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ABSTRACT

This study explores the relationship between Logistic and Poisson regression
models, leveraging on the mathematical connection between the binomial and
Poisson distributions, particularly when the probability of success (p) is small and
the number of trials (n) is large. The research provides an algebraic derivation of
the Logit and Log odds functions, grounded in probability theory, to highlight the
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theoretical parallels between the two models. Using the "Affairs" dataset in R
Studio, both models were fitted to predict binary outcomes. A comparison of their
performance, based on the Akaike Information Criterion (AIC), revealed that the
Logistic regression model (AIC = 625.36) provided a superior fit to the data
compared to the Poisson model (AIC = 684.71). Despite this difference in overall fit
and divergent parameter estimates, the predicted probabilities from both models
exhibited a strong correlation (95.2%), demonstrating their close alignment in
practical applications. The findings suggest that while both models can be used for
binary outcomes, Logistic regression is statistically preferred; however, their
interchangeability under specific conditions offers valuable flexibility for
practitioners in statistical modeling. This study contributes to pronounced
understanding of Generalized Linear Models (GLMs) by quantifying the practical
and performance trade-offs between these approaches.

Keywords: Logistic Regression, Poisson Regression, Generalized Linear Models,
Regression Analysis, Log Odds.

INTRODUCTION
Regression analysis is a statistical technique used to describe relationships among variables.
The purpose of regression is to try to find the best line or equation that expresses the
relationship among variables. Regression models play a critical role in statistical analysis,
particularly in modeling count data. Among the widely used models, Poisson regression and
negative binomial regression are frequently employed to analyze count outcomes and
overdispersion issues.

The usual linear regression model assumes normal distribution of study variables, whereas
nonlinear Logistic and Poisson regressions are based on Bernoulli and Poisson distributions
respectively of study variables. Similar to logistic and Poisson regressions, the study variable
can follow different probability distributions like exponential, gamma, inverse normal etc, one
such family of distribution is described by exponential family of distributions. It assumes that
the distribution of study variable is a member of exponential family of distribution. Generalized
Linear Models (GLM) unifies various distributions of study variable (Nelder and Wedderbum,
1972). This is usually accomplished by developing a linear model having an appropriate
function of expected value of study variable.

All Generalized Linear Models (GLM) have three components: The random component
identifies the response variable Y and assumes a probability distribution for it. The systematic
component specifies the explanatory variables for the model. The link function specifies a
function of the expected value (mean) of Y, which the GLM relates to the explanatory variables
through a prediction equation having linear form.

In some applications, the observations on Y are binary, such as “success” or “failure”. More
generally, each Yi might be the number of successes out of a certain fixed number of trials. In
this case, we assume a binomial distribution for Y. In some other applications, each observation
is a count. We might then assume a distribution for Y that applies to all the nonnegative integers,
such as the Poisson or negative binomial. If each observation is continuous, such as a subject’s
weight in a dietary study, we might assume a normal distribution for Y.
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The systematic component of a GLM specifies the explanatory variables. These enter linearly as
predictors on the right-hand side of the model equation. That is, the systematic component
specifies the variables that are the {x;} in the formula.

yi=«a + ﬁlxl + ...+ ﬁkxk+8i (1)

Denote the expected value of Y as the mean of its probability distribution by u = E[Y]. The third
component of a GLM, the link function, specifies a function g(-) that relates p to the linear
predictor as;

g =a + frxy + .t Brxi (2)

The function g(-), the link function, connects the random and systematic components. The
simplest link function is g(p) = p. This models the mean directly and it is called the identity link.
Other link functions permit p to be non-linearly related to the predictors. For instance, the link
function g(p) = log(p) models the log of the mean. The log function applies to positive numbers,
so the log link function is appropriate when p cannot be negative, such as with count data. A
GLM that uses the log link is called a loglinear model. It has form

log(pu) = a+ fix1 + ..+ Lrxk (3)

