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ABSTRACT 
This study explores the relationship between Logistic and Poisson regression 
models, leveraging on the mathematical connection between the binomial and 
Poisson distributions, particularly when the probability of success (p) is small and 
the number of trials (n) is large. The research provides an algebraic derivation of 
the Logit and Log odds functions, grounded in probability theory, to highlight the 
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theoretical parallels between the two models. Using the "Affairs" dataset in R 
Studio, both models were fitted to predict binary outcomes. A comparison of their 
performance, based on the Akaike Information Criterion (AIC), revealed that the 
Logistic regression model (AIC = 625.36) provided a superior fit to the data 
compared to the Poisson model (AIC = 684.71). Despite this difference in overall fit 
and divergent parameter estimates, the predicted probabilities from both models 
exhibited a strong correlation (95.2%), demonstrating their close alignment in 
practical applications. The findings suggest that while both models can be used for 
binary outcomes, Logistic regression is statistically preferred; however, their 
interchangeability under specific conditions offers valuable flexibility for 
practitioners in statistical modeling. This study contributes to pronounced 
understanding of Generalized Linear Models (GLMs) by quantifying the practical 
and performance trade-offs between these approaches. 

 
Keywords: Logistic Regression, Poisson Regression, Generalized Linear Models, 
Regression Analysis, Log Odds. 

 
INTRODUCTION 

Regression analysis is a statistical technique used to describe relationships among variables. 
The purpose of regression is to try to find the best line or equation that expresses the 
relationship among variables. Regression models play a critical role in statistical analysis, 
particularly in modeling count data. Among the widely used models, Poisson regression and 
negative binomial regression are frequently employed to analyze count outcomes and 
overdispersion issues. 
 
The usual linear regression model assumes normal distribution of study variables, whereas 
nonlinear Logistic and Poisson regressions are based on Bernoulli and Poisson distributions 
respectively of study variables. Similar to logistic and Poisson regressions, the study variable 
can follow different probability distributions like exponential, gamma, inverse normal etc, one 
such family of distribution is described by exponential family of distributions. It assumes that 
the distribution of study variable is a member of exponential family of distribution. Generalized 
Linear Models (GLM) unifies various distributions of study variable (Nelder and Wedderbum, 
1972). This is usually accomplished by developing a linear model having an appropriate 
function of expected value of study variable. 
 
All Generalized Linear Models (GLM) have three components: The random component 
identifies the response variable Y and assumes a probability distribution for it. The systematic 
component specifies the explanatory variables for the model. The link function specifies a 
function of the expected value (mean) of Y, which the GLM relates to the explanatory variables 
through a prediction equation having linear form. 
 
In some applications, the observations on Y are binary, such as “success” or “failure”. More 
generally, each Yi might be the number of successes out of a certain fixed number of trials. In 
this case, we assume a binomial distribution for Y. In some other applications, each observation 
is a count. We might then assume a distribution for Y that applies to all the nonnegative integers, 
such as the Poisson or negative binomial. If each observation is continuous, such as a subject’s 
weight in a dietary study, we might assume a normal distribution for Y. 
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The systematic component of a GLM specifies the explanatory variables. These enter linearly as 
predictors on the right-hand side of the model equation. That is, the systematic component 
specifies the variables that are the {xj} in the formula. 
 

𝑦𝑖 = 𝛼 + 𝛽1𝑥1 +  … + 𝛽𝑘𝑥𝑘+Ԑ𝑖     (1) 
 
Denote the expected value of Y as the mean of its probability distribution by 𝜇 = 𝐸[𝑌]. The third 
component of a GLM, the link function, specifies a function g(·) that relates μ to the linear 
predictor as; 
 

g(μ) = 𝛼 + 𝛽1𝑥1 +  … + 𝛽𝑘𝑥𝑘      (2) 
 
