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ABSTRACT 
In this paper, a modified gene expression model with discrete delays is studied. The 
oscillatory behavior of the solutions is investigated. Make the change of variables, 
and the model will be linearized to a time-delayed system. The instability of the 
trivial solution of the linearized system implies the instability of the equilibrium 
point of the original model. It will generate a periodic oscillatory solution in which 
the original system has only one equilibrium point. We extend the result in the 
literature from stability to oscillation of the model. Some sufficient conditions to 
guarantee the oscillation of the solutions are provided, and computer simulations 
are given to support the present result.  
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INTRODUCTION 

Genetic regulatory networks are biochemical dynamical systems. There are many models that 
have been proposed. For example, Wang et al. investigated the following delayed gene 
regulatory model: 
 

{
𝑥1

′(𝑡) = 𝑟1 − 𝑑1𝑥1(𝑡) + 𝛽1𝑓1(𝑥1(𝑡 − 𝜏1)) − 𝑘1𝑔1(𝑥1(𝑡))𝑥2(𝑡),

𝑥2
′ (𝑡) = 𝑟2 − 𝑑2𝑥2(𝑡) + 𝛽2𝑓2(𝑥2(𝑡 − 𝜏2)) − 𝑘2𝑔2(𝑥2(𝑡))𝑥1(𝑡),

   (1) 

 
where 𝑥1(𝑡) and 𝑥2(𝑡) represent the concentrations of mRNA and protein, respectively. 𝑓𝑖(𝑥𝑖) 
and 𝑔𝑖(𝑥𝑖) are Hill functions (𝑖 = 1,2). By using the normal form method and central manifold 
theorem, the hybrid control scheme was proposed, and the bifurcation properties of the 
controlled system were exhibited [1]. Gao and Li [2] proposed the following delayed gene 
regulatory model of the form 
 

{

𝑥′(𝑡) = 𝑑𝑥(𝑡) + 𝑓(𝑦(𝑡)) − 𝑏𝑥(𝑡 − 𝑝)𝑦(𝑡 − 𝑝),

𝑦′(𝑡) = 𝑚𝑦(𝑡) + 𝑘𝑥(𝑡),

𝑣′(𝑡) = 𝜆 − 𝑛𝑣(𝑡) − 𝑏𝑥(𝑡 − 𝑝)𝑦(𝑡 − 𝑝).

    (2) 

 
The authors introduced a generalized hybrid control to control the unstable dynamical 
behavior induced by time delay. Firstly, the equilibrium point of the network model (2) was 
calculated. Then, a systematical dynamics analysis was performed to derive sufficient 
conditions to generate the Hopf bifurcation. Yue et al. established a discrete-time genetic model 
and obtained the conditions for the existence and stability of fixed points [3]. For stability, 
bifurcations, and chaos of various gene regulatory models, one can see [4-16]. Noting that the 
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effect of distributed time delays on the dynamics of a model of gene expression is different from 
a discrete delayed model. Song et al. discussed the following model:  
 

{
𝑚′(𝑡) = 𝛼𝑚/(1 + ∫ 𝑝(𝑡 − 𝜉)

∞

0
𝑔(𝜉)𝑑𝜉)ℎ − 𝜇𝑚𝑚(𝑡),

𝑝′(𝑡) = 𝛼𝑝𝑚(𝑡) − 𝜇𝑝𝑝(𝑡).
   (3) 

 
Both the weak and strong delay kernels were discussed. Sufficient conditions for the local 
stability of the unique equilibrium were obtained. Taking the average delay as a bifurcation 
parameter, the direction of the Hopf bifurcations, and the stability of the bifurcating periodic 
solutions by using the method of multiple time scales were investigated [17]. Qing et al. 
extended model (3) to a three-dimensional system of the following: 
 

{

𝑥′(𝑡) = 𝑐𝑥(𝑡) − 𝑑𝑦(𝑡)𝑥(𝑡) + 𝑔 (∫ 𝑇(𝑡 − 𝑥)
𝑡

−∞
𝑧(𝑥)𝑑𝑥) ,

𝑦′(𝑡) = 𝑐 − 𝑑𝑦(𝑡)𝑥(𝑡) − 𝑓𝑦(𝑡),

𝑧′(𝑡) = −𝑏𝑧(𝑡) + 𝑎𝑥(𝑡 − 𝜏),

   (4) 

 
where time delay kernel function 𝑇 is presumed to satisfy some conditions as follows: 𝑇(𝑥) =

