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ABSTRACT

In this paper, a modified gene expression model with discrete delays is studied. The
oscillatory behavior of the solutions is investigated. Make the change of variables,
and the model will be linearized to a time-delayed system. The instability of the
trivial solution of the linearized system implies the instability of the equilibrium
point of the original model. It will generate a periodic oscillatory solution in which
the original system has only one equilibrium point. We extend the result in the
literature from stability to oscillation of the model. Some sufficient conditions to
guarantee the oscillation of the solutions are provided, and computer simulations
are given to support the present result.
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INTRODUCTION
Genetic regulatory networks are biochemical dynamical systems. There are many models that
have been proposed. For example, Wang et al. investigated the following delayed gene
regulatory model:

{x{(t) =1 —dyx(t) + ﬁ1f1(x1(t - T1)) - k1g1(x1(t))x2 ®), 1)

x,(t) =15 — daxy(t) + Baf> (xz (t— Tz)) — k29, (xz (t))x1(t);

where x, (t) and x,(t) represent the concentrations of mRNA and protein, respectively. f;(x;)
and g;(x;) are Hill functions (i = 1,2). By using the normal form method and central manifold
theorem, the hybrid control scheme was proposed, and the bifurcation properties of the
controlled system were exhibited [1]. Gao and Li [2] proposed the following delayed gene
regulatory model of the form

x'(6) = dx(t) + f(y(©)) — bx(t — p)y(t — p),
y'(t) = my(t) + kx(t), (2)
v'(t) = A —nv(t) — bx(t —p)y(t — p).

The authors introduced a generalized hybrid control to control the unstable dynamical
behavior induced by time delay. Firstly, the equilibrium point of the network model (2) was
calculated. Then, a systematical dynamics analysis was performed to derive sufficient
conditions to generate the Hopf bifurcation. Yue et al. established a discrete-time genetic model
and obtained the conditions for the existence and stability of fixed points [3]. For stability,
bifurcations, and chaos of various gene regulatory models, one can see [4-16]. Noting that the

Services for Science and Education - United Kingdom



Feng, C. (2025). Periodic Solution for a Delayed Gene Expression Model. European Journal of Applied Sciences, Vol - 13(06). 206-217.

effect of distributed time delays on the dynamics of a model of gene expression is different from
a discrete delayed model. Song et al. discussed the following model:

{m'(t) = a/(L+ [ p(t = &) g(©)dE)" — pm(D), )

p'(t) = aym(t) — u,p(t).

Both the weak and strong delay kernels were discussed. Sufficient conditions for the local
stability of the unique equilibrium were obtained. Taking the average delay as a bifurcation
parameter, the direction of the Hopf bifurcations, and the stability of the bifurcating periodic
solutions by using the method of multiple time scales were investigated [17]. Qing et al.
extended model (3) to a three-dimensional system of the following:

x'(t) = cx(t) —dy(®)x(t) + g (f_too T(t—x) Z(x)dx),

y'(t) = c — dy(®)x(t) — fy(©), (4)
z'(t) = —bz(t) + ax(t — 1),

where time delay kernel function T is presumed to satisfy some conditions as follows: T(x) =
n,—ox
a”“%,x € (0,4),n =0,1. The discrete time delay 7 is chosen as the bifurcation

parameter. By analyzing the distribution of characteristic values, the sufficient conditions of the
stability and the existence of periodic oscillations for model (4) were obtained [18]. In [19],
Wang et al. investigated the Hopf bifurcation induced by time delay and the direction of the
Hopf bifurcation for the following four-dimensional genetic regulatory network model:

(M](t) = —a; My (t) + b11f1(P1(t - 03)) + b12f2(P2(t - 03)) + By,
J Mj(t) = —a;My(t) + by fr(Pr(t — 04)) + bya fo(P2(t — 04)) + By, (5)
L P{(t) = —c1P1(t) + d My (t — 0y),

P3(t) = =3Py (t) + dy M, (t — 03).

