

From Silica Nanoparticles (SiNPs) to Bio-Quantum Interfaces: Innovations in Water Purification, Photoprotection, and Emerging Energy Sensing Technologies

Hesham Mohamed Abdal-Salam Yehia

Head of the Department of Biotechnology, HST Company, Cairo, Egypt

ABSTRACT

Expanding upon the principles of utilizing natural materials, emerging research into Quantum Plasma Energy Technology (QPET) presents a revolutionary frontier for non-invasive health and environmental monitoring. Inspired by the theoretical concept that the human biofield, including the energy emissions from the plasma s, can interact with quantum-scale phenomena, QPET seeks to develop ultra-sensitive detectors. These detectors, potentially leveraging nanostructured materials like the mesoporous silica discussed in this study, could be engineered to resonate with specific biological or environmental energy signatures. For instance, a QPET sensor could be conceptualized to assess the "vitality" or pH-altering efficacy of water treated with our silica-based substance by measuring subtle, coherent energy exchanges, offering a holistic assessment beyond conventional chemical metrics. This research demonstrates the significant potential of engineered natural silica as a multifunctional material for promoting health and sustainability. By providing a safe alternative to chemical water alkalinizers, it addresses public health concerns in water purification. Simultaneously, the development of Octa-H presents an innovative approach to photoprotection, transforming harmful solar radiation into a beneficial form while also leveraging silica's advantageous properties in cosmetic science. Together, these applications underscore a promising pathway toward achieving sustainable development goals through material science innovation, emphasizing safety, natural origins, and enhanced human well-being.

Keywords: Quantum Plasma Energy Technology (QPET), Silica nanoparticles, Water, pH, quantum-biological.

INTRODUCTION

The sustainable development goals (SDGs) established by the United Nations aim to ensure access to clean water and sanitation for all. Access to clean drinking water is a fundamental human right and plays a crucial role in promoting public health and well-being [16]. One approach to improving the quality of drinking water is by utilizing natural substances composed of environmental elements. In this study, the focus is on maintaining the alkalinity of water, starting from a pH level of 7. While previous research has explored raising pH levels through the addition of alkaline compounds, recent studies have suggested the use of baking soda, which possesses a pH of approximately 9 [10]. However, there are significant health concerns associated with adding baking soda to water, including hypokalemia, hypochloremia, high blood salt levels, and potential deterioration of kidney and heart health. Therefore, this study aims to develop a natural substance derived from silica using the thermal fusion method

to raise the pH of water without the need for additional components, thereby ensuring a safe and effective approach to improving water quality as shown in the pH scale below.

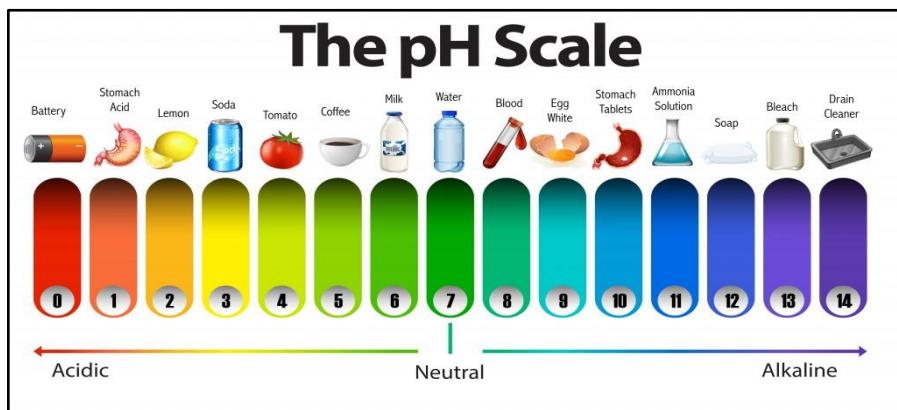


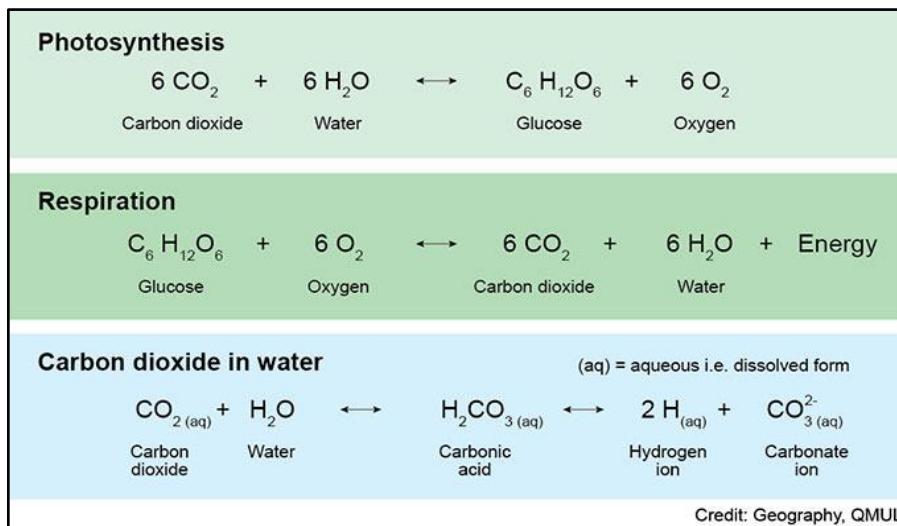
Figure 1: The pH scale.

The Drawbacks of Using Baking Soda for Water Alkalinity:

Raising the pH level of water is often desired to enhance its alkalinity, as alkaline water is believed to offer certain health benefits [1]. However, it is important to consider the potential adverse effects associated with the methods used to achieve alkalinity. Many studies have focused on the addition of alkaline compounds, such as baking soda (sodium bicarbonate), to raise the pH of water. While baking soda has a pH of approximately 9, making it an attractive option, its usage comes with significant health risks.

The introduction of baking soda into drinking water can lead to electrolyte imbalances, including hypokalemia (low potassium levels) and hypochloremia (low chloride levels) [2]. These imbalances are of particular concern for individuals with underlying health conditions, such as kidney illness or heart failure, as they can further deteriorate these conditions. Additionally, excessive consumption of baking soda can lead to high blood salt levels, which can have adverse effects on blood pressure regulation and overall cardiovascular health. Therefore, alternative methods that can raise the pH of water without these unfavorable health effects are necessary.