𝜎𝑛+1 𝑥𝑛𝑒−𝜎𝑥

𝑛!
, 𝑥 ∈ (0,+∞), 𝑛 = 0,1.  The discrete time delay 𝜏  is chosen as the bifurcation 

parameter. By analyzing the distribution of characteristic values, the sufficient conditions of the 
stability and the existence of periodic oscillations for model (4) were obtained [18]. In [19], 
Wang et al. investigated the Hopf bifurcation induced by time delay and the direction of the 
Hopf bifurcation for the following four-dimensional genetic regulatory network model: 
 

{
 
 

 
 𝑀1

′(𝑡) = −𝑎1𝑀1(𝑡) + 𝑏11𝑓1(𝑃1(𝑡 − 𝜎3)) + 𝑏12𝑓2(𝑃2(𝑡 − 𝜎3)) + 𝐵1,

𝑀2
′ (𝑡) = −𝑎2𝑀2(𝑡) + 𝑏21𝑓1(𝑃1(𝑡 − 𝜎4)) + 𝑏22𝑓2(𝑃2(𝑡 − 𝜎4)) + 𝐵2,

𝑃1
′(𝑡) = −𝑐1𝑃1(𝑡) + 𝑑1𝑀1(𝑡 − 𝜎1),

𝑃2
′(𝑡) = −𝑐2𝑃2(𝑡) + 𝑑2𝑀2(𝑡 − 𝜎2).

  (5) 

 
In [20], a delayed mass action version of the gene model of the binding-site clearance delays for 
both the promoter and ribosome binding site (RBS) was formed: 
 

{
 
 
 
 

 
 
 
 

𝐾𝑖𝑛 → 𝑆(𝑡),

𝐸(𝑡) + 𝑆(𝑡)  𝐾1
⃑⃑⃑⃑  𝐶(𝑡)  𝐾−2

⃑⃑ ⃑⃑ ⃑⃑  ⃑  𝐸(𝑡) + 𝑄(𝑡),

𝐸(𝑡) + 𝑆(𝑡)  𝐾−1
⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑  𝐶(𝑡) → 𝐸(𝑡) + 𝑄(𝑡),

𝑛𝑆(𝑡) + 𝐴(𝑡) 𝐾3
⃑⃑ ⃑⃑  𝑃(𝑡),

𝑛𝑆(𝑡) + 𝐴(𝑡)  𝐾−3
⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑  𝑃(𝑡),

𝑃(𝑡)  𝐾4
⃑⃑ ⃑⃑  𝑃(𝑡 + 𝜏1) +  𝑅(𝑡 + 𝜏2),

𝑅(𝑡)  𝐾5
⃑⃑ ⃑⃑  𝑅(𝑡 + 𝜏3) +  𝐸(𝑡 + 𝜏4),

𝑅(𝑡)  𝐾6
⃑⃑ ⃑⃑ 

     (6) 

 
In this model, 𝑆(𝑡)  is a substrate to be metabolized to a product 𝑄(𝑡)  by the enzyme 𝐸(𝑡) . 
𝐸(𝑡) is synthesized by the usual gene expression pathway. The active gene promoter, 𝑃(𝑡) is 
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cleared and the RNA. Define the following dimensionless variables: 𝑐(𝑡) =
𝐶(𝑡)

𝐾𝑚
,  𝑒(𝑡) =

𝐸(𝑡)

𝐾𝑚
, 

𝑠(𝑡) =
𝑆(𝑡)

𝐾𝑚
,  𝑎(𝑡) =

𝐴(𝑡)

𝐾𝑚
,  𝑝(𝑡) =

𝑃(𝑡)

𝐾𝑚
,  𝑟(𝑡) =

𝑅(𝑡)

𝐾𝑚
,  where 𝐾𝑚  is the Michaelis constant. Then a 

delayed gene expression model was given as follows: 
 

{
  
 

  
 

𝑐′(𝑡) = 𝑒(𝑡)𝑠(𝑡) − 𝑐(𝑡),

𝑒′(𝑡) = −𝑒(𝑡)𝑠(𝑡) − 𝑘2𝑒(𝑡) + 𝑐(𝑡) + 𝑘5𝑟(𝑡 − 𝜏4),

𝑠′(𝑡) = 𝑘𝑖𝑛 − 𝑒(𝑡)𝑠(𝑡) + 𝑘−1𝑐(𝑡) − 𝑛𝑘3𝑠
𝑛(𝑡)𝑎(𝑡) + 𝑛𝑘−3𝑝(𝑡),

𝑎′(𝑡) = −𝑘3𝑠
𝑛(𝑡)𝑎(𝑡) + 𝑘−3𝑝(𝑡),

𝑝′(𝑡) = 𝑘3𝑠
𝑛(𝑡)𝑎(𝑡) − (𝑘−3 + 𝑘4)𝑝(𝑡) + 𝑘4𝑝(𝑡 − 𝜏1),

𝑟′(𝑡) = −(𝑘5 + 𝑘6)𝑟(𝑡) + 𝑘4𝑝(𝑡 − 𝜏2) + 𝑘5𝑟(𝑡 − 𝜏3),

  (7) 