The function g(·), the link function, connects the random and systematic components. The 
simplest link function is g(μ) = μ. This models the mean directly and it is called the identity link.  
Other link functions permit μ to be non-linearly related to the predictors. For instance, the link 
function g(μ) = log(μ) models the log of the mean. The log function applies to positive numbers, 
so the log link function is appropriate when μ cannot be negative, such as with count data. A 
GLM that uses the log link is called a loglinear model. It has form 
 

log( 𝜇) =  𝛼 + 𝛽1𝑥1 +  … + 𝛽𝑘𝑥𝑘     (3) 
 

The link function g(μ) = log(
μ

1−μ
) models the log of an odds. It is appropriate when μ is between 

0 and 1, such as a probability, which is called the logit link. A GLM that uses the logit link is 
called a Logistic regression model. Each potential probability distribution for Y has one special 
function of the mean that is called its natural parameter. For the normal distribution, it is the 
mean itself. For the Binomial, the natural parameter is the logit of the success probability. The 
link function that uses the natural parameter as g(μ) in the GLM is called the canonical link. 
Although other link functions are possible, in practice the canonical links are most common. 
The Poisson distribution has a positive mean. GLMs for the Poisson mean can use the identity 
link, but it is more common to model the log of the mean. A Poisson loglinear model is a GLM 
that assumes a Poisson distribution for Y and uses the log link function. For a single explanatory 
variable x, the Poisson loglinear model has form 
 

log (𝜇) = 𝛼 +  𝛽𝑥       (4) 
 
The mean satisfies the exponential relationship 
 

𝜇 = 𝑒𝛼+𝛽𝑥 = 𝑒𝛼𝑒𝛽𝑥      (5) 
 
This study aims at demonstrating the relationship between Poisson and Logistic regression 
models with the objective of comparing the parameter estimates of the two regression models. 
 

LITERATURE REVIEW 
Generalized Linear Models (GLMs) represent a significant advancement in statistical modeling, 
first introduced by Nelder and Wedderburn (1972). This unified framework encompasses 
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various regression models, including logistic, Poisson, and linear regression, through a common 
estimation approach. The development of GLMs offered substantial computational advantages 
in early statistical computing (1972-1990), particularly in memory efficiency compared to 
traditional maximum likelihood methods. The implementation of GLMs was further facilitated 
by the creation of GLIM (Generalized Linear Interactive Modeling) software in 1974, which 
became a foundational tool for statistical analysis (Nelder, 1974). Today, GLM functionality is 
integrated into all major statistical software packages, including R, SAS, and SPSS.  
 
The logistic function has its origins in population growth studies by Verhulst (1838-1845) and 
was independently rediscovered by Pearl and Reed (1920) in their analysis of U.S. population 
dynamics. The model's characteristic S-shaped curve, resembling a cumulative distribution 
function, has made it particularly valuable for binary outcome prediction. Modern applications 
of logistic regression are widespread, with Ijomah et al. (2018) demonstrating its superiority 
over Poisson regression for binary count data through rigorous model comparison using AIC 
and BIC criteria. 
 
For count data analysis, researchers typically employ Poisson regression or its extensions. The 
standard Poisson model assumes equality of mean and variance, an assumption often violated 
in practice (overdispersion). Consul and Famoye (1992) addressed this limitation through their 
generalized Poisson regression model, while Ismail and Jemain (2007) demonstrated the 
effectiveness of negative binomial regression in handling overdispersed data. Recent 
applications have extended these models to time series count data (Omer & Hussian, 2023) and 
bivariate count outcomes (Famoye, 2010). 
 
Consul and Famoye (1992) introduced the generalized Poisson regression model, highlighting 
key distinctions in parameter estimations when addressing count data. Their study emphasizes 
how Poisson regression may be applied in certain scenarios while negative binomial regression 
serves as a suitable alternative under overdispersion. 
 
Ismail and Jemain (2007) further explored handling overdispersion by comparing negative 
binomial and generalized Poisson regression models. Their findings indicate that negative 
binomial regression offers improved parameter estimation in cases where the variance exceeds 
the mean, making it preferable for count data with significant variability. 
 