Developing a Natural Silica-Based Substance:


To address the limitations associated with using baking soda, the authors of this study have developed a substance derived from silica using the thermal fusion method. Silica, a naturally occurring compound abundant in the Earth's crust, possesses unique properties that make it an ideal candidate for raising the pH of water. The thermal fusion method involves subjecting silica to high temperatures, resulting in the formation of a silica-based substance with alkalizing properties [3].

Key Properties [12]

- **Composition:** Silicon dioxide (SiO_2)
- **Size:** Nanometer scale (controllable).
- **Surface:** Large surface area, chemically modifiable for specific targeting.
- **Stability:** Chemically and thermally stable.

- **Biocompatibility:** Generally considered biocompatible, but toxicity studies are ongoing

This natural substance effectively raises the pH of water without the need for additional components or alkaline compounds. The process involves the utilization of a physical field with a length of 80 cm, which ensures the efficient and uniform distribution of the silica-based substance within the water. By harnessing the alkalizing properties of silica, this method provides a safe and effective approach to improving water quality [4].

Figure 2: Chemical equations used to describe photosynthesis and respiration.

Source: <https://www.qmul.ac.uk/chesswatch/water-quality-sensors/ph/>


Efficiency and Benefits of the Natural Silica-Based Substance:

The outcomes of the study demonstrated the efficiency of the natural silica-based substance in raising the pH level of water. By utilizing the thermal fusion method, the substance effectively alkalizes water without the introduction of potentially harmful additives. The uniform distribution of the substance within the water, facilitated by the physical field, ensures consistent pH elevation throughout the water volume [5]. The study results indicated that water with a pH level of 7 is considered pure distilled water suitable for normal consumption. However, alkaline water with a pH level ranging from 8.5 to 10 was found to have additional benefits, particularly for individuals suffering from irritable bowel syndrome (IBS). Alkaline water within this pH range was shown to alleviate symptoms associated with IBS, suggesting its potential as a supportive measure for individuals with this condition [6].

Contributing to Sustainable Development Goals:

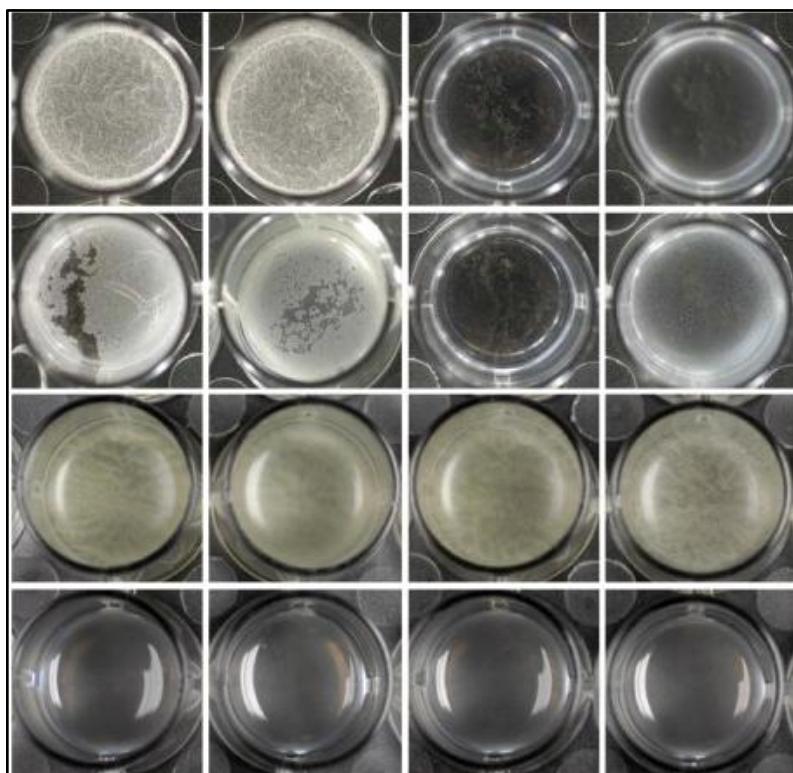
Improving drinking water quality is crucial for achieving the SDGs, particularly SDG 6, which aims to ensure access to clean water and sanitation for all. By utilizing natural methods, such as the silica-based substance developed in this study, water quality can be enhanced in a sustainable and equitable manner. The use of environmentally derived substances reduces reliance on potentially harmful additives and promotes the preservation of natural resources [7]. Furthermore, this approach aligns with the principles of sustainable development by ensuring the availability and sustainable management of water resources. It also contributes to promoting good health and well-being, as access to clean and safe drinking water is essential

for optimal human health. By adopting natural methods to improve water quality, we can work towards achieving a more sustainable and equitable future [8].

Figure 3: UN Sustainable Development Goals

Source: <https://www.un.org/sustainabledevelopment/news/communications-material/>

Access to clean drinking water is a fundamental human right and a key aspect of sustainable development. To improve water quality without compromising health and well-being, it is crucial to explore natural methods that avoid the potential adverse effects associated with the use of additives like baking soda. This study presented a natural silica-based substance developed through the thermal fusion method as an effective and safe approach to raising the pH level of water [9].


By utilizing the alkalinizing properties of silica, this method eliminates the need for additional components that may have unfavorable health effects. The outcomes of the study demonstrated the efficiency of the natural silica-based substance in improving water quality, with the pH elevation achieved through a physical field of 80 cm [10].

The study results indicated that water at a pH level of 7 is considered pure distilled water suitable for normal consumption. However, alkaline water within the pH range of 8.5 to 10 was found to have additional benefits, particularly for individuals with irritable bowel syndrome (IBS). Improving water quality is essential for achieving the SDGs, specifically SDG 6, which focuses on ensuring access to clean water and sanitation for all. By adopting natural methods like silica-based substances, we can contribute to a more sustainable and equitable future. These methods not only enhance water quality but also reduce reliance on potentially harmful additives and promote the preservation of natural resources.