The link function g(u) = log(r“u) models the log of an odds. It is appropriate when p is between
0 and 1, such as a probability, which is called the logit link. A GLM that uses the logit link is
called a Logistic regression model. Each potential probability distribution for Y has one special
function of the mean that is called its natural parameter. For the normal distribution, it is the
mean itself. For the Binomial, the natural parameter is the logit of the success probability. The
link function that uses the natural parameter as g(p) in the GLM is called the canonical link.
Although other link functions are possible, in practice the canonical links are most common.
The Poisson distribution has a positive mean. GLMs for the Poisson mean can use the identity
link, but it is more common to model the log of the mean. A Poisson loglinear model is a GLM
that assumes a Poisson distribution for Y and uses the log link function. For a single explanatory
variable x, the Poisson loglinear model has form

log(u) = a + px (4)
The mean satisfies the exponential relationship
U= e®tBx — paoBx (5)

This study aims at demonstrating the relationship between Poisson and Logistic regression
models with the objective of comparing the parameter estimates of the two regression models.

LITERATURE REVIEW
Generalized Linear Models (GLMs) represent a significant advancement in statistical modeling,
first introduced by Nelder and Wedderburn (1972). This unified framework encompasses
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various regression models, including logistic, Poisson, and linear regression, through a common
estimation approach. The development of GLMs offered substantial computational advantages
in early statistical computing (1972-1990), particularly in memory efficiency compared to
traditional maximum likelihood methods. The implementation of GLMs was further facilitated
by the creation of GLIM (Generalized Linear Interactive Modeling) software in 1974, which
became a foundational tool for statistical analysis (Nelder, 1974). Today, GLM functionality is
integrated into all major statistical software packages, including R, SAS, and SPSS.

The logistic function has its origins in population growth studies by Verhulst (1838-1845) and
was independently rediscovered by Pearl and Reed (1920) in their analysis of U.S. population
dynamics. The model's characteristic S-shaped curve, resembling a cumulative distribution
function, has made it particularly valuable for binary outcome prediction. Modern applications
of logistic regression are widespread, with I[jomah et al. (2018) demonstrating its superiority
over Poisson regression for binary count data through rigorous model comparison using AIC
and BIC criteria.

For count data analysis, researchers typically employ Poisson regression or its extensions. The
standard Poisson model assumes equality of mean and variance, an assumption often violated
in practice (overdispersion). Consul and Famoye (1992) addressed this limitation through their
generalized Poisson regression model, while Ismail and Jemain (2007) demonstrated the
effectiveness of negative binomial regression in handling overdispersed data. Recent
applications have extended these models to time series count data (Omer & Hussian, 2023) and
bivariate count outcomes (Famoye, 2010).

Consul and Famoye (1992) introduced the generalized Poisson regression model, highlighting
key distinctions in parameter estimations when addressing count data. Their study emphasizes
how Poisson regression may be applied in certain scenarios while negative binomial regression
serves as a suitable alternative under overdispersion.

Ismail and Jemain (2007) further explored handling overdispersion by comparing negative
binomial and generalized Poisson regression models. Their findings indicate that negative
binomial regression offers improved parameter estimation in cases where the variance exceeds
the mean, making it preferable for count data with significant variability.

Omer and Hussian (2023) analyzed the application of generalized Poisson and negative
binomial regression models in count time series data. Their study compared the effectiveness
of these models in accurately capturing patterns in dependent count variables.

Land et al. (1996) conducted an empirical comparison of Poisson, negative binomial, and
semiparametric mixed Poisson regression models using criminal career data. Their findings
underline the differences in specifications and statistical properties between these models,
providing practical guidance for researchers selecting regression approaches.

Takahashi and Kurosawa (2016) introduced a regression correlation coefficient for Poisson
regression models, contributing to a better understanding of relationships between response
variables in count data regression analyses.
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Gagnon et al. (2008) discussed the application of Poisson regression in trauma research,
emphasizing how Poisson models and logistic regression help quantify count and frequency
outcomes in clinical studies.