Omer and Hussian (2023) analyzed the application of generalized Poisson and negative 
binomial regression models in count time series data. Their study compared the effectiveness 
of these models in accurately capturing patterns in dependent count variables. 
 
Land et al. (1996) conducted an empirical comparison of Poisson, negative binomial, and 
semiparametric mixed Poisson regression models using criminal career data. Their findings 
underline the differences in specifications and statistical properties between these models, 
providing practical guidance for researchers selecting regression approaches. 
 
Takahashi and Kurosawa (2016) introduced a regression correlation coefficient for Poisson 
regression models, contributing to a better understanding of relationships between response 
variables in count data regression analyses. 
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Gagnon et al. (2008) discussed the application of Poisson regression in trauma research, 
emphasizing how Poisson models and logistic regression help quantify count and frequency 
outcomes in clinical studies. 
 
Sarvi et al. (2014) examined the relationship between socio-economic factors and tuberculosis 
using negative binomial and Poisson regression models. Their study demonstrated that 
negative binomial regression could effectively model TB incidence in populations with variable 
risk factors. 
 
Zou and Donner (2013) extended modified Poisson regression models to studies involving 
correlated binary data. Their research identified improvements in estimating relative risk 
compared to traditional binomial regression models. 
 
Famoye (2010) proposed the bivariate negative binomial regression model, demonstrating a 
structured approach to modeling relationships between count variables with negative binomial 
distributions. 
 
Ardiles et al. (2018) utilized negative binomial regression to analyze the relationship between 
hospitalization and air pollution. Their findings reaffirmed the suitability of negative binomial 
regression in modeling environmental health data. 
 

MATERIALS AND METHODS 
This section illustrates the relationship between the Logistic and Poisson regression. It also 
illustrates the algebraic derivation of the log odds from logit odds and compares their 
parameter estimates and probability predictions. 
 
Logistic Regression Model 
In the linear regression model Y = Xβ + ε, there are two types of variables, namely: explanatory 
variables X1, X2 ,.., Xk  and study variable Y.  When the study variable is qualitative variable, its 
values can be expressed using an indicator variable taking only two possible values 0 and 1. In 
such a case, the logistic regression is used. For example, y can denotes the values like success 
or failure, yes or no, like or dislike etc. 
 
Consider the model; 
 

𝑦𝑖 =  𝛽0 +  𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 … + 𝛽𝑘𝑥𝑖𝑘 + Ɛ𝑖  ; i=1,2, …, k           (6) 
 
The study variable takes two values as yi = 0 or 1.  Assume that y follows a Bernoulli distribution 
with parameter π, so its probability distribution is 
 

𝑦𝑖 =  {
1 𝑤𝑖𝑡ℎ 𝑝(𝑦𝑖 = 1)  =  πi

0 𝑤𝑖𝑡ℎ 𝑝(𝑦𝑖 = 0) = 1 − πi 
 

 
Assuming E( Ԑ𝑖) = 0 
 

𝐸[𝑦𝑖] = 1. π𝑖 +  0. (1 − π𝑖) =  π𝑖     (7) 
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From the model 
 

𝑦𝑖 = 𝑥𝑖𝛽 +  Ԑ𝑖        (8) 
 

Hence  
 

E[𝑦𝑖] = 𝑥𝑖𝛽 + Ԑ𝑖 =  π𝑖      (9) 
 
This implies that E[𝑦𝑖] = 𝑝(𝑦𝑖 = 1). 
 
Thus, the response function E[𝑦𝑖] is simply the probability that 𝑦𝑖 = 1. (Probability of success or 
pass) 
 
From the model above  
 

Ԑ𝑖 =  𝑦𝑖 − 𝑥𝑖𝛽              (10) 
 
When 𝑦1 = 1,   Ɛ𝑖 = 1 − 𝑥𝑖𝛽 and 
When 𝑦𝑖 = 0, Ɛ𝑖 = −𝑥𝑖𝛽 
 
Recall that in the usual linear regression model where y is not an indicator variable, it assumes 
that Ԑ𝑖 follows a normal distribution. When y is an indicator variable, it implies that Ԑ𝑖  cannot 
be assumed to follow a normal distribution. Moreover, since E[𝑦𝑖] =  π𝑖and π𝑖  is a probability, 
it implies that 0 ≤ π𝑖  ≤1 and thus there is a constraint on E[𝑦𝑖]. This further puts a constraint on 
the choice of response function. Hence, a model in which the predicted value is outside the 
interval [0,1] cannot be fitted. 
 