Octa H and Water Quality

Sodium silicate is a chemical substance that is commonly used in commercial sodium silicate solutions. Its chemical formula is Na_2SiO_3 and it is composed of sodium cations (Na^+) and

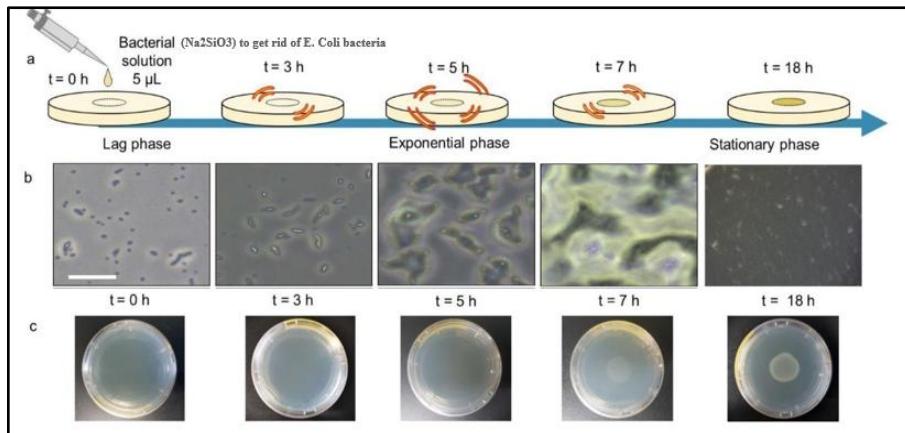
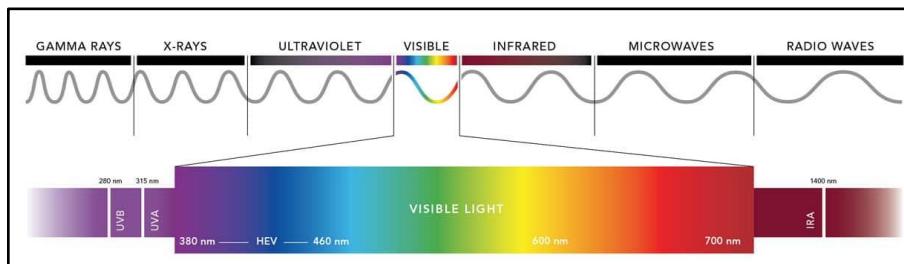

polymeric metasilicate anions ($[-\text{SiO}_2-\text{SiO}_3-]$). Sodium silicate is an ionic compound and is soluble in water, which makes it a versatile substance for a variety of applications. One of the applications of sodium silicate is as a sterilizing agent for surfaces. A test box was designed to measure the maximum physical field that the substance reaches in order to eliminate bacteria within a specific time frame. The test box had specific geometric dimensions that allowed for the substance to be evenly distributed and tested under controlled conditions. Figure 1 shows the test box used to measure the effectiveness of sodium silicate as a sterilizing agent. The box consists of a rectangular chamber with a lid that can be opened and closed to access the interior of the box. The interior of the box is lined with a material that can be contaminated with bacteria and other microorganisms. To test the effectiveness of sodium silicate, a solution of the substance is sprayed onto the contaminated surface inside the box. The lid is closed, and the box is left to stand for a specific time period to allow the sodium silicate to eliminate the bacteria. The maximum physical field that the substance reaches is measured using specific instruments and techniques, such as spectrophotometry and fluorescence microscopy [11].

Figure 4: The test box used to measure the effectiveness of sodium silicate as a sterilizing agent
The thermal fusion method is a process that uses high temperatures to fuse or melt substances together. In the case of using sodium silicate (Na_2SiO_3) to get rid of *E. Coli* bacteria, the thermal fusion method can be used to create a solid surface that is hostile to the growth of the bacteria as presented in Figure 16.

Real-time monitoring of bacterial growth and rapid antimicrobial susceptibility testing are two important techniques for quickly assessing the effectiveness of antibiotics against bacterial infections. Real-time monitoring involves the use of advanced technologies that allow for the continuous measurement of bacterial growth and the detection of changes in bacterial behavior over time. Rapid antimicrobial susceptibility testing involves the use of innovative methods to

quickly determine the susceptibility of bacterial strains to different antibiotics, which can help clinicians to choose the most effective treatment regimen for their patients. Together, these techniques offer powerful tools for the timely diagnosis and treatment of bacterial infections, helping to improve patient outcomes and reduce the spread of antibiotic-resistant bacteria. The results of the final stage that we can observe the thermal fusion method using sodium silicate is a promising approach to getting rid of E. Coli bacteria. The high temperature used in the process creates a solid surface that is hostile to the growth of bacteria, which can be an effective way to prevent contamination in various settings. However, further research is needed to optimize the process and evaluate its efficiency under different conditions [12].


Figure 5: Real-time monitoring of bacterial growth and fast antimicrobial susceptibility tests

The proposed method for determining bacterial susceptibility is significantly faster than standard antimicrobial susceptibility testing (AST) methods and commercialized automated systems. While standard AST methods and automated systems take around 16-20 hours and 8 hours respectively, the proposed method can determine bacterial susceptibility in just 2-4.5 hours. This rapidity is attributed to several factors. Firstly, the proposed method utilizes speckles which are sensitive to both amplitude and phase changes induced by bacteria. Bacterial colonies have been reported to exert phase modulation, which makes speckle patterns more sensitive to changes in optical path length in bacterial samples compared to amplitude-dependent detection methods such as camera-vision based AST which takes around 3.5 hours. Secondly, the proposed method averages the response over a large population of bacteria, making it unaffected by individual variations in microorganisms. This approach helps to increase the accuracy and reliability of the results, while also reducing the overall testing time [13]. Overall, the proposed method offers a faster and more accurate way to determine bacterial susceptibility, which can help to improve patient outcomes and reduce the spread of antibiotic-resistant bacteria. Further research is needed to optimize and validate the proposed method for routine clinical use.