 
where 𝑘𝑖𝑛, 𝑘−1, 𝑘−3, 𝑘3, 𝑘4, 𝑘5 are real positive numbers. By using the "small-gain" theorem, the 
stability of the model (7) was analyzed, the existence of a positive equilibrium point and the 
boundedness of the solutions for model (7) were discussed. It is known that periodic oscillation 
is an important property for various gene models. This paper will study the periodic solution 
for a modified model (7) as the follows: 
 

{
  
 

  
 

𝑐′(𝑡) = 𝑒(𝑡)𝑠(𝑡) − 𝑘10𝑐(𝑡) − 𝑘11𝑐(𝑡 − 𝜏5),

𝑒′(𝑡) = −𝑒(𝑡)𝑠(𝑡) − 𝑘2𝑒(𝑡) + 𝑐(𝑡) + 𝑘5𝑟(𝑡 − 𝜏4),

𝑠′(𝑡) = 𝑘𝑖𝑛 − 𝑒(𝑡)𝑠(𝑡) + 𝑘−1𝑐(𝑡 − 𝜏5) − 𝑛𝑘3𝑠
𝑛(𝑡)𝑎(𝑡) + 𝑛𝑘−3𝑝(𝑡),

𝑎′(𝑡) = −𝑘3𝑠
𝑛(𝑡)𝑎(𝑡) + 𝑘−3𝑝(𝑡),

𝑝′(𝑡) = 𝑘3𝑠
𝑛(𝑡)𝑎(𝑡) − (𝑘−3 + 𝑘4)𝑝(𝑡) + 𝑘4𝑝(𝑡 − 𝜏1),

𝑟′(𝑡) = −(𝑘5 + 𝑘6)𝑟(𝑡) + 𝑘4𝑝(𝑡 − 𝜏2) + 𝑘5𝑟(𝑡 − 𝜏3),

  (8) 

 
where 𝑘10 , 𝑘11  are positive constants. The general bifurcation method can discuss the 
bifurcating periodic solution for model (8). However, there are five time delays in model (8). It 
is not easy to deal with model (8) by employing the bifurcation method if the five delays are 
different positive numbers, as in our simulation. In this paper, we will use the method of 
mathematical analysis to discuss the existence of periodic solutions for model (8). Assume that 
(𝑐∗, 𝑒∗, 𝑠∗, 𝑎∗, 𝑝∗, 𝑟∗)𝑇 is an equilibrium point of the system (8), then we have 
 

{
 
 

 
 

𝑒∗ 𝑠∗ − 𝑘10𝑐
∗ − 𝑘11𝑐

∗ = 0,
−𝑒∗ 𝑠∗ − 𝑘2𝑒

∗ + 𝑐∗ + 𝑘5 𝑟
∗ = 0,

𝑘𝑖𝑛 − 𝑒∗ 𝑠∗ + 𝑘−1 𝑐
∗ − 𝑛𝑘3(𝑠

∗)𝑛 𝑎∗ + 𝑛𝑘−3 𝑝
∗ = 0,

−𝑘3(𝑠
∗)𝑛 𝑎∗ + 𝑘−3 𝑝

∗ = 0,

𝑘3(𝑠
∗)𝑛 𝑎∗ − (𝑘−3 + 𝑘4)𝑝

∗ + 𝑘4𝑝
∗ = 0,

−(𝑘5 + 𝑘6)𝑟
∗ + 𝑘4𝑝

∗ + 𝑘5𝑟
∗ = 0.