Sarvi et al. (2014) examined the relationship between socio-economic factors and tuberculosis
using negative binomial and Poisson regression models. Their study demonstrated that
negative binomial regression could effectively model TB incidence in populations with variable
risk factors.

Zou and Donner (2013) extended modified Poisson regression models to studies involving
correlated binary data. Their research identified improvements in estimating relative risk
compared to traditional binomial regression models.

Famoye (2010) proposed the bivariate negative binomial regression model, demonstrating a
structured approach to modeling relationships between count variables with negative binomial
distributions.

Ardiles et al. (2018) utilized negative binomial regression to analyze the relationship between
hospitalization and air pollution. Their findings reaffirmed the suitability of negative binomial
regression in modeling environmental health data.

MATERIALS AND METHODS
This section illustrates the relationship between the Logistic and Poisson regression. It also
illustrates the algebraic derivation of the log odds from logit odds and compares their
parameter estimates and probability predictions.

Logistic Regression Model

In the linear regression model Y = Xf3 + ¢, there are two types of variables, namely: explanatory
variables X1, X2 ,., Xk and study variable Y. When the study variable is qualitative variable, its
values can be expressed using an indicator variable taking only two possible values 0 and 1. In
such a case, the logistic regression is used. For example, y can denotes the values like success
or failure, yes or no, like or dislike etc.

Consider the model;
Yi = Bo+ Bixi1 + BaXiz .+ BrXix + €;51=1,2, .., K (6)

The study variable takes two values as yi = 0 or 1. Assume thaty follows a Bernoulli distribution
with parameter m, so its probability distribution is

YiZ lowithply; =0)=1-m

Assuming E(E;) =0

E[y,_] = 1.T[i + 0. (1 - T[i) = T (7)
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From the model

yi =xB+ € (8)

Hence

Elyi]=xp+ & =m (9)
This implies that E[y;] = p(y; = 1).

Thus, the response function E[y;] is simply the probability that y; = 1. (Probability of success or
pass)

From the model above

€& =yi— xP (10)

Wheny, =1, € =1-— x;f and
VVherlyi== 0, Si=='—Xiﬁ

Recall that in the usual linear regression model where y is not an indicator variable, it assumes
that €; follows a normal distribution. When y is an indicator variable, it implies that €; cannot
be assumed to follow a normal distribution. Moreover, since E[y;] = m;and m; is a probability,
itimplies that 0 < r; <1 and thus there is a constraint on E[y;]. This further puts a constraint on
the choice of response function. Hence, a model in which the predicted value is outside the
interval [0,1] cannot be fitted.

A natural choice for E[y] would be the cumulative distribution function of a random variable.
In particular, the logistic distribution, whose cumulative distribution function is the simplified
logistic function yields a good link and is given by;

1
9() = log (%) (11)
eBO+BlX

But = TroPoTRx
Hence,

g(x) = log(ePOrF1) (12)
This implies that

g(x) = Bo+P1x (13)
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The importance of this transformation is that g(x) has many of the desirable properties of linear
regression model.

Poisson Regression

We consider the situations where the study variable is a count variable that represents the
count of some relatively rare event. For example, the study variable can be a count of patients
with some rare type of disease with one or more explanatory variables like age of variables,
hemoglobin level, blood sugar etc. In another example, the study variable can be the number
of defects in the car engine of a reputed car manufacturer, which again depends on one or more
explanatory variables.

Assumption of normal or Bernoulli distribution for study variable will not be appropriate in
such situations. The Poisson distribution describes such situations more appropriately. So we

assume that the study variable yi is a count variable and follows a Poisson distribution with
parameter A> 0 as

e YAy
p(y) =—,—y=0,12,. (14)

Note that the mean and variance of Poisson random variables are the same and related as
E[y] = A, var(y) = A.
Based on a sample y1,y2,....yn, we can write E[y;] = A and thus express the Poisson model as
yi = Elyi] + & (15)
Where €;'s are disturbance terms.