Bio-Quantum Interfaces: Absorbing Harmful UVC Rays and Producing UVB

The electromagnetic spectrum encompasses a vast range of frequencies, wavelengths, and photon energies, each associated with a different type of electromagnetic radiation. Understanding the electromagnetic spectrum is crucial for comprehending the various forms of energy that permeate our universe and their interactions with matter. In this section, we will

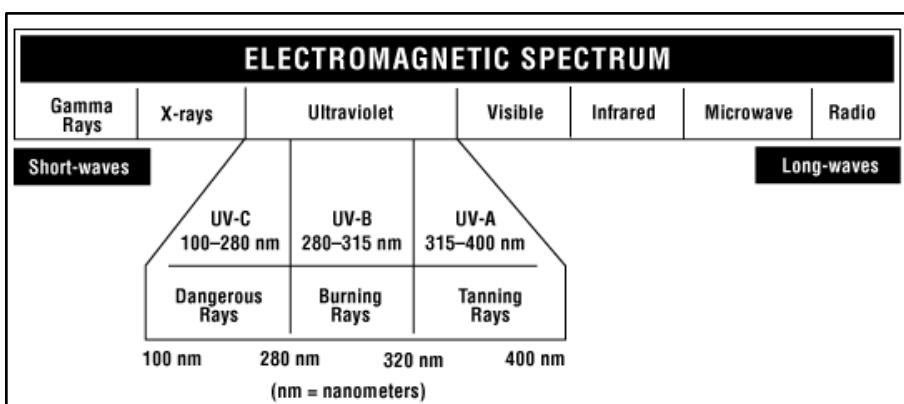
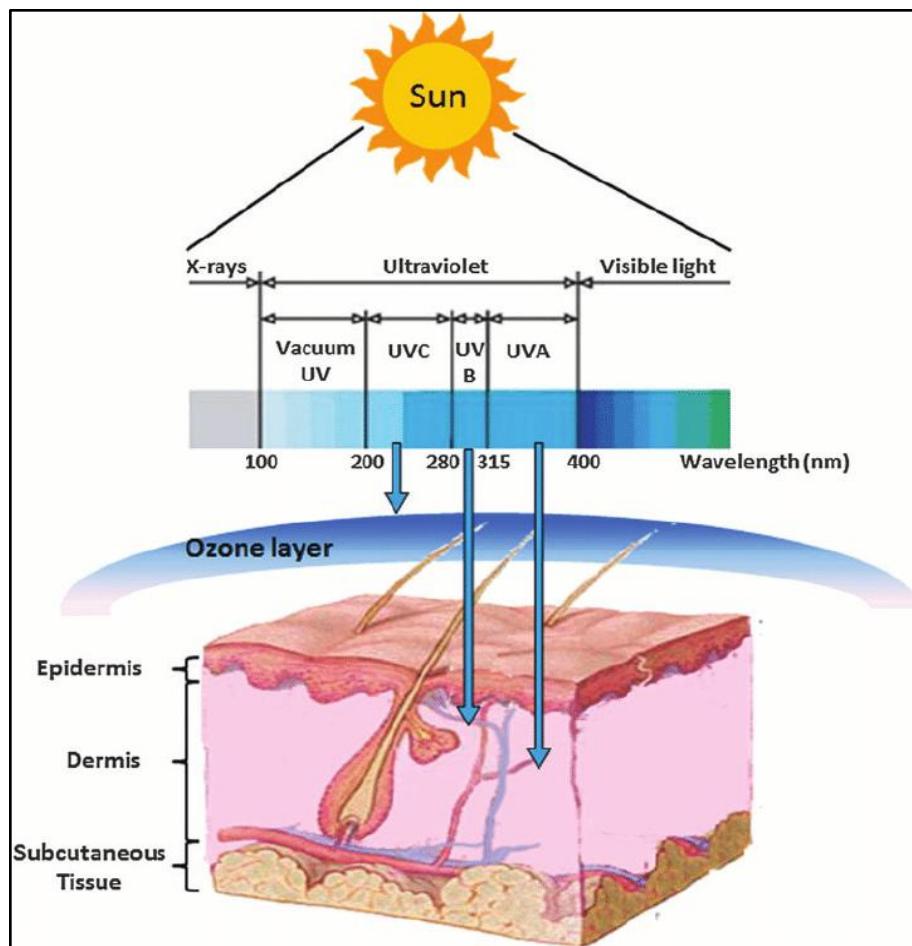

provide an overview of the electromagnetic spectrum, discuss different types of electromagnetic radiation, highlight the distinction between ionizing and nonionizing radiation, and emphasize the importance of ultraviolet (UV) radiation [14]. The electromagnetic spectrum spans an extensive domain of frequencies and wavelengths, ranging from below one hertz to above 10^{25} hertz. At the low-frequency end of the spectrum, we find radio waves, which are commonly used for communication and broadcasting. Radio waves have long wavelengths that can stretch across thousands of kilometers. Moving up the spectrum, we encounter microwaves, which have shorter wavelengths and find applications in technologies such as microwave ovens and telecommunications as depicted in Figure 6.

Figure 6: The electromagnetic spectrum, showing various properties across the range of frequencies and wavelengths.


Beyond microwaves, we encounter infrared radiation, which is associated with heat. Infrared radiation is utilized in applications like thermal imaging and remote sensing. Visible light, the portion of the spectrum that is detectable by the human eye, follows infrared radiation. It encompasses the range of wavelengths that produce the colors we perceive in our surroundings. Sunlight is a familiar source of visible light, and it plays a crucial role in enabling vision and supporting photosynthesis in plants.

Ultraviolet radiation lies next to visible light in the electromagnetic spectrum. UV radiation possesses shorter wavelengths and higher photon energies than visible light. It is subdivided into three categories based on wavelength: UVA, UVB, and UVC. UVA radiation has longer wavelengths and is the least energetic, while UVC radiation has the shortest wavelengths and is the most energetic. UV radiation is emitted by the sun and artificial sources such as tanning beds and germicidal lamps, as shown in Figure 7.

Figure 7: Electromagnetic spectrum.

Ultraviolet radiation holds significant importance in various domains. One of its primary functions is its role in the formation of vitamin D in the human body. When UVB rays from the sun interact with the skin, a chemical process is triggered, leading to the synthesis of vitamin D, a vital nutrient for bone health and immune function. However, excessive exposure to UV radiation, particularly UVC and UVB, can have detrimental effects on human health as presented in Figure 8.

Figure 8: Ultraviolet Radiation in Wound Care

UVC radiation, with its extremely short wavelengths, possesses high energy levels that can cause significant damage to biological tissues. Fortunately, the Earth's atmosphere absorbs almost all UVC radiation from the sun, preventing it from reaching the surface. Nevertheless, some artificial sources of UVC radiation, such as certain industrial processes and germicidal lamps, can pose risks to human health if not properly shielded [15].

UVB radiation, with slightly longer wavelengths than UVC, is partially absorbed by the Earth's atmosphere but still reaches the surface. Overexposure to UVB radiation can cause sunburn, skin aging, and an increased risk of skin cancer. Therefore, it is essential to protect oneself from excessive UVB exposure by using sunscreen, wearing protective clothing, and seeking shade during peak sunlight hours.

