
 

DOI: 10.14738/aivp.42.1960 
Publication Date: 23rd April, 2016 
URL: http://dx.doi.org/10.14738/aivp.42.1960 

 

 

 

Local Visual Feature Detection and Description for Non-Rigid 
3D Objects 

1Kaiman Zeng, 1Nansong Wu, 2Lu Wang, and 1Kang K. Yen 
1Department of Electrical and Computer Engineering, Florida International University, United States; 

2School of Science and Technology, St. Thomas University, United States; 
kzeng001@fiu.edu; nwu001@fiu.edu; lwang@stu.edu; yenk@fiu.edu 

ABSTRACT   

Feature extraction is an essential step in various image processing and computer vision tasks, such as 

object recognition, image retrieval, 3D construction, virtual reality, and so on. Design of feature 

extraction method is probably the single most important factor in achieving high performance of 

various tasks. Different applications create different challenges and requirements for the design of 

visual features. In this paper, we explored and investigated the effectiveness of different combinations 

of promising local feature detectors and descriptors for non-rigid 3D objects. Different configurations 

of visual feature detectors and descriptors have been enumerated, and each configuration has been 

evaluated by image matching accuracy. The results indicated that the scale-invariant feature 

transform feature detector and descriptor achieved the best overall performance in describing local 

features of non-rigid 3D object. 

Keywords: Feature extraction; local feature detector; Local feature descriptor. 

1 Introduction  

Feature extraction plays a decisive role in visual content-based image retrieval. A good feature should 

properly represent the image characteristics, be repeatedly detected in images that capture the same 

objects/scenes while under different imaging condition, and also be distinctive so that it could 

distinguish it from other similar images. Besides, an ideal feature should be robust to imaging 

variations, such as rotation, viewpoint changes, illumination changes and occlusions. There is no 

universal defined feature, since different problems and different types of applications often have 

different characteristics. When the application domain changes, it usually requires re-designing 

feature detector and descriptor to capture features and achieve high performance. A feature is 

referred to as an interesting point/region in an image. Interesting points/regions are visually salient. 

Design of feature extraction method is probably the single most important factor in achieving high 

performance of various computer vision tasks [1]. Given the large number of feature extraction 

methods researched in the literatures, which feature extraction method is the best for a given 

application? This question leads us to characterize the available feature extraction methods, so that 

the most promising methods could be sorted out. In this paper, we concentrated on 3D object under 

different viewpoint. In particular, we are interested in recognizing 3D objects whose shape is neither 

fixed nor known a priori. Previous work on object recognition has concentrated on rigid objects of 

known 3D shape to simplify the task [2, 3]. These approaches have difficulty in dealing with 

unstructured objects, and thus cannot be applied to more generic categories of objects. Non-rigid 

object is a significant challenge because of its large variation and deformation within the object 
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classes. The non-rigid deformation often observes large variation globally. Their local structures are 

somewhat more invariant to the changes. On that basis, our focus is on non-rigid 3D object recognition 

with local features. 

Image local feature extraction usually consists of two stages: feature detection and feature 

description. A local feature commonly refers to a local pattern in an image that changes from its direct 

neighborhood in property or multiple properties of intensity, color, and texture simultaneously. 

Feature detection is algorithms that compute abstractions of image information and make local 

decisions at every image pixels whether there is an image feature of a given property type. The 

resulting features are subsets of the image domain, often in the form of isolated points, continuous 

curves or connected regions. Once the feature is detected, the local image patch around the feature 

is extracted and generated as the feature descriptor.  

In this paper, the effectiveness of several promising local features on 3D non-rigid objects are explored 

and investigated. We configure different visual feature detectors and descriptors, and evaluate each 

configuration in detail. To the best of our knowledge, existing research on the comparison of visual 

feature detectors and descriptors are conducted for other computer vision tasks. In literature [3] the 

effectiveness of different visual feature detectors and descriptors are compared for mobile visual 

search of rigid product like books and CDs. The comparison study in literature [4] is focused on the 

visual object categorization. Neither of these comparisons targeted the effectiveness of 3D object 

recognition, the focus of this paper. The performance of different combination of visual feature 

detectors and descriptors on non-rigid 3D object has not been fully understood. The contribution of 

our work is filling this knowledge gap. Different combinations of detector and descriptor are 

enumerated and evaluated by the accuracy of image matching. This accuracy indicates how accurately 

the repeatable salient local features can be detected, described, and matched from one imaging 

condition to another.  

The paper is organized as the follows. In Section 2, we have a literature review of classic and recent 

feature extraction techniques. Section 3 discusses the details of the researched feature detectors and 

descriptors. In Section 4, several experiments of different combination of feature detector and 

descriptor are conducted on the benchmark datasets. And their performances are compared in the 

forms of accuracy of image matching. Finally, we conclude comparison results with promising feature 

extraction techniques and discuss future works in Section 5. 