We can define a link function g that relates the mean of study variable to linear predictor as

gA) = m (16)
g(A) = Bo + Brxy + o+ Brxy (17)

The log-link function is
g(A) =InA; = x{p (18)

This implies that 4; = g~ 'x!p = e*i8 Note that in identity link function, the predicted values
of y can be negative but in log-link function, the predicted values of y are nonnegative.

Derivation of the Log Odds of an Event from the Logit Function
From the properties of probability, it can be shown that the logit odds of an event equal the log
odds of an event.
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Log (:—n) = Log (g) (19)

where T is the probability of an event, A is the number of events (success), B is the number of
non-events (failure).

Assume that the probability of an event is defined as:

m= (20)
Taking log of both sides
Log(m) = Log (A%) (21)
Subtracting Log(1- m) from both sides
Log(m) — Log(1 —m) = Log (A%) — Log(1—m) (22)

Substituting the definition of m into the right-hand side of the equation and simplifying.

Log (72=) = 1og (555) - Lo (1-755)
I\ 1T/ T"9\4+sB °9\*"4+sB

T A B
Log (775) = 2o (155) ~ o9 (555)
Log (%) — Log(A) — Log(A + B) — Log(B) + Log(A + B)

1
tog () = o () =5

In logistic regression, we believe that the Log odds is a linear combination of the regressors and
their corresponding parameters.

log () = o + fuxy + -+ i (24)
log(4) — log(B) = fo + Buty + -+ frxi (25)
log(A) = o + faxy + -+ + By + 0g(B) (26)

Log(B) is the offset term which is exactly one.

Data Presentation

Logistic and Poisson regression models are compared in this study using a data set called
"Affairs" in R Studio. The data set Affairs is a cross section infidelity data survey conducted by
Psychology Today in 1969. The data frame contains 601 observations on 9 variables as follows:
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Affairs (numeric): How often engaged in extra-marital sexual intercourse during the past year?
Gender: factor indicating gender.

Age (numeric): variable coding age in years: 17.5 = under 20, 22 = 20-24, 27 = 25-29, 32 = 30-
34,37 =35-39,42 =40-44,47 = 45-49,52 = 50-54, 57 = 55 or over.

Years married (numeric): variable coding number of years married: 0.125 = 3 months or less,
0.417 = 4-6 months, 0.75 = 6 months-1 year, 1.5 = 1-2 years, 4 = 3-5 years, 7 = 6-8 years, 10 =
9-11 years, 15 = 12 or more years.

Children (factor): Are there children in the marriage?

Religiousness (numeric): variable coding religiousness: 1 = anti, 2 = not at all, 3 = slightly, 4 =
somewhat, 5 = very.

Education (numeric): variable coding level of education: 9 = grade school, 12 = high school
graduate, 14 = some college, 16 = college graduate, 17 = some graduate work, 18 = master’s
degree, 20 = Ph.D., M.D,, or other advanced degree.

Occupation (numeric): variable coding occupation according to Hollingshead classification
(reverse numbering).

Rating (numeric): variable coding self rating of marriage: 1 = very unhappy, 2 = somewhat
unhappy, 3 = average, 4 = happier than average, 5 = very happy.
The analysis was conducted using R Studio.

Fitting the Logistic Regression
We fit a logistic regression to predict "yes" to affairs against the following variables; age, years
married, religiousness, occupation and rating.

First, we load the package in R called AER and recall the data "Affairs". AER is the package in R
that fits generalized linear models.