In [20], a delayed mass action version of the gene model of the binding-site clearance delays for
both the promoter and ribosome binding site (RBS) was formed:

( Kin = S(1),

E(t) +5(t) Ky C(t) K-, E(t) +Q(b),
E@®) +5S(t) K-, () - E® +Q(0),
nS(t) + A(t) K3 P(b),
nS(t) + A(t) K3 P(b),

P(t) K, P(t+7)) + R(t + 1),
R(t) Ks R(t +713) + E(t+1,),

\ R(t) K

A

(6)

In this model, S(t) is a substrate to be metabolized to a product Q(t) by the enzyme E (t).
E(t) is synthesized by the usual gene expression pathway. The active gene promoter, P(t) is
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cleared and the RNA. Define the following dimensionless variables: c(t) = @ e(t) = E(t)

s(t) = @ a(t) = A(t) p(t) = @ r(t) = & where K, is the Michaelis constant. Then a

delayed gene expressmn model Was given as follows:

( c'(t) = e(t)s(t) — c(t),
e'(t) = —e(t)s(t) — kye(t) + c(t) + ksr(t — 14),
s'(t) = ki, —e(t)s(t) + k_qc(t) — nkzs™(t)a(t) + nk_sp(t), %
a'(t) = —kss™(t)a(t) + k_sp(t),
p'(t) = k3s™(D)a(t) — (k_z + ky)p(t) + kup(t — 74),
\ r'(t) = —(ks + kg)r(t) + kap(t — 13) + ks (t — T3),

where k;,, k_1, k_3, k3, k4, k5 are real positive numbers. By using the "small-gain" theorem, the
stability of the model (7) was analyzed, the existence of a positive equilibrium point and the
boundedness of the solutions for model (7) were discussed. It is known that periodic oscillation
is an important property for various gene models. This paper will study the periodic solution
for a modified model (7) as the follows:

( c'(t) = e(t)s(t) — kyoc(t) — kqic(t —75),
e'(t) = —e(t)s(t) — kye(t) + c(t) + ksr(t — 14),
s'(t) = ki —e(®)s(t) + k_qc(t — t5) — nkgs™(t)a(t) + nk_3p(t),
a'(t) = —kgs™(t)a(t) + k_sp(t),
p'(6) = kss™(D)a(t) — (k_3 + ky)p(t) + kap(t — T1),
\ r'(t) = —(ks + kg)r(t) + kyp(t — 15) + ks (t — 73),

(8)

where kq,, ki, are positive constants. The general bifurcation method can discuss the
bifurcating periodic solution for model (8). However, there are five time delays in model (8). It
is not easy to deal with model (8) by employing the bifurcation method if the five delays are
different positive numbers, as in our simulation. In this paper, we will use the method of
mathematical analysis to discuss the existence of periodic solutions for model (8). Assume that
(c*, e*, s*,a*p*,r*)T is an equilibrium point of the system (8), then we have

( e*s* —kypc* — ki1 =0,
—e*s" —kye"+ c*+ksr* =0,
kin—e"s"+k_;c"—nkz(s)"a*+nk_3;p* =0,
Cky(sY a4+ k_syp* =0, ()
ks(s )" a* — (ks + k)p” + kgp® = 0,
\ —(ks + kg)r* + kyp* + ks = 0.

Make the change of variables c(t) — c(t) — c* e(t) - e(t) — e*, s(t) » s(t) — s*,a(t) -
a(t) —a*,p(t) » p(t) —p*,r(t) - r(t) —r*, and the equilibrium point at system (8) will be
shifted to the trivial equilibrium and we have the following system:
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( c'(t) = —kioc(t) — kyic(t — 15) +s"e(t) + e*s(t) + e(t)s(t),
e'(t) =c(t) — (s "+ kye(t) —e*s(t) —e(t)s(t) + ksr(t — 14),
s'(8) = k_qc(t —15) — s*e(t) — (e* + n2kza*(s)" 1 )s(t) — nkza*(s)" a(t))
+nk_sp(t) — nksa(@®)[s™ + ns*s™ 1 + -+ n(s*)" 1 s(t)] — e(t)s(t),
\ a'(t) = —nkza*(s*)" *'s(t)—ks(s*)"a(t) + k_3p(t) (10)
—ksa(®)[s" + ns*s™ 1 + -+ n(s*)" 1 s(0)],
p'(t) = nksa*(s)" 's(t) + ks(s)"a(t) — (k_z + ka)p(t) + kap(t — 71)
+ksa(t)[s™ + ns*s™ L+ -+ n(s) L s(0)]
\ r'(t) = —(ks + kg)r(t) + kyp(t — 15) + ks (t — T3).