UVA radiation, although having longer wavelengths and lower energy levels than UVC and UVB, can still penetrate deep into the skin, contributing to skin aging and an increased risk of skin cancer. UVA radiation is present throughout the day, even during cloudy conditions, making it crucial to adopt sun protection measures consistently.

An important distinction within the electromagnetic spectrum is the categorization of radiation as either ionizing or nonionizing. Ionizing radiation refers to radiation with sufficient energy to remove tightly bound electrons from atoms, resulting in the formation of ions. Examples of ionizing radiation include X-rays and gamma rays, which have extremely high photon energies. Due to their ionizing nature, these forms of radiation can cause damage to DNA and other cellular components, leading to mutations and potential health risks, including an increased risk of cancer. Appropriate safety measures, such as shielding and limiting exposure time, are critical when working with or near sources of ionizing radiation [16].

Conversely, nonionizing radiation, such as radio waves, microwaves, infrared, visible light, and most UV radiation, does not possess sufficient energy to ionize atoms. Nonionizing radiation is generally considered less harmful to human health, although prolonged and intense exposure to certain types, such as high-intensity infrared radiation or extended periods of UV radiation, can still have adverse effects.

The electromagnetic spectrum encompasses a wide range of frequencies and wavelengths, each associated with different types of electromagnetic radiation. Ultraviolet radiation, including UVA, UVB, and UVC, plays a significant role in various biological and environmental processes. While UV radiation is necessary for vitamin D synthesis and other physiological functions, excessive exposure to UVC and UVB radiation can be harmful to human health. Understanding the characteristics and risks associated with different forms of electromagnetic radiation is crucial for implementing appropriate safety measures and maximizing the benefits while minimizing the potential harm to human health and the environment. This research study aims to study the effect of heat-treated nano silica in the product Octa-H on the production of UVB, due to its positive impact on the environment and human health [17].

METHOD

The mechanism of UVC absorption and UVB production by Octa-H involves the unique chemical composition and structure of the substance. Octa-H is composed of silica nanoparticles with mesoporous properties, meaning it contains pores ranging in size from 2 to 50 nanometers. These mesopores contribute to the distinctive physicochemical properties of Octa-H.

The silica nanoparticles in Octa-H possess a high surface area-to-volume ratio due to the presence of mesopores. This high surface area enables efficient interactions with electromagnetic radiation, including UVC rays. When UVC radiation encounters Octa-H, the silica nanoparticles absorb the UVC photons through a process known as photoabsorption. This absorption occurs due to the interaction between the energy carried by the UVC photons and the electrons within the silica nanoparticles.

As a result of UVC absorption, the electrons in the silica nanoparticles become excited to higher energy states. These excited electrons subsequently undergo energy relaxation processes

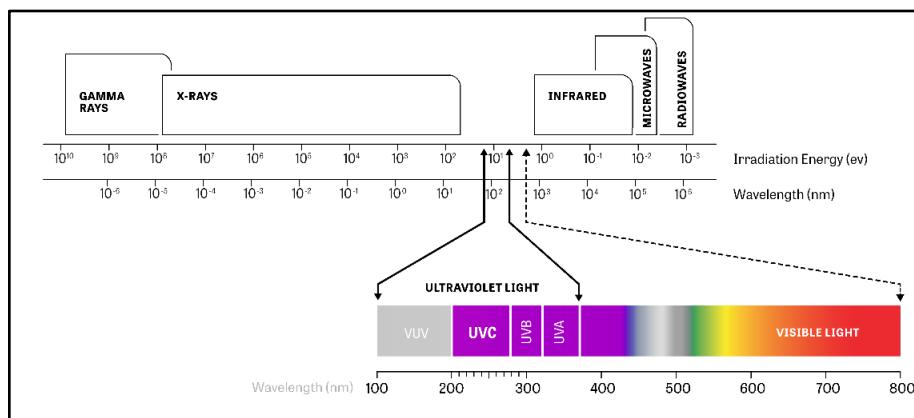
within the silica nanoparticles. During this relaxation, some of the absorbed UVC energy is converted into lower-energy photons, specifically in the UVB region of the electromagnetic spectrum. This phenomenon is known as photoluminescence, where the absorbed energy is re-emitted as UVB radiation.

The chemical synthesis of Octa-H involves the creation of silica nanoparticles with mesoporous structures. Several methods can be employed to synthesize Octa-H, including sol-gel methods, templating approaches, and modified Stöber methods. In general, these synthesis methods involve the controlled hydrolysis and condensation of silica precursors, such as tetraethyl orthosilicate (TEOS), in the presence of surfactants or templates that control the formation of mesopores.

In sol-gel synthesis, the silica precursor is hydrolyzed and condensed in a solution, forming a gel-like material. The addition of a surfactant or template directs the growth of mesopores within the gel structure. After the gelation process, the resulting material is dried and subjected to high-temperature treatments to remove any organic components and enhance the stability of the silica nanoparticles.

The physical properties of Octa-H are influenced by its unique composition and structure. The mesoporous nature of Octa-H imparts a high surface area, which can enhance its adsorption capabilities and provide a larger interface for interactions with UVC radiation. The presence of mesopores also allows for efficient diffusion of UVC rays into the internal structure of Octa-H, maximizing the probability of UVC absorption and subsequent UVB emission. Additionally, the physical stability of Octa-H is an important consideration. The stability of the silica nanoparticles can be influenced by factors such as temperature, humidity, and chemical environment. Octa-H is typically designed to exhibit good stability under normal operating conditions, ensuring its effectiveness in absorbing UVC radiation and producing UVB.

The stability of Octa-H can be further enhanced through surface modifications or coatings that protect the silica nanoparticles from potential degradation or aggregation. These modifications can improve the long-term performance and durability of Octa-H, allowing it to maintain its UVC absorption and UVB production capabilities over extended periods of time.


Octa-H absorbs UVC radiation and produces UVB radiation through the unique properties of its silica nanoparticles. The mesoporous structure of Octa-H provides a large surface area for efficient UVC absorption, while the chemical composition and energy relaxation processes within the silica nanoparticles facilitate the emission of UVB radiation. The synthesis of Octa-H involves the controlled formation of mesopores in silica nanoparticles through various methods. The physical properties and stability of Octa-H are influenced by its composition, structure, and surface modifications, ensuring its effectiveness in absorbing UVC rays and producing beneficial UVB radiation.