   (9) 

 
Make the change of variables 𝑐(𝑡) → 𝑐(𝑡) −  𝑐∗, 𝑒(𝑡) → 𝑒(𝑡) −  𝑒∗, 𝑠(𝑡) → 𝑠(𝑡) −  𝑠∗, 𝑎(𝑡) →
𝑎(𝑡) − 𝑎∗, 𝑝(𝑡) → 𝑝(𝑡) − 𝑝∗, 𝑟(𝑡) → 𝑟(𝑡) − 𝑟∗, and the equilibrium point at system (8) will be 
shifted to the trivial equilibrium and we have the following system: 
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{
 
 
 
 
 

 
 
 
 
 

𝑐′(𝑡) = −𝑘10𝑐(𝑡) − 𝑘11𝑐(𝑡 − 𝜏5) + 𝑠∗𝑒(𝑡) + 𝑒∗𝑠(𝑡) + 𝑒(𝑡)𝑠(𝑡),

𝑒′(𝑡) = 𝑐(𝑡) − (𝑠∗ + 𝑘2)𝑒(𝑡) − 𝑒∗𝑠(𝑡) − 𝑒(𝑡)𝑠(𝑡) + 𝑘5𝑟(𝑡 − 𝜏4),

𝑠′(𝑡) = 𝑘−1𝑐(𝑡 − 𝜏5) − 𝑠∗𝑒(𝑡) − (𝑒∗ + 𝑛2𝑘3𝑎
∗(𝑠∗)𝑛−1 )𝑠(𝑡) − 𝑛𝑘3𝑎

∗(𝑠∗)𝑛 𝑎(𝑡))

+𝑛𝑘−3𝑝(𝑡) − 𝑛𝑘3𝑎(𝑡)[𝑠𝑛 + 𝑛𝑠∗𝑠𝑛−1 + ⋯+ 𝑛(𝑠∗)𝑛−1 𝑠(𝑡)] − 𝑒(𝑡)𝑠(𝑡),

𝑎′(𝑡) = −𝑛𝑘3𝑎
∗(𝑠∗)𝑛−1𝑠(𝑡)−𝑘3(𝑠

∗)𝑛𝑎(𝑡) + 𝑘−3𝑝(𝑡)

−𝑘3𝑎(𝑡)[𝑠𝑛 + 𝑛𝑠∗𝑠𝑛−1 + ⋯+ 𝑛(𝑠∗)𝑛−1 𝑠(𝑡)],

𝑝′(𝑡) = 𝑛𝑘3𝑎
∗(𝑠∗)𝑛−1𝑠(𝑡) + 𝑘3(𝑠

∗)𝑛𝑎(𝑡) − (𝑘−3 + 𝑘4)𝑝(𝑡) + 𝑘4𝑝(𝑡 − 𝜏1)

+𝑘3𝑎(𝑡)[𝑠𝑛 + 𝑛𝑠∗𝑠𝑛−1 + ⋯+ 𝑛(𝑠∗)𝑛−1 𝑠(𝑡)]

𝑟′(𝑡) = −(𝑘5 + 𝑘6)𝑟(𝑡) + 𝑘4𝑝(𝑡 − 𝜏2) + 𝑘5𝑟(𝑡 − 𝜏3).

 (10)  

 
The system (10) can be expressed in the following matrix form: 
 

𝑦′(𝑡) = 𝑀𝑦(𝑡) + 𝑁𝑦(𝑡 − 𝜏) + 𝑔(𝑦(𝑡)),    (11) 

 
where 𝑦(𝑡) = (𝑐(𝑡), 𝑒(𝑡), 𝑠(𝑡), 𝑎(𝑡), 𝑝(𝑡), 𝑟(𝑡))𝑇 , 𝑦(𝑡 − 𝜏) = (𝑐(𝑡 − 𝜏5), 0, 𝑝(𝑡 − 𝜏1), 𝑝(𝑡 −
𝜏2), 𝑟(𝑡 − 𝜏3),  𝑟(𝑡 − 𝜏4))

𝑇, 𝑀 and 𝑁 both are 6 × 6 matrices. 
 

𝑀 = (𝑚𝑖𝑗)6×6 =

(

 
 
 

𝑚11 𝑚12 𝑚13 0 0 0

𝑚21 𝑚22 𝑚23 0 0 0

0
0
0
0

𝑚32

0
0
0

𝑚33

𝑚43
𝑚53

0

𝑚34

𝑚44
𝑚54

0

𝑚35

𝑚45
𝑚55

0

0
0
0

𝑚66)

 
 
 

, 

 

𝑁 = (𝑛𝑖𝑗)6×6 =

(

 
 
 

−𝑘11 0 0 0 0 0
0 0 0 0 0 𝑘3

𝑘−1

0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
𝑘4

𝑘4

0
0
0
𝑘5)

 
 
 