> data(Affairs)
> summary(Affairs)

affairs gender age years married children
Min. :0.000 female: 315 Min. :17.50 Min. :0.125 no:171
1st Qu.: 0.000 male: 286 1st Qu.:27.00 1stQu.:4.000 yes:430
Median : 0.000 Median :32.00 Median : 7.000
Mean :1.456 Mean :32.49 Mean :8.178
3rd Qu.: 0.000 3rd Qu.:37.00 3rd Qu.:15.000
Max. :12.000 Max. :57.00 Max. :15.000
religiousness education occupation rating

Min. :1.000  Min. :9.00 Min. :1.000 Min. :1.000
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1st Qu.:2.000 1stQu.:14.00 1st Qu.:3.000 1st Qu.:3.000
Median :3.000 Median :16.00 Median :5.000 Median :4.000
Mean :3.116 Mean :16.17 Mean :4.195 Mean :3.932
3rd Qu.:4.000 3rd Qu.:18.00 3rd Qu.:6.000 3rd Qu.:5.000
Max. :5.000 Max. :20.00 Max. :7.000 Max. :5.000

Table 1

>logit.model=glm(I(affairs>0)~age+yearsmarried+religiousness+rating,data=Affairs,family=b
inomial(link="logit"))
> summary(logit.model)

Call:
glm(formula = I(affairs > 0) ~ age + yearsmarried + religiousness +
rating, family = binomial(link = "logit"), data = Affairs)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.6278 -0.7550 -0.5701 -0.2624 2.3998

Coefficients:

Estimate Std. Error zvalue Pr(>|z|)
(Intercept)  1.93083 0.61032 3.164 0.001558 **
age -0.03527 0.01736 -2.032 0.042127*

yearsmarried 0.10062 0.02921 3.445 0.000571 ***
religiousness -0.32902 0.08945 -3.678 0.000235 ***
rating -0.46136 0.08884 -5.193 2.06e-07 ***

Signif. codes: 0 *** 0.001 ** 0.01“* 0.05°°0.1°"1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 675.38 on 600 degrees of freedom
Residual deviance: 615.36 on 596 degrees of freedom
AIC: 625.36

Hence, the logistic regression model is given as;

Af fairs(yes) = 1.93083 — 0.03257age + 0.10062yearsmarried — 0.32902religiousness
— 0.46136rating

Fitting the Poisson Regression
We fit a Poisson regression to predict number of yes to affairs against the following variable;
age, years married, religiousness, occupation and rating.

>poisson.model=glm(I(affairs>0)~yearsmarried+religiousness+rating,data=Affairs,family=po
isson(link="log"))
> summary(poisson.model)
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Call:
glm(formula = I(affairs > 0) ~ yearsmarried + religiousness +
rating, family = poisson(link = "log"), data = Affairs)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.3413 -0.6773 -0.5632 -0.3888 1.8142

Coefficients:

Estimate Std.Error zvalue Pr(>|z|)
(Intercept) 0.06672 0.35315 0.189 0.85014
yearsmarried 0.03954 0.01587 2.493 0.01268 *
religiousness -0.23266 0.07309  -3.183  0.00146 **
rating -0.30044 0.06782 -4.430  9.42e-06 ***

Signif. codes: 0 *** 0.001 **' 0.01 * 0.05°"0.1°" 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 416.39 on 600 degrees of freedom
Residual deviance: 376.71 on 597 degrees of freedom
AIC: 684.71

The Poisson regression model is given as;

Affairs(yes)=0.0667 + 0.03954yearsmarried — 0.23466religiousness — 0.300rating

Comparing the Predictions of Logistic and Poisson Regression Models
> logit. model.pred=predict(logit.model,newdata=Affairs,type="response")

> poisson.model.pred=predict(poisson.model,newdata=Affairs,type="response")

> predictions=data.frame(logit.model.pred,poisson.model.pred)
> predictions
logit.model.pred poisson.model.pred