The system (10) can be expressed in the following matrix form:
y'(®) = My(®) + Ny(t — ) + g(y(©)), (11)

where  y(t) = (c(t),e(t),s(t),a(t),p(®),r®))" , y(t—1) = (c(t—15),0,p(t —70),p(t -
7,),7(t — 13), r(t — 74))7, M and N both are 6 X 6 matrices.

my; Myy mz 0 0 O
maz1 My myz 0 0 0 \
_ 0 m m m m 0 |
M= (m.:: 32 33 34 35 ’
(Mi)oxs = l 0 0 My3 Myy Mys 0 |
\ 0 M5z Mgy Mgz 0 /
0 0 0 0 mge
—ki; 0O 0 0 0 O
0 0 0 0 0 kg
k o oo 0 O
N = (n:: = -1 )
(nl])6><6 0 0 0 0 0 0
0 0 0 0 ks O
Where m11 = _k10 ) m12 = S*, m13 = e*,m21 = 1,m22 = _(S* + kz),m23 = _e*,mgz =
—s*,m33 = —(e" + nkza*(s")" 1), mgy = —nks(s*)", mzs = nk_z,mys =
—nksa*(s*)" 7, myy = k3 (s, mys = —(k_3 + ky), ms3 = nkza*(s)"" !, msy =
ks(s )", mgs = —(k_3 + ky), mgg = —(ks + k). The nonlinear term  g(y(t) =
(e(D)s(t), —e(t)s(t), -, kza(®)[s" + ns*s™ 1+ -+ n(s*)"15(¢)],007 . The linearized
equation of (11) is as follows:
y'(t) = My(t) + Ny(t — 7). (12)

We first have the following two lemmas:

Lemma 1 If matrix M + N is a nonsingular matrix for selected parameters, then there exists a
unique equilibrium point for system (8).
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Proof If system (12) has a unique trivial equilibrium point, then system (10) or (11) has a
unique trivial equilibrium point, since g(0) = 0, this suggests that system (9) has a unique
trivial equilibrium point, implying that system (8) has a unique equilibrium point. Now, assume
that y* = (c¢*, e, s* a*,p*,v*)T is an equilibrium point of the system (12), then we have the
following algebraic equations:

(M + N)y* = 0. (13)

According to the basic linear algebraic knowledge, system (13) has a unique trivial solution
since M + N is a nonsingular matrix, implying that there is a unique equilibrium point in the
system (8).

Lemma 2 All solutions of system (8) are bounded.

Proof Since the time delay does not affect the boundedness of the solutions, the proofis similar
to [20].

In the following, we provide two theorems to guarantee the existence of periodic solutions for
model (8).

THE EXISTENCE OF PERIODIC OSCILLATORY SOLUTIONS
Theorem 1 Assume that the system (8) has a unique equilibrium point. Let p;, p5, ***, e, 01,
8,,++, 06 be characteristic values of matrix M and N, respectively. If there is some p;, say p;
such that Re(p;) > 0, or there exists some §;, say §; such that Re(6;) > Re(p,), then the
unique equilibrium point of system (8) is unstable, implying that there exists a periodic
oscillatory solution in the system (8).

Proof The trivial equilibrium of the system (12) corresponds to the equilibrium point
y* = (c* e* s* a*,p*r*)7T of the system (8). Therefore, if the trivial equilibrium is unstable,
then the equilibrium point (¢, e*, s*, a*, p~, r*)T is still unstable. To discuss the instability of the
equilibrium point of the system (8), we only need to deal with the instability of the trivial
solution of the system (12). Since p, p2,**, pg, 01, 02, ***, 8¢ are characteristic values of matrix
M and N, respectively, we have at least one §; = 0 from the matrix N. Then the characteristic
equations corresponding to the system (12) are the following:

i=1(A—pi—8ieM) =0 (14)
Or
A—pg=0 (15)

Thus, we are led to investigate the nature of the roots of the equation (15) and the following
equation:

A—p,— 8?1 =0 (16)
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If Re(pg) > 0, then equation (15) has a positive real part eigenvalue. If equation (16) holds, we
show that there exists a positive real part eigenvalue of equation (16) under the assumptions
of Theorem 1. Indeed, if Re(8;) > Re(p;), setting A = A, +id,, p; = p11 + ip12, 61 = 611 +
1812, 41 = Re(A),2; = Im(4), p11 = Re(py), p12 = Im(p,), 611 = Re(8,), 61, = Im(6y).
Separating the real part and imaginary part of the equation (16), we get

A = p1q + 811674171 cos(A,7,) — 81,6 M sin(A,Ty). (17)
We show that equation (17) has a positive root. Let

d(A1) = A — p1g — 8116 M1 cos(A,1,) + 816 M1 sin(A,74). (18)
Obviously, ¢(4;) is a continuous function of 4;. Noting that §;; > p;4, then ¢(0) = —p;; —