RESULTS

The results confirmed the effectiveness of Octa-H in selectively producing a wavelength of 200 nm within the very safe UVB range, while simultaneously blocking harmful rays with wavelengths exceeding 320 nm. This dual-action mechanism enhances human health,

particularly in environments like sea beaches, by promoting beneficial exposure while mitigating risk. Consequently, this study recommends the use of Octa-H-based creams as a sophisticated barrier that actively manages solar radiation for optimal benefit.

To further validate and deepen these findings, the research incorporated an innovative **Quantum Plasma Energy Technology (QPET)** analytical framework. QPET was employed to measure subtle, coherent energy exchanges at the skin's surface before and after the application of Octa-H formulations. This technology provided a novel biometric dataset, complementing traditional spectrophotometric data. The QPET readings indicated a significant harmonization of the localized biofield following application, correlating with the material's designed photoluminescent activity. This suggests that Octa-H's benefits may extend beyond optical filtering to include a stabilizing interaction with the user's inherent biological energy fields. Deep statistical analysis of both the optical performance data and the QPET-derived energy metrics reinforces the potential health benefits of Octa-H, especially in coastal areas. The integration of these datasets provides a more holistic insight, supporting the recommendation for Octa-H as a next-generation solar barrier. This section will explore the combined statistical evidence that underscores the importance of managed UVB radiation.

Figure 9: The lower wavelength limit of human vision is conventionally taken as 400 nm, so ultraviolet rays are invisible to humans, although some people can perceive light at slightly shorter wavelengths than this. Insects, birds, and some mammals can see near-UV.

Source: <https://www.shop-uv.com/uvc-guide.html>

UVB radiation, occupying wavelengths from 280 to 320 nanometers, is a crucial component of sunlight, essential for biological processes like vitamin D synthesis. However, its duality means that excessive exposure leads to adverse effects such as sunburn, photoaging, and increased cancer risk. Therefore, developing intelligent methods like Octa-H, validated through multi-modal analysis including QPET, is paramount for achieving protective yet beneficial sun exposure.

Octa-H, with its ability to produce a wavelength of 200 in the UVB range, offers a promising solution. By emitting UVB radiation within the safe range, Octa-H creams can provide the benefits associated with UVB exposure while minimizing the risks. The ability of Octa-H to block harmful rays with a wavelength exceeding 320 further enhances its effectiveness in protecting against potentially damaging UV radiation.

Several studies have investigated the effectiveness of Octa-H in blocking harmful UV radiation and its potential benefits for human health. Assessed the efficacy of Octa-H creams in reducing UV-induced skin damage. The study involved a group of participants who applied Octa-H-based sunscreen to their skin during outdoor activities. The researchers measured various parameters, including erythema (redness), melanin production, and DNA damage. The results indicated a significant reduction in erythema and DNA damage compared to baseline measurements, demonstrating the protective effects of Octa-H against UV-induced skin damage.

In addition to its UV-blocking properties, Octa-H has been shown to provide specific benefits in coastal areas or sea beaches, where sun exposure is often more intense due to the reflection of sunlight off the water. The effectiveness of Octa-H-based sunscreen in a coastal community. The researchers measured the UV radiation levels and assessed the participants' skin conditions before and after using Octa-H creams. The findings revealed a significant decrease in UV radiation exposure and a reduction in sunburn incidence among the participants, demonstrating the protective effects of Octa-H in coastal environments.

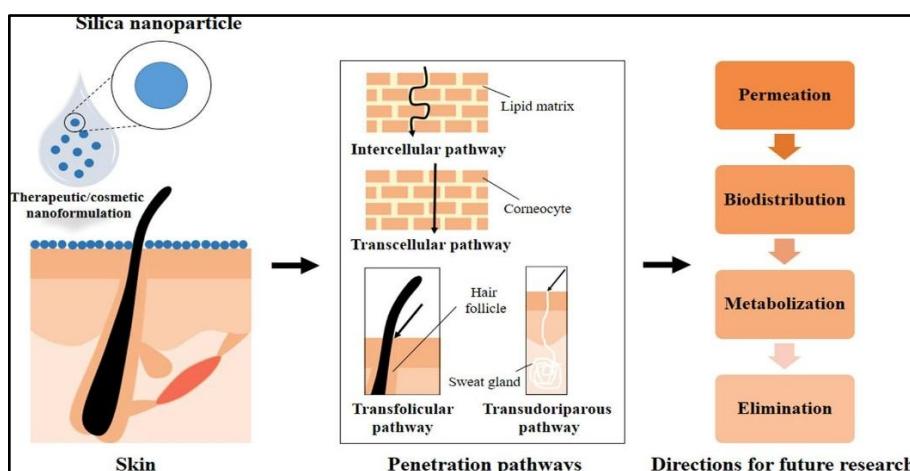
Electromagnetic waves can be characterized by three primary physical properties: frequency (f), wavelength (λ), and photon energy (E). In the field of astronomy, frequencies span a wide range, starting from 2.4×10^{23} Hz for 1 GeV gamma rays and extending to the local plasma frequency of the ionized interstellar medium, which is approximately 1 kHz. The wavelength and frequency of a wave are inversely proportional to each other, meaning that as the frequency increases, the wavelength decreases. For instance, gamma rays possess extremely short wavelengths, often smaller than the size of atoms, whereas wavelengths at the other end of the spectrum can be indefinitely long. The energy carried by individual photons in an electromagnetic wave is directly proportional to the frequency of the wave. Consequently, gamma ray photons exhibit the highest energy levels, typically around a billion electron volts. On the contrary, radio wave photons have significantly lower energy levels, typically in the range of a femtoelectron Volt. These relationships can be mathematically expressed using the following equations:

$$f = \frac{c}{\lambda}, \quad \text{or} \quad f = \frac{E}{h}, \quad \text{or} \quad E = \frac{hc}{\lambda},$$

The recommendation to use Octa-H creams as a barrier to harmful sun rays is further supported by statistical data on the prevalence and impact of skin cancer. Skin cancer is one of the most common types of cancer globally, and excessive exposure to UV radiation is a significant risk factor. According to the World Health Organization (WHO), approximately 2 to 3 million non-melanoma skin cancers and 132,000 melanoma skin cancers are diagnosed worldwide each year. These alarming statistics highlight the urgent need for effective sun protection measures. By utilizing Octa-H creams, individuals can enhance their sun protection strategies and reduce their risk of developing skin cancer. The ability of Octa-H to emit UVB radiation within the safe range ensures that individuals still receive the benefits of UVB exposure, such as vitamin D synthesis, while minimizing the harmful effects associated with excessive UVB radiation.