, 

 
where 𝑚11 = −𝑘10 , 𝑚12 = 𝑠∗, 𝑚13 = 𝑒∗, 𝑚21 = 1,𝑚22 = −(𝑠∗ + 𝑘2),𝑚23 = −𝑒∗, 𝑚32 =
−𝑠∗, 𝑚33 = −(𝑒∗ + 𝑛2𝑘3𝑎

∗(𝑠∗)𝑛−1 ),𝑚34 = −𝑛𝑘3(𝑠
∗)𝑛, 𝑚35 =  𝑛𝑘−3,𝑚43 =

−𝑛𝑘3𝑎
∗(𝑠∗)𝑛−1, 𝑚44 = 𝑘3(𝑠

∗)𝑛,𝑚45 = −(𝑘−3 + 𝑘4),𝑚53 = 𝑛𝑘3𝑎
∗(𝑠∗)𝑛−1, 𝑚54 =

𝑘3(𝑠
∗)𝑛, 𝑚55 = −(𝑘−3 + 𝑘4),𝑚66 = −(𝑘5 + 𝑘6). The nonlinear term 𝑔(𝑦(𝑡)) = 

(𝑒(𝑡)𝑠(𝑡), −𝑒(𝑡)𝑠(𝑡),⋯ , 𝑘3𝑎(𝑡)[𝑠𝑛 + 𝑛𝑠∗𝑠𝑛−1 + ⋯+ 𝑛(𝑠∗)𝑛−1 𝑠(𝑡)], 0)𝑇 . The linearized 
equation of (11) is as follows: 

 
𝑦′(𝑡) = 𝑀𝑦(𝑡) + 𝑁𝑦(𝑡 − 𝜏).      (12) 

 
We first have the following two lemmas: 
 
Lemma 1 If matrix 𝑀 + 𝑁 is a nonsingular matrix for selected parameters, then there exists a 
unique equilibrium point for system (8). 
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Proof If system (12) has a unique trivial equilibrium point, then system (10) or (11) has a 
unique trivial equilibrium point, since 𝑔(𝟎) = 𝟎, this suggests that system (9) has a unique 
trivial equilibrium point, implying that system (8) has a unique equilibrium point. Now, assume 
that 𝑦∗ = (𝑐∗, 𝑒∗, 𝑠∗, 𝑎∗, 𝑝∗, 𝑟∗)𝑇 is an equilibrium point of the system (12), then we have the 
following algebraic equations: 
 

(𝑀 + 𝑁)𝑦∗ = 𝟎.      (13) 
 
According to the basic linear algebraic knowledge, system (13) has a unique trivial solution 
since 𝑀 + 𝑁 is a nonsingular matrix, implying that there is a unique equilibrium point in the 
system (8). 
 
Lemma 2 All solutions of system (8) are bounded. 
 
Proof Since the time delay does not affect the boundedness of the solutions, the proof is similar 
to [20]. 
 
In the following, we provide two theorems to guarantee the existence of periodic solutions for 
model (8). 
 

THE EXISTENCE OF PERIODIC OSCILLATORY SOLUTIONS 
Theorem 1 Assume that the system (8) has a unique equilibrium point. Let 𝜌1, 𝜌2, ⋯ , 𝜌6, 𝛿1, 
𝛿2, ⋯ , 𝛿6  be characteristic values of matrix 𝑀 and 𝑁, respectively. If there is some 𝜌𝑖 , say 𝜌1 
such that 𝑅𝑒(𝜌1) > 0 , or there exists some 𝛿𝑖 , say 𝛿1  such that 𝑅𝑒(𝛿1) >  𝑅𝑒(𝜌1), then the 
unique equilibrium point of system (8) is unstable, implying that there exists a periodic 
oscillatory solution in the system (8). 
 
Proof The trivial equilibrium of the system (12) corresponds to the equilibrium point 
𝑦∗ = (𝑐∗, 𝑒∗, 𝑠∗, 𝑎∗, 𝑝∗, 𝑟∗)𝑇  of the system (8). Therefore, if the trivial equilibrium is unstable, 
then the equilibrium point (𝑐∗, 𝑒∗, 𝑠∗, 𝑎∗, 𝑝∗, 𝑟∗)𝑇 is still unstable. To discuss the instability of the 
equilibrium point of the system (8), we only need to deal with the instability of the trivial 
solution of the system (12). Since 𝜌1, 𝜌2, ⋯ , 𝜌6, 𝛿1, 𝛿2, ⋯ , 𝛿6 are characteristic values of matrix 
𝑀 and 𝑁, respectively, we have at least one 𝛿𝑖 = 0 from the matrix 𝑁. Then the characteristic 
equations corresponding to the system (12) are the following:  
 