4 0.23138786 0.23750297
5 0.14423644 0.14845130
11 0.53420297 0.46091622
16 0.07431584 0.13457813
23 0.30750719 0.28075846
29 0.11797305 0.15858151
44 0.30750719 0.28075846
45 0.25468568 0.36524157
47 0.51816131 0.41827059
49 0.08971637 0.09957928
50 0.63514871 0.66610226
55 0.14423644 0.14845130
64 0.15340560 0.18174180
80 0.23188574 0.21415731

URL: http://dx.doi.org/10.14738/aivp.1306.19688

275



European Journal of Applied Sciences (EJAS) Vol. 13, Issue 06, December-2025

86 0.14423644 0.14845130
93 0.37737826 0.34130421
108 0.52323522 0.49324257
114 0.16767650 0.16474442
115 0.15988886 0.15858151
116 0.27286846 0.22193740
123 0.15988886 0.15858151
127 0.15988886 0.15858151
129 0.23562737 0.18820331
134 0.18459857 0.17586876
137 0.18615297 0.23641095
139 0.15988886 0.15858151
147 0.12564418 0.12377282
151 0.17773330 0.18174180
153 0.12865789 0.13872204
155 0.18976831 0.18733797
162 0.32269908 0.30972551
163 0.12046024 0.12566397
165 0.10516851 0.12883979
168 0.17773330 0.18174180
170 0.27491554 0.29833856
172 0.19870943 0.18160579
Table 2

From the prediction table, it indicates that the predictions are similar although their parameter
estimates are not identical. This indicates that the logistic and Poisson regression are closely
related.

7
[s]
Q

logitmodel pred
0.3

0.1

poisson.model pred

Figure 1: The plot above indicates the close relationship between the logistic and Poisson
regression

> cor(predictions)

logit model.pred  poisson.model.pred
logit.model.pred 1.0000000 0.9520127
poisson.model.pred 0.9520127 1.0000000

The correlation coefficient of 0.9520127 (or 95.2%) reveals an extremely strong positive
relationship between the predictions of the two models. This near-perfect correlation suggests

Services for Science and Education - United Kingdom 276



Oyowei, E. A, llori, A. K., Awogbemi, C. A., Utalor, I. K., Nancy, E. O., Rafiu, O. A., Alagbe, S. A., Kayode, A. T., & Kruslat, D. N. (2025). On the
Relationship between Logistic and Poisson Regression Models. European Journal of Applied Sciences, Vol - 13(06). 265-278.

that the Logistic Regression (logit) and Poisson Regression models generate highly consistent
predictions when applied to the same dataset. The close alignment in their outputs implies that,
despite their different theoretical foundations Logistic Regression being suited for binary
outcomes and Poisson Regression for count data they exhibit remarkably similar predictive
behavior in this case.

Intercept | Age Years married | Religiousness | Rating
Logistic Regression | 1.93083 | -0.03527 | 0.10062 -0.46136 -0.32902
Poisson Regression | 0.06672 0 0.03954 -0.23266 -0.30044
FINDINGS

Although the parameter estimates of the Logistic and Poisson regression models differ (as seen
in Table 1), their predicted probabilities exhibit a remarkably close relationship, supported by
both Table 2 and Figure 1. The strong correlation (95.20%) between their predictions confirms
a near-perfect linear relationship, suggesting that, despite their differing methodologies, both
models can produce highly consistent forecasts.

However, a comparison of model fit using the Akaike Information Criterion (AIC) provides a
decisive result. The lower AIC value for the Logistic regression model (AIC = 625.36) compared
to the Poisson model (AIC = 684.71) indicates that it provides a statistically superior overall fit
to the data for this specific application.

CONCLUSION
The two models demonstrate significant practical interchangeability in their predictions, the
Logistic regression model is statistically preferred for optimal performance. Therefore, the
choice of model depends on the specific objective: Poisson regression offers a viable and
consistent alternative for prediction, but Logistic regression should be selected when seeking
the best-fitting model for binary outcome data.
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