A natural choice for E[y] would be the cumulative distribution function of a random variable. 
In particular, the logistic distribution, whose cumulative distribution function is the simplified 
logistic function yields a good link and is given by; 
 

𝑔(𝑥) = 𝑙𝑜𝑔 (
𝜋

1−𝜋
)      (11) 

 

But π = 
𝑒β0+β1x

1+𝑒β0+β1x 

 
Hence, 
 

𝑔(𝑥) = log (𝑒β0+β1x)      (12) 
 
This implies that 
 

g(x) = β0+β1x       (13) 
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The importance of this transformation is that g(x) has many of the desirable properties of linear 
regression model.  
 
Poisson Regression 
We consider the situations where the study variable is a count variable that represents the 
count of some relatively rare event. For example, the study variable can be a count of patients 
with some rare type of disease with one or more explanatory variables like age of variables, 
hemoglobin level, blood sugar etc.  In another example, the study variable can be the number 
of defects in the car engine of a reputed car manufacturer, which again depends on one or more 
explanatory variables. 
 
Assumption of normal or Bernoulli distribution for study variable will not be appropriate in 
such situations.  The Poisson distribution describes such situations more appropriately. So we 
assume that the study variable yi is a count variable and follows a Poisson distribution with 
parameter λ> 0 as 
 

p(y) = 
𝑒−𝑦𝜆𝑦

𝑦!
, y=0,1,2,..     (14) 

 
Note that the mean and variance of Poisson random variables are the same and related as  
 

E[y] = λ, var(y) = λ. 
 
Based on a sample y1,y2,…,yn, we can write 𝐸[𝑦𝑖] = 𝜆 and thus express the Poisson model as  
 

𝑦𝑖 = 𝐸[𝑦𝑖] + Ɛ𝑖      (15) 
 
Where Ɛ𝑖's are disturbance terms. 
 
We can define a link function g that relates the mean of study variable to linear predictor as  

 
g(𝜆𝑖) =  𝜂𝑖       (16) 

 
g(𝜆𝑖) =  𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑘𝑥𝑘    (17) 

 
The log-link function is  
 

𝑔(𝜆𝑖) = ln 𝜆𝑖 = 𝑥𝑖
𝐼𝛽      (18) 

 

This implies that 𝜆𝑖 = 𝑔−1𝑥𝑖
𝐼𝛽 = 𝑒𝑥𝑖

𝐼𝛽 . Note that in identity link function, the predicted values 
of y can be negative but in log-link function, the predicted values of y are nonnegative. 
 
Derivation of the Log Odds of an Event from the Logit Function 
From the properties of probability, it can be shown that the logit odds of an event equal the log 
odds of an event. 
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𝐿𝑜𝑔 (
π

1−π
) = 𝐿𝑜𝑔 (

𝐴

𝐵
)  (19) 

 
where π is the probability of an event, A is the number of events (success), B is the number of 
non-events (failure).  
 
Assume that the probability of an event is defined as: 
 

π =  
𝐴

𝐴+𝐵
   (20) 

 
Taking log of both sides 

 

                     𝐿𝑜𝑔(π) =  𝐿𝑜𝑔 (
𝐴

𝐴+𝐵
)    (21) 

 
Subtracting Log(1- π) from both sides 
 

             𝐿𝑜𝑔(π) −  𝐿𝑜𝑔(1 − π) =  𝐿𝑜𝑔 (
𝐴

𝐴+𝐵
) −  𝐿𝑜𝑔(1 − π)  (22) 

 
Substituting the definition of π into the right-hand side of the equation and simplifying. 
 