∏ (𝜆 − 𝜌𝑖 − 𝛿𝑖𝑒
−𝜆𝜏𝑖) = 05

𝑖=1       (14) 

 
Or 
 

𝜆 − 𝜌6 = 0       (15) 
 

Thus, we are led to investigate the nature of the roots of the equation (15) and the following 
equation: 
 

𝜆 − 𝜌1 − 𝛿1𝑒
−𝜆𝜏1 = 0     (16) 
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If 𝑅𝑒(𝜌6) > 0, then equation (15) has a positive real part eigenvalue. If equation (16) holds, we 
show that there exists a positive real part eigenvalue of equation (16) under the assumptions 
of Theorem 1. Indeed, if 𝑅𝑒(𝛿1) >  𝑅𝑒(𝜌1),  setting 𝜆 = 𝜆1 + 𝑖𝜆2,  𝜌1 = 𝜌11 + 𝑖𝜌12 , 𝛿1 = 𝛿11 +
𝑖𝛿12, 𝜆1 = 𝑅𝑒(𝜆), 𝜆2 = 𝐼𝑚(𝜆), 𝜌11 = 𝑅𝑒(𝜌1), 𝜌12 = 𝐼𝑚(𝜌1), 𝛿11 = 𝑅𝑒(𝛿1), 𝛿12 = 𝐼𝑚(𝛿1). 
Separating the real part and imaginary part of the equation (16), we get 
 

𝜆1 = 𝜌11 + 𝛿11𝑒
−𝜆1𝜏1 cos(𝜆2𝜏1) − 𝛿12𝑒

−𝜆1𝜏1 sin(𝜆2𝜏1).   (17) 
 
We show that equation (17) has a positive root. Let 
 

𝜙(𝜆1) = 𝜆1 − 𝜌11 − 𝛿11𝑒
−𝜆1𝜏1 cos(𝜆2𝜏1) + 𝛿12𝑒

−𝜆1𝜏1 sin(𝜆2𝜏1).  (18) 
 
Obviously, 𝜙(𝜆1)  is a continuous function of 𝜆1. Noting that 𝛿11 >  𝜌11,  then 𝜙(0) = −𝜌11 −
𝛿11 cos(𝜆2𝜏1) + 𝛿12 sin(𝜆2𝜏1) ≤ −𝜌11 − 𝛿11 < 0  as 𝜆2𝜏1~2𝑛𝜋, where 𝑛  is an integer number. 
Since lim

𝜆1→∞
𝑒−𝜆1𝜏1 = 0, so there exists a suitably large 𝜆1, say 𝜆1

∗  (> 0) such that  

 

𝜙(𝜆1
∗  ) = 𝜆1

∗  − 𝜌11 − 𝛿11𝑒
−𝜆1

∗  𝜏1 cos(𝜆2𝜏1) + 𝛿12𝑒
−𝜆1

∗  𝜏1 sin(𝜆2𝜏1) > 0.  (19) 
 
By the Intermediate Value Theorem, there exists a 𝜆1, say 𝜆10 ∈ (0, 𝜆1

∗  ) such that 𝜙(𝜆10) = 0, 
implying that there is a positive real part characteristic value of equation (17). This means that 
the trivial solution of the system (12) is unstable, implying that the unique equilibrium point 
 (𝑐∗, 𝑒∗, 𝑠∗, 𝑎∗, 𝑝∗, 𝑟∗)𝑇 of the system (8) is unstable. This instability of the unique equilibrium 
point, together with the boundedness of the solutions, will force system (8) to generate an 
oscillatory solution [21, 22]. The proof is completed. 
 

Now setting 𝜇(𝑀) = max
1≤𝑗≤6

(𝑚𝑗𝑗 + ∑ |𝑚𝑖𝑗|
6
𝑖=1,𝑖≠𝑗 ),  𝜎 = max{𝑘11 + 𝑘−1, 2𝑘4,, 𝑘3 + 𝑘5}  [23]. Then 

we have 
 
Theorem 2 Assume that the conditions of Lemma 1 and Lemma 2 hold. If the following 
inequality holds  
 

𝜇(𝑀) + 𝜎 > 0.       (20) 
 
Then the unique trivial equilibrium point in system (12) is unstable, implying that the system 
(8) generates a periodic oscillatory solution. 
 