811 €cos(A,71) + 815 sin(A,71) < —p11 — 811 < 0 as 1,74 ~2nm, where n is an integer number.
Since lim e~*% = 0, so there exists a suitably large 1, say A; (> 0) such that

1—)00
¢(A;) = A5 — p11 — 81167 cos(A,11) + 81674 1 sin(A,71) > 0. (19)

By the Intermediate Value Theorem, there exists a A, say 4,9 € (0, 4] ) such that ¢(1,,) = 0,
implying that there is a positive real part characteristic value of equation (17). This means that
the trivial solution of the system (12) is unstable, implying that the unique equilibrium point
(c*, e*, s*,a*,p*,r*)7T of the system (8) is unstable. This instability of the unique equilibrium
point, together with the boundedness of the solutions, will force system (8) to generate an
oscillatory solution [21, 22]. The proof is completed.

Now setting u(M) = 1rnaxs(mjj + Yoot ixj|mij|), 0 = max{kyy + k_q,2ky, k3 + ks} [23]. Then
<j< : )

we have

Theorem 2 Assume that the conditions of Lemma 1 and Lemma 2 hold. If the following
inequality holds

uM)+ao > 0. (20)

Then the unique trivial equilibrium point in system (12) is unstable, implying that the system
(8) generates a periodic oscillatory solution.

Proof Let 7, = min{ty, 75, ", T5}. To prove the instability of the trivial solution in system (12),
letw(t) = |c(®)| + le(®)| + |s(@®)| + |la(®)| + |[p(t)| + [r(t)]. Sow(t) > 0 and we have:

w'(t) < u(M)w(t) + ow(t — t,). (21)
Specifically, consider the equation

z'(t) = u(M)z(t) + oz(t — 1,). (22)
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Obviously, w(t) < z(t). If the trivial solution of equation (22) is unstable, then the trivial
solution of (21) is still unstable. The characteristic equation associated with equation (22) is
given by

A=ulM)+ ge = (23)

We claim that there exists a positive root of (23) under the condition (20). Let ¢(1) = 1 —
(M) — ge=**™.Thus, ¢(1) is a continuous function of 1. When A = 0, we have ¢(0) = —u(M) —
o =—(u(M) + o) <0,since u(M) + ¢ > 0. On the other hand, there exists a suitably large 4,
say Ay > 0 such that @(1y) = Ay — u(M) — ge %% > 0, since e %% — 0 as A, — +oo. Again,
based on the Intermediate Value Theorem, there exists a 4, say 4, € (0, A, ) such that ¢(4,) =
A —u(M) — ge T = (. In other words, A, is a positive characteristic root of the equation
(23). So the trivial solution of the equation (22) is unstable. According to the property of the
delayed differential equation, when 7; > 7, (i = 1, 2, -+, 5), the trivial solution of the equation
(22) is still unstable, implying that the unique equilibrium point (c*, e* s*, a*, p*,r*)7 of the
system (8) is unstable. Similar to Theorem 1, there exists a periodic solution of the system (8).
The proofis completed.