𝐿𝑜𝑔 (
π

1 − π
) = 𝐿𝑜𝑔 (

𝐴

𝐴 + 𝐵
) −  𝐿𝑜𝑔 (1 −

𝐴

𝐴 + 𝐵
) 

𝐿𝑜𝑔 (
π

1 − π
) =  𝐿𝑜𝑔 (

𝐴

𝐴 + 𝐵
) − 𝐿𝑜𝑔 (

𝐵

𝐴 + 𝐵
) 

𝐿𝑜𝑔 (
π

1 − π
) =  𝐿𝑜𝑔(𝐴) − 𝐿𝑜𝑔(𝐴 + 𝐵) −  𝐿𝑜𝑔(𝐵) +  𝐿𝑜𝑔(𝐴 + 𝐵) 

                           𝐿𝑜𝑔 (
π

1−π
) = 𝐿𝑜𝑔 (

𝐴

𝐵
)                                                      (23) 

 
In logistic regression, we believe that the Log odds is a linear combination of the regressors and 
their corresponding parameters. 
 

log (
𝐴

𝐵
) =  𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑘𝑥𝑘  (24) 

 
log(𝐴) − log(𝐵) = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑘𝑥𝑘  (25) 

 
log(𝐴) = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑘𝑥𝑘 + log (𝐵)  (26) 

 
Log(B) is the offset term which is exactly one. 
 
Data Presentation 
Logistic and Poisson regression models are compared in this study using a data set called 
"Affairs" in R Studio. The data set Affairs is a cross section infidelity data survey conducted by 
Psychology Today in 1969. The data frame contains 601 observations on 9 variables as follows: 
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Affairs (numeric): How often engaged in extra-marital sexual intercourse during the past year?  
 
Gender: factor indicating gender.  
 
Age (numeric): variable coding age in years: 17.5 = under 20, 22 = 20–24, 27 = 25–29, 32 = 30–
34, 37 = 35–39, 42 = 40–44, 47 = 45–49, 52 = 50–54, 57 = 55 or over.  
 
Years married (numeric): variable coding number of years married: 0.125 = 3 months or less, 
0.417 = 4–6 months, 0.75 = 6 months–1 year, 1.5 = 1–2 years, 4 = 3–5 years, 7 = 6–8 years, 10 = 
9–11 years, 15 = 12 or more years.  
 
Children (factor): Are there children in the marriage?  
 
Religiousness (numeric): variable coding religiousness: 1 = anti, 2 = not at all, 3 = slightly, 4 = 
somewhat, 5 = very.  
 
Education (numeric): variable coding level of education: 9 = grade school, 12 = high school 
graduate, 14 = some college, 16 = college graduate, 17 = some graduate work, 18 = master’s 
degree, 20 = Ph.D., M.D., or other advanced degree.  
 
Occupation (numeric): variable coding occupation according to Hollingshead classification 
(reverse numbering).  
 
Rating (numeric): variable coding self rating of marriage: 1 = very unhappy, 2 = somewhat 
unhappy, 3 = average, 4 = happier than average, 5 = very happy. 
The analysis was conducted using R Studio. 
 
Fitting the Logistic Regression 
We fit a logistic regression to predict "yes" to affairs against the following variables; age, years 
married, religiousness, occupation and rating. 
 
First, we load the package in R called AER and recall the data "Affairs". AER is the package in R 
that fits generalized linear models. 
 