Proof Let 𝜏∗ = min{𝜏1, 𝜏2, ⋯ , 𝜏5}. To prove the instability of the trivial solution in system (12), 
let 𝑤(𝑡) = |𝑐(𝑡)| + |𝑒(𝑡)| + |𝑠(𝑡)| + |𝑎(𝑡)| + |𝑝(𝑡)| + |𝑟(𝑡)|. So 𝑤(𝑡) > 0 and we have: 
 

𝑤′(𝑡) ≤ 𝜇(𝑀)𝑤(𝑡) + 𝜎𝑤(𝑡 − 𝜏∗).     (21) 
 

Specifically, consider the equation 
 

𝑧′(𝑡) = 𝜇(𝑀)𝑧(𝑡) + 𝜎𝑧(𝑡 − 𝜏∗).     (22) 
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Obviously, 𝑤(𝑡) ≤ 𝑧(𝑡) . If the trivial solution of equation (22) is unstable, then the trivial 
solution of (21) is still unstable. The characteristic equation associated with equation (22) is 
given by 
 

𝜆 = 𝜇(𝑀) +  𝜎𝑒−𝜆𝜏∗        (23) 
 

We claim that there exists a positive root of (23) under the condition (20). Let 𝜑(𝜆) = 𝜆 −
𝜇(𝑀) −  𝜎𝑒−𝜆𝜏∗ . Thus, 𝜑(𝜆) is a continuous function of 𝜆. When 𝜆 = 0, we have 𝜑(0) = −𝜇(𝑀) −
 𝜎 = −(𝜇(𝑀) +  𝜎) < 0, since 𝜇(𝑀) +  𝜎 > 0. On the other hand, there exists a suitably large 𝜆, 
say 𝜆0 > 0  such that 𝜑(𝜆0) = 𝜆0 − 𝜇(𝑀) −  𝜎𝑒−𝜆0𝜏∗ > 0,  since 𝑒−𝜆0𝜏∗ → 0  as 𝜆0 → +∞. Again, 
based on the Intermediate Value Theorem, there exists a 𝜆, say 𝜆∗ ∈ (0, 𝜆0 ) such that 𝜑(𝜆∗) =
𝜆∗ − 𝜇(𝑀) −  𝜎𝑒−𝜆∗𝜏∗ = 0. In other words, 𝜆∗  is a positive characteristic root of the equation 
(23). So the trivial solution of the equation (22) is unstable. According to the property of the 
delayed differential equation, when 𝜏𝑖 ≥ 𝜏∗ (𝑖 = 1, 2,⋯ , 5), the trivial solution of the equation 
(22) is still unstable, implying that the unique equilibrium point  (𝑐∗, 𝑒∗, 𝑠∗, 𝑎∗, 𝑝∗, 𝑟∗)𝑇of the 
system (8) is unstable. Similar to Theorem 1, there exists a periodic solution of the system (8). 
The proof is completed.  
 