SIMULATION RESULT
This simulation is based on the system (8). Firstly, the parameters are selected as follows: k;;,, =
5.5,ki9 =0.16,k;; = 0.658,k_; = 0.24,k_3; = 0.15,n = 3,k, = 0.76,k; = 0.068,k, =
0.32,ks = 0.18,kg = 0.44, then the unique positive equilibrium point is
(c*, e* s* a*psr)T = (10.8823,3.8123,5.9598,0.2236,1.5014,1.9598)" . Thus, my; =
—0.16, my, = 5.9598, m;3 = 3.8123,m,, =1, My, = —6.7198, my; = —3.8123,m;3, =
—5.9598,m3; = —5.8022,m3, = —11.3118, m35 = 0.45, my3 = —0.6633,myy =
—3.7706, mys = —0.47, m53 = —5.8022, mg, = 3.7706, ms5 = —0.47, mgg = —0.62. Then the
eigenvalues of matrix M and N are —11.9368, —4.4368,—0.7653,—-0.62,0.1071 £+ 1.7505 i,
and 0.32,-0.16,0, 0, 0, 0, respectively. We see that matrix M has a positive real part eigenvalue
0.1071 + 1.7505 i. Also matrix N has a positive eigenvalue 0.32 > 0.1071. The conditions of
Theorem 1 are satisfied. When time delays are selected as 1.71,1.72,1.73,1.74,1.75, there is a
periodic solution (see Fig.1). Then we change the parameter k;,, as 4 and 2.5, respectively, the
other parameters are the same as in Fig.1, the oscillatory behavior is maintained (see Fig.2 and
Fig.3). Then we select another set of parameters as k;;, = 3.5,k = 0.16,k;; = 0.45,k_; =
0.032,k_3 =1.65,n=3,k, = 0.86,k; = 0.68,k, = 0.65,ks = 0.28, ks = 0.72, the equilibrium
point is (c* e* s* a*,p5r")T = (6.7601,3.6639,2.1642,1.1384,0.9442,1.0164)T . We get
my; = —0.16,my, = 2.1642, my3 = 3.6639,m,; =1, my, = —3.0242,m,3 = —3.6639,m3, =
—2.1642,m33 = —36.2414,m3, = —20.6271,m35 = 4.95,my3 = —10.8592,my, =
—6.8757, mys = —2.3,mg3 = 10.8592, mg, = 6.8757, mgs = —2.3,mgg = —1. Then u(M) + o
=21.9271 > 0. The conditions of Theorem 2 are satisfied. When time delays are selected as 2.15,
2.20, 2.25, 2.30, 2.35, there exists a periodic solution (see Fig.4). Then the value of k;, is
changed from k;,, = 3.5 to k;;, = 3, the other parameters are the same as in Fig.4, we see that
the oscillatory behavior is kept (see Fig.5). In Fig.6, the parameters k;;, = 3,n = 5,k_; = 0.045,
the other parameters are the same as in Fig.4. Then we select another set of parameters as k;, =
2,kio=0.16,k;; = 0.434,k_; = 0.065,k_3 = 1.25,n = 2,k, = 0.85,k; = 0.78,k, =
0.68,ks = 0.28, ks = 0.82, the equilibrium point is (c*, e, s* a*,p5r)T =
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(4.0434,2.3256,1.4764,1.1164,0.9538,0.7949) . Thus, my; = —0.16,m;, = 1.4764, m,;

2.3256,m,,

=1,

my, = —23264, my3 = —23256, ms,

_3.4104‘,m35 = 2.5,m43 = _25713, Myy = _17102, Mys
1.7102, mss = —1.93, mgg = —1.10.

= —14764, Mms3 = _7-4681'm34
= _193, Mgz = 2.5713,m54 =

2(l:"‘ig.l Oscillation of the solutions, Kin=5.5, n=3, delays: 1.71, 1.72, 1.73, 1.74, 1.75.
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Fig.2 Oscillation of the solutions, Kin=4, n=3, delays: 1.71, 1.72, 1.73, 1.74, L.75.
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Fig.3 Oscillation of the solutions, Kin=2.5, n=3, delays: 1.71, 1.72, 1.73, 1.74, L.75.
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(b) Solid line: a(t), dashed line: p(t), dotted lire: r(t).

Fig.4 Oscillation of the solutions, Kin=3.5, n=4, delays: 2.15, 2.20, 2.25, 2.30, 2.35.
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10Fig,S Oscillation of the solutions, Kin=3, n=4, delays: 2.15, 2.20, 2.25, 2.30, 2.35.
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10Fig,6 Oscillation of the solutions, Kin=3, n=5, delays: 2.15, 2.20, 2.25, 2.30, 2.35.
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(b) Solid line: a(t), dashed line: p(t), dotted lire: r(t).

Fig.7 Oscillation of the solutions, Kin=2, n=2, delays: 2.45, 2.50, 2.55, 2.60, 2.65.
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We see Then u(M) + o = 4.7701 > 0. The conditions of Theorem 2 are satisfied. When time
delays are selected as 2.45, 2.50, 2.55, 2.60, 2.65, oscillation of the solutions appeared (see
Fig.7).In Fig.8, time delays are selected as 2.15, 2.20, 2.25, 2.30, 2.35, we only change the values
of k_; from 0.065 to 0.018, k;, from 0.434 to 0.471, the other parameters are the same as in
Fig.7, oscillation of the solutions still occurred (see Fig.8).

CONCLUSION
In this paper, we have discussed the oscillatory behavior of the solutions for a modified gene
expression model with delays. Based on the method of mathematical analysis, we provided two
theorems that those are only sufficient conditions to guarantee the oscillation of the solutions.
Some simulations are provided to indicate the effectiveness of the criteria.
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