> data(Affairs) 
> summary(Affairs) 
  affairs         gender         age                                years married    children  
 Min.   : 0.000          female:        315 Min. :17.50        Min.   : 0.125       no :171   
 1st Qu.: 0.000        male:            286 1st Qu.:27.00    1st Qu.: 4.000      yes:430   
 Median : 0.000                             Median :32.00           Median : 7.000             
 Mean   : 1.456                               Mean :32.49               Mean   : 8.178             
 3rd Qu.: 0.000                              3rd Qu.:37.00             3rd Qu.:15.000             
 Max.   :12.000                               Max.   :57.00               Max.   :15.000             
  
religiousness     education          occupation        rating      
Min.   :1.000       Min.   : 9.00       Min.   :1.000      Min.   :1.000   
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1st Qu.:2.000     1st Qu.:14.00    1st Qu.:3.000    1st Qu.:3.000   
Median :3.000   Median :16.00  Median :5.000  Median :4.000   
Mean   :3.116     Mean   :16.17    Mean   :4.195    Mean   :3.932   
3rd Qu.:4.000   3rd Qu.:18.00   3rd Qu.:6.000   3rd Qu.:5.000   
Max.   :5.000      Max.   :20.00     Max.   :7.000     Max.   :5.000 
Table 1 
 
>logit.model=glm(I(affairs>0)~age+yearsmarried+religiousness+rating,data=Affairs,family=b
inomial(link="logit"))  
> summary(logit.model) 
 
Call: 
glm(formula = I(affairs > 0) ~ age + yearsmarried + religiousness +  
rating, family = binomial(link = "logit"), data = Affairs) 
 
Deviance Residuals:  
    Min       1Q           Median        3Q        Max   
-1.6278  -0.7550  -0.5701  -0.2624   2.3998   
 
Coefficients: 
  Estimate          Std. Error   z value  Pr(>|z|)     
(Intercept)       1.93083           0.61032     3.164     0.001558 **  
age            -0.03527          0.01736    -2.032     0.042127 *   
yearsmarried  0.10062          0.02921     3.445      0.000571 *** 
religiousness  -0.32902         0.08945    -3.678     0.000235 *** 
rating                -0.46136         0.08884    -5.193     2.06e-07 *** 
 
Signif. codes:    0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
Null deviance: 675.38  on 600  degrees of freedom 
Residual deviance: 615.36  on 596  degrees of freedom 
AIC: 625.36 
 
Hence, the logistic regression model is given as; 
 

𝐴𝑓𝑓𝑎𝑖𝑟𝑠(𝑦𝑒𝑠) = 1.93083 − 0.03257𝑎𝑔𝑒 + 0.10062𝑦𝑒𝑎𝑟𝑠𝑚𝑎𝑟𝑟𝑖𝑒𝑑 − 0.32902𝑟𝑒𝑙𝑖𝑔𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠
− 0.46136𝑟𝑎𝑡𝑖𝑛𝑔 

 
Fitting the Poisson Regression 
We fit a Poisson regression to predict number of yes to affairs against the following variable; 
age, years married, religiousness, occupation and rating. 
 
>poisson.model=glm(I(affairs>0)~yearsmarried+religiousness+rating,data=Affairs,family=po
isson(link="log")) 
> summary(poisson.model) 
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Call: 
glm(formula = I(affairs > 0) ~ yearsmarried + religiousness +  
rating, family = poisson(link = "log"), data = Affairs) 
 
Deviance Residuals:  
    Min       1Q           Median       3Q         Max   
-1.3413  -0.6773  -0.5632   -0.3888   1.8142   
 
Coefficients: 
    Estimate     Std. Error      z value  Pr(>|z|)     
(Intercept)        0.06672      0.35315         0.189   0.85014     
yearsmarried   0.03954      0.01587         2.493   0.01268 *   
religiousness   -0.23266     0.07309        -3.183   0.00146 **  
rating                 -0.30044     0.06782        -4.430  9.42e-06 *** 
 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for poisson family taken to be 1) 
Null deviance: 416.39  on 600  degrees of freedom 
Residual deviance: 376.71  on 597  degrees of freedom 
AIC: 684.71 
 
The Poisson regression model is given as; 
 

Affairs(yes)=0.0667 + 0.03954𝑦𝑒𝑎𝑟𝑠𝑚𝑎𝑟𝑟𝑖𝑒𝑑 − 0.23466𝑟𝑒𝑙𝑖𝑔𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠 − 0.300𝑟𝑎𝑡𝑖𝑛𝑔 
 
