3D hexagonal image  
{              Examine all voxels of a nonzero neighbourhood;  

Get the maximum Red color value Red_max;  
Get the minimum Red color value Red_min;  
Then find the difference between these two values DRed;  
Get the maximum Green color value Green_max; 
Get the minimum Green color value Green_min; 
Then find the difference DGreen; 
Get the maximum Blue color value Blue_max; 
Get minimum Blue color value Blue_min; 
Then find the difference DBlue;  
When all the values DRed, DGreen and DBlue are less than or equal to a threshold value T then retain the central voxel 
value else slide the seven neighbourhood  

} until the structuring elements span whole of the image. 
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3.2 Processing of 3D images using 3D algorithms 
One can process 3D hexagonal images using 3D algorithms. Basically one would use 25 basis 3D 
convex hexagonal polyhedrons as scanning windows to process 3D hexagonal images. Fig. 13 shows 
an MR image of a human heart, its 3D edge detected and 3D skeletonized versions. 

 
Figure 13: Sample MR image of a human heart, its 3D edge detected and 3D skeletonized versions 

With reference to Fig. 11 and Fig. 13, one would observe that the results of processing 3D hexagonal 
images using 3D algorithms yield better results when compared to those of processing 3D hexagonal 
images using 2.5D algorithms. 

4 Conclusions 
Feature extraction from 3D images displayed over rectangular lattices has been tried by some 
researches but not from those displayed over hexagonal lattices. This paper provides certain 
preliminary techniques for visual display of 3D images over hexagonal prism lattice, a novel effort 
made in this direction, and extraction of certain features like 3D edges and skeleta from them. 
Cellular Logic Array Processing is the logico-mathematical framework in which all the relevant 
algorithms have been developed. A real time MR image of a human heart has been used for testing 
the algorithms. It has been experimentally verified that use of 3D algorithms instead of 2.5D 
algorithms yield better results while processing 3D hexagonal images.  
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