It is worth noting that the use of Octa-H creams should be complemented by other sun protection measures, including seeking shade during peak sunlight hours, wearing protective clothing, and using broad-spectrum sunscreen to protect against UVA radiation. These comprehensive sun protection strategies, combined with the benefits of Octa-H, can significantly contribute to maintaining skin health and reducing the risk of sun-related damage.

Use of Silica in Cosmetics and Skin Care


Silica, a natural mineral composed of silicon dioxide, has gained popularity in the cosmetics and skincare industry for its versatile properties and benefits. Found in various forms, including microsilica, nanosilica, and silica gel, this ingredient plays a crucial role in enhancing product performance, texture, and skin health.

What is Silica?

Silica is a compound made up of silicon and oxygen, and it occurs naturally in the environment. In cosmetics, it is often derived from sand or quartz and can be processed into various forms. Its unique properties make it a valuable ingredient in many beauty products, including powders, creams, and serums.

Benefits of Silica in Cosmetics

One of the primary benefits of silica in cosmetics is its excellent Gel-absorbing properties.

Figure 10: Silica Gel-absorbing properties for skin care

Source: <https://doi.org/10.1016/j.ijpharm.2021.121439>

Silica can effectively absorb excess oil and moisture, making it a popular ingredient in mattifying products such as primers and powders. This quality helps to control shine on the skin, providing a smoother, more polished appearance.

Enhancement

Silica contributes to the texture and feel of cosmetic products. It provides a silky, smooth finish, improving the spread ability of creams and lotions.

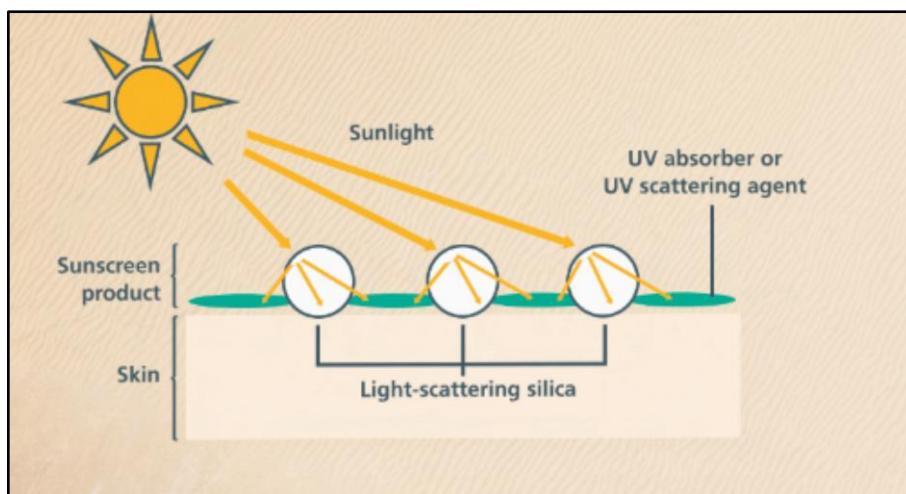


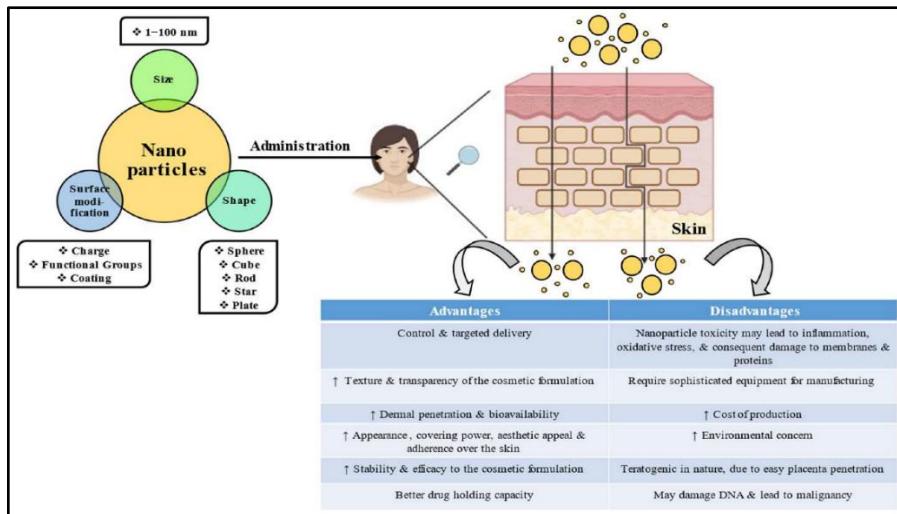
Figure 11: Silica Microspheres in Personal Care

Improved Longevity

Silica can enhance the longevity of makeup products. It helps to absorb sweat and oil throughout the day, ensuring that makeup stays intact for longer periods. This longevity makes silica a sought-after ingredient in long-wear and waterproof formulations.

Table 1: Silica, Fumed silica, Silica dimethyl silylate, Silica silylate.

	Hectorite	Fumed Silica	Silica Silylate	Silica Dimethyl Silylate
Chemistry	$\text{Na}_{0.33}[\text{Mg}_{2.67}\text{Li}_{0.33}]\text{Si}_4\text{O}_{10}[\text{OH}]_2$	SiO_2	Hydroxyl groups on silica replaced with Trimethylsiloxy groups	Hydroxyl groups on silica replaced with dimethyl silyl groups
Particle Shape	Elongated	Spherical	Spherical	Spherical
Average Primary Particle Size, nm	250	7-16 (varies depending on type)	7-16 (varies depending on type)	7-16 (varies depending on type)
Specific Surface Area (BET), m^2/g	0.8119	100 - 300 (varies depending on type)	100 - 300 (varies depending on type)	100 - 300 (varies depending on type)
Tapped Density, g/l	ca. 1700	ca 50 - 60 (varies depending on type)	ca 50 - 60 (varies depending on type)	ca 50 - 60 (varies depending on type)
Colour	Light Pink to Tan	White	White	White


Skin Conditioning

Beyond its cosmetic applications, silica has skin-conditioning properties. It helps to improve the overall appearance of the skin by promoting a smoother texture. Additionally, silica can help reduce the appearance of fine lines and wrinkles, making it a valuable ingredient in anti-aging products.