Comparing the Predictions of Logistic and Poisson Regression Models 
> logit.model.pred=predict(logit.model,newdata=Affairs,type="response") 
> poisson.model.pred=predict(poisson.model,newdata=Affairs,type="response") 
> predictions=data.frame(logit.model.pred,poisson.model.pred) 
> predictions 
        logit.model.pred      poisson.model.pred 
4          0.23138786          0.23750297 
5          0.14423644          0.14845130 
11         0.53420297         0.46091622 
16         0.07431584         0.13457813 
23         0.30750719         0.28075846 
29         0.11797305         0.15858151 
44         0.30750719         0.28075846 
45         0.25468568         0.36524157 
47         0.51816131         0.41827059 
49         0.08971637         0.09957928 
50         0.63514871         0.66610226 
55         0.14423644         0.14845130 
64         0.15340560         0.18174180 
80         0.23188574         0.21415731 
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86         0.14423644         0.14845130 
93         0.37737826         0.34130421 
108        0.52323522         0.49324257 
114        0.16767650         0.16474442 
115        0.15988886         0.15858151 
116        0.27286846         0.22193740 
123        0.15988886         0.15858151 
127        0.15988886         0.15858151 
129        0.23562737         0.18820331 
134        0.18459857         0.17586876 
137        0.18615297         0.23641095 
139        0.15988886         0.15858151 
147        0.12564418         0.12377282 
151        0.17773330         0.18174180 
153        0.12865789         0.13872204 
155        0.18976831         0.18733797 
162        0.32269908         0.30972551 
163        0.12046024         0.12566397 
165        0.10516851         0.12883979 
168        0.17773330         0.18174180 
170        0.27491554         0.29833856 
172        0.19870943         0.18160579 
Table 2 
 
From the prediction table, it indicates that the predictions are similar although their parameter 
estimates are not  identical. This indicates that the logistic and Poisson regression are closely 
related. 

 
Figure 1: The plot above indicates the close relationship between the logistic and Poisson 

regression 
 
> cor(predictions) 
              logit.model.pred       poisson.model.pred 
logit.model.pred               1.0000000                  0.9520127 
poisson.model.pred         0.9520127                  1.0000000 
 
The correlation coefficient of 0.9520127 (or 95.2%) reveals an extremely strong positive 
relationship between the predictions of the two models. This near-perfect correlation suggests 
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that the Logistic Regression (logit) and Poisson Regression models generate highly consistent 
predictions when applied to the same dataset. The close alignment in their outputs implies that, 
despite their different theoretical foundations Logistic Regression being suited for binary 
outcomes and Poisson Regression for count data they exhibit remarkably similar predictive 
behavior in this case. 
 

 Intercept Age Years married Religiousness Rating 
Logistic Regression 1.93083 -0.03527 0.10062 -0.46136 -0.32902 
Poisson Regression 0.06672 0 0.03954 -0.23266 -0.30044 

 
FINDINGS 

Although the parameter estimates of the Logistic and Poisson regression models differ (as seen 
in Table 1), their predicted probabilities exhibit a remarkably close relationship, supported by 
both Table 2 and Figure 1. The strong correlation (95.20%) between their predictions confirms 
a near-perfect linear relationship, suggesting that, despite their differing methodologies, both 
models can produce highly consistent forecasts. 
 
However, a comparison of model fit using the Akaike Information Criterion (AIC) provides a 
decisive result. The lower AIC value for the Logistic regression model (AIC = 625.36) compared 
to the Poisson model (AIC = 684.71) indicates that it provides a statistically superior overall fit 
to the data for this specific application. 
 

CONCLUSION 
The two models demonstrate significant practical interchangeability in their predictions, the 
Logistic regression model is statistically preferred for optimal performance. Therefore, the 
choice of model depends on the specific objective: Poisson regression offers a viable and 
consistent alternative for prediction, but Logistic regression should be selected when seeking 
the best-fitting model for binary outcome data. 
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