SIMULATION RESULT 
This simulation is based on the system (8). Firstly, the parameters are selected as follows: 𝑘𝑖𝑛 =
5.5, 𝑘10 = 0.16, 𝑘11 = 0.658, 𝑘−1 = 0.24, 𝑘−3 = 0.15, 𝑛 = 3, 𝑘2 = 0.76, 𝑘3 = 0.068, 𝑘4 =
0.32, 𝑘5 = 0.18, 𝑘6 = 0.44,  then the unique positive equilibrium point is 
 (𝑐∗, 𝑒∗, 𝑠∗, 𝑎∗, 𝑝∗, 𝑟∗)𝑇 =  (10.8823, 3.8123, 5.9598, 0.2236, 1.5014, 1.9598)𝑇 . Thus, 𝑚11 =
−0.16,𝑚12 = 5.9598,𝑚13 = 3.8123,𝑚21 =1,  𝑚22 = −6.7198,𝑚23 = −3.8123,𝑚32 =
−5.9598,𝑚33 = −5.8022,𝑚34 = −11.3118,𝑚35 = 0.45,𝑚43 = −0.6633,𝑚44 =
−3.7706,𝑚45 = −0.47,𝑚53 = −5.8022,𝑚54 = 3.7706,𝑚55 = −0.47,𝑚66 = −0.62.  Then the 
eigenvalues of matrix  𝑀  and 𝑁  are −11.9368,−4.4368,−0.7653,−0.62, 0.1071 ± 1.7505 𝑖 , 
and 0.32,−0.16, 0, 0, 0, 0, respectively. We see that matrix 𝑀 has a positive real part eigenvalue 
0.1071 + 1.7505 𝑖 . Also matrix 𝑁  has a positive eigenvalue 0.32 > 0.1071. The conditions of 
Theorem 1 are satisfied. When time delays are selected as 1. 71, 1.72, 1.73, 1.74, 1.75, there is a 
periodic solution (see Fig.1). Then we change the parameter 𝑘𝑖𝑛 as 4 and 2.5, respectively, the 
other parameters are the same as in Fig.1, the oscillatory behavior is maintained (see Fig.2 and 
Fig.3). Then we select another set of parameters as 𝑘𝑖𝑛 = 3.5, 𝑘10 = 0.16, 𝑘11 = 0.45, 𝑘−1 =
0.032, 𝑘−3 = 1.65, 𝑛 = 3, 𝑘2 = 0.86, 𝑘3 = 0.68, 𝑘4 = 0.65, 𝑘5 = 0.28, 𝑘6 = 0.72, the equilibrium 
point is  (𝑐∗, 𝑒∗, 𝑠∗, 𝑎∗, 𝑝∗, 𝑟∗)𝑇 =  (6.7601, 3.6639, 2.1642, 1.1384, 0.9442, 1.0164)𝑇 . We get 
𝑚11 = −0.16,𝑚12 = 2.1642,𝑚13 = 3.6639,𝑚21 =1, 𝑚22 = −3.0242,𝑚23 = −3.6639,𝑚32 =
−2.1642,𝑚33 = −36.2414,𝑚34 = −20.6271,𝑚35 = 4.95,𝑚43 = −10.8592,𝑚44 =
−6.8757,𝑚45 = −2.3,𝑚53 = 10.8592,𝑚54 = 6.8757,𝑚55 = −2.3,𝑚66 = −1. Then 𝜇(𝑀) +  𝜎 
= 21.9271 > 0. The conditions of Theorem 2 are satisfied. When time delays are selected as 2.15, 
2.20, 2.25, 2.30, 2.35, there exists a periodic solution (see Fig.4). Then the value of 𝑘𝑖𝑛  is 
changed from 𝑘𝑖𝑛 = 3.5 to 𝑘𝑖𝑛 = 3, the other parameters are the same as in Fig.4, we see that 
the oscillatory behavior is kept (see Fig.5). In Fig.6, the parameters 𝑘𝑖𝑛 = 3, 𝑛 = 5, 𝑘−1 = 0.045, 
the other parameters are the same as in Fig.4. Then we select another set of parameters as 𝑘𝑖𝑛 =
2, 𝑘10 = 0.16, 𝑘11 = 0.434, 𝑘−1 = 0.065, 𝑘−3 = 1.25, 𝑛 = 2, 𝑘2 = 0.85, 𝑘3 = 0.78, 𝑘4 =
0.68, 𝑘5 = 0.28, 𝑘6 = 0.82, the equilibrium point is  (𝑐∗, 𝑒∗, 𝑠∗, 𝑎∗, 𝑝∗, 𝑟∗)𝑇 =
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 (4.0434, 2.3256, 1.4764, 1.1164, 0.9538, 0.7949)𝑇 . Thus, 𝑚11 = −0.16,𝑚12 = 1.4764,𝑚13 =
2.3256,𝑚21 =1, 𝑚22 = −2.3264,𝑚23 = −2.3256,𝑚32 = −1.4764,𝑚33 = −7.4681,𝑚34 =
−3.4104,𝑚35 = 2.5,𝑚43 = −2.5713,𝑚44 = −1.7102,  𝑚45 = −1.93,𝑚53 = 2.5713,𝑚54 =
1.7102,𝑚55 = −1.93,𝑚66 = −1.10.  
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We see Then 𝜇(𝑀) + 𝜎 = 4.7701 > 0. The conditions of Theorem 2 are satisfied. When time 
delays are selected as 2.45, 2.50, 2.55, 2.60, 2.65, oscillation of the solutions appeared (see 
Fig.7). In Fig.8, time delays are selected as 2.15, 2.20, 2.25, 2.30, 2.35, we only change the values 
of 𝑘−1 from 0.065 to 0.018, 𝑘11 from 0.434 to 0.471, the other parameters are the same as in 
Fig.7, oscillation of the solutions still occurred (see Fig.8). 
 

CONCLUSION 
In this paper, we have discussed the oscillatory behavior of the solutions for a modified gene 
expression model with delays. Based on the method of mathematical analysis, we provided two 
theorems that those are only sufficient conditions to guarantee the oscillation of the solutions. 
Some simulations are provided to indicate the effectiveness of the criteria.  
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