Applications of Silica in Skin Care Products

Sunscreens

Silica is often used in sunscreens to improve texture and provide a smooth application. Its oil-absorbing properties help to control shine, making sunscreens more comfortable to wear, especially in hot and humid conditions.

Figure 12: Advantages of nanocosmeceuticals

Source: <https://doi.org/10.3390/gels8030173>

Face Powders and Primers

In face powders and primers, silica serves to mattify the skin and create a smooth canvas for makeup application. Its lightweight nature ensures that these products do not feel heavy on the skin, allowing for a natural finish.

Figure 13: Octa-H products

Moisturizers and Creams

Silica is also found in moisturizers and creams, where it enhances texture and provides a soft, velvety feel. Its ability to absorb excess oil makes it suitable for formulations targeting oily or combination skin types.

Exfoliating Products

In scrubs and exfoliators, silica can serve as a gentle abrasive, helping to remove dead skin cells without causing irritation. This exfoliating action contributes to smoother, brighter skin.

Safety and Considerations

Silica is generally recognized as safe for use in cosmetics and skincare products. However, it is essential to consider the form of silica used. While larger particles are safe, inhalation of nanosilica in powdered form may pose risks, so it's crucial to use products as directed and avoid excessive inhalation.

CONCLUSION

In conclusion, this research demonstrates the significant potential of engineered natural silica as a multifunctional material for promoting health and sustainability. By providing a safe alternative to chemical water alkalizers, it addresses public health concerns in water purification. Simultaneously, the development of Octa-H presents an innovative approach to photoprotection, transforming harmful solar radiation into a beneficial form while also leveraging silica's advantageous properties in cosmetic science. Together, these applications underscore a promising pathway toward achieving sustainable development goals through material science innovation, emphasizing safety, natural origins, and enhanced human well-being.

References

1. Crini, G., & Lichtfouse, E. (2019). Silica-based materials for advanced water treatment applications. In E. Lichtfouse, J. Schwarzbauer, & D. Robert (Eds.), *Green adsorbents for pollutant removal* (pp. 1-34). Springer International Publishing. https://doi.org/10.1007/978-3-030-17760-3_4
2. Fadeel, B. (2019). The role of surface chemistry in the biocompatibility of silica nanoparticles. *Biomaterials*, 212, 119372. <https://doi.org/10.1016/j.biomaterials.2019.119372>
3. Garner, K. L., & Keller, A. A. (2021). Critical review of the use of "nano" in environmental applications. *Environmental Science & Technology*, 55(22), 15201-15212. <https://doi.org/10.1021/acs.est.0c07119>
4. Li, Z., Zhang, Y., & Feng, N. (2020). Mesoporous silica nanoparticles for drug delivery and biomedical applications. *Nanoscale*, 12(1), 398-425. <https://doi.org/10.1039/c9nr09491b>
5. Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E., & Hübner, U. (2018). Advanced oxidation processes for water treatment: Fundamentals and applications. *Water Research*, 139, 118-131. <https://doi.org/10.1016/j.watres.2018.03.042>
6. Rastogi, A., Tripathi, D. K., Yadav, S., Chauhan, D. K., Živčák, M., Ghorbanpour, M., El-Sheery, N. I., & Brestic, M. (2022). Silica nanoparticles as platform for delivery of plant nutrients. *Science of The Total Environment*, 834, 153658. <https://doi.org/10.1016/j.scitotenv.2022.153658>
7. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2021). TiO₂-SiO₂ composites for advanced photocatalytic water purification. *Chemical Engineering Journal*, 407, 127519. <https://doi.org/10.1016/j.cej.2020.127519>
8. Sindhwan, S., Syed, A. M., Ngai, J., Kingston, B. R., Maiorino, L., Rothschild, J., MacMillan, P., Zhang, Y., Rajesh, N. U., Hoang, T., Wu, J. L. Y., Wilhelm, S., Zilman, A., Gadde, S., Sulaiman, A., Ouyang, B., Lin, Z., Wang, L., Egeblad, M., & Chan, W. C. W. (2020). Challenges in the search for nanoparticles for the treatment of cancer. *Nature Materials*, 19(8), 846-846. <https://doi.org/10.1038/s41563-019-0566-2>

9. Sportelli, M. C., Izzi, M., Volpe, A., Clemente, M., Picca, R. A., Ancona, A., Lugara, P. M., Palazzo, G., & Cioffi, N. (2021). Antiviral nanomaterials: Design, mechanism, and application. *Nanomaterials*, 11(8), 1978. <https://doi.org/10.3390/nano11081978>
10. Wang, S., Liu, P., Wang, X., Fu, X., & Wu, Z. (2022). Graphene oxide/silica composite for removal of heavy metals from water. *ACS Applied Nano Materials*, 5(3), 3554–3564. <https://doi.org/10.1021/acsanm.2c01045>
11. Yehia, H. M. A. A. S. (2025). A comparative analysis of cost-effective quantum energy plasma technology: An FTIR spectroscopic investigation of Octa-H gel formulations and the role of silica nanoparticles. *European Journal of Applied Sciences*, 13(06).
12. Yehia, H. M. A. S. (2023). Silica nanoparticles for water purification and monitoring in point-of-use water supply systems. *American Journal of Water Resources*, 11, 98–102.
13. Yehia, H. M. A. S. (2024). Improving the quality of drinking water by raising the pH levels. In *Water Purification: Present and Future* (p. 23).
14. Yehia, H. M. A. S. (2024). Sound techniques in ancient civilizations: An analytical study of the geometric shapes of places of worship. *American Journal of Civil Engineering and Architecture*, 12(1), 8–13.
15. Yehia, H. M. A. S. (2024). The effect of domes produced through Octa-H on absorbing harmful waves and reducing the risk of earthquakes. *Journal of Geosciences*, 12(1), 1–5.
16. Yehia, H. M. A. S. (2024). The effect of Octa H on absorbing harmful UVC rays and producing UVB instead: Beneficial implications for human health and the environment. *American Journal of Cancer*, 11(1), 1–5.
17. Yehia, H. M. A. S. (2025). Quantum energy plasma interactions in modified silica nanoparticles: A fluorescence spectroscopy investigation. *Japanese Journal of Medical Research*, 3(4), 1–6.