2 The Existing Feature Extraction Techniques 

Local feature, representing local patches of an image, has shown promise in many tasks of computer 

vision, such as image match, object recognition, image registration and so on. Feature detection is 

utilized as the initial step in local feature extraction algorithms. It is a classic research area in image 

processing and computer vision. And there are a variety of different types of features, e.g. edges, 

corners/keypoints, regions of interest and ridges. The corner/keypoint is treated as the same concept 

since a corner can be not only considered as an intersection of two lines, but also a point that has two 

different edge directions within a local window of the point. Likewise, a keypoint can be defined as a 

corner, line endings, a point of local intensity maximum or minimum, or a point on a curve where the 

curvature is local maximum. As a result, the corner/keypoint detection is mainly divided into edge-

based method and gray density based method. Current research is focused on gray density based 

corner/keypoint detection, since a small degree variation of the target object leads to great difference 

in edge extraction, and the edge extraction is computationally expensive [5, 6]. Gray density based 

approach detects the corner/keypoint by calculating the curvature and gradient of points. Moravec 
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operator, Forstner operator, Harris operator and SUSAN operator are some of the examples. Harris 

operator [7] is the most classic detector among them. Mikolajczyk takes the scale space theory into 

consideration and proposes Harris-Laplace detector, which applies Laplace-of-Gaussian (LoG) for 

automatic scale selection [8]. It obtains scale and shape information and can represent local structure 

of an image. Lowe applies Difference-of-Gaussian (DoG) filter, an approximate to LoG, in the SIFT 

algorithm to reduce computational complexity [9]. Also, in order to increase the algorithm efficiency, 

Hessian Affine, FAST, Hessian-blobs, and MSER are further proposed. In [10], Mikolajczyk et al. extract 

10 different keypoint detectors within a common framework and compare them for various types of 

transformations. Van de Sande extracts 15 types of local color features, and examines their 

performance on transformation invariance for image classification. Many detection methods are 

studied seeking a balance between keypoint repeatability and computational complexity [11].  

After the keypoint detection, we compute a descriptor on the local patch. Feature descriptors can be 

divided into gradient-based descriptors, spatial frequency based descriptors, differential invariants, 

moment invariants, and so on. Among them, the histogram of gradient-based method has been wildly 

used.  The gradient histogram is used to represent different local texture and shape features. The Scale 

Invariant Feature Transform (SIFT) descriptor proposed by Lowe is a landmark in research of local 

feature descriptor. It is highly discriminative and robust to scaling, rotation, light condition change, 

view position change, as well as noise distortion [9]. Since then, it has drawn considerable interests 

and a larger number descriptors based on the idea of SIFT emerges. SURF [12] uses the Haar wavelet 

to approximate the gradient SIFT operation, and uses image integral for fast computation. DAISY [13, 

14] applies the SIFT idea for dense feature extraction. The difference is that DAISY use Gaussian 

convolution to generate the gradient histogram. Affine SIFT [15] simulates different perspectives for 

feature matching, and obtains good performance on viewpoint changes, especially large viewpoint 

changes. Since SIFT works on the gray-scale model, many color-based SIFT descriptors are proposed 

to solve the color variations, such as CSIFT, RGB-SIFT, HSV-SIFT, rgSIFT, Hue-SIFT, Opponent SIFT, and 

Transformed-color SIFT [11, 16, 17]. Most of them are obtained by computing SIFT descriptors over 

channels of different color space independently; therefore they usually have higher dimension (e.g. 3 

× 128 dimension for RGB-SIFT) descriptors than SIFT. The color boosted SIFT introduced in [18] involves 

the amended color histogram factor based on RGB color space model into the SIFT. It retains sufficient 

color information and is robust to photometrical variations. Song et al. proposed compact local 

descriptors using an approximate affine transform between image space and color space [19]. 

Burghouts et al. performed an evaluation of local color invariants [20].  

3 Local Feature Extraction for Non-rigid Object 

In this section, we discuss the visual features considered in our work. The feature detectors include 

Harris, FAST, SIFT, SURF, and BRISK detectors. For the descriptions, the BRISK, SIFT, and SURF feature 

descriptors are considered. We choose these feature detectors and descriptors for the following 

reasons. First, Harris detector is the best-known operator around. The SIFT is the most widely used 

and successful detector developed in recent decade for different computer vision. The FAST, SURF, 

and BRISK detectors achieve a good balance between the detection performance and computation 

complexity. Second, the selected feature descriptors have the potential to handle the task of object 

recognition based on previous studies of other researchers. For instance, Chandrasekhar et al. [3], 

compared several feature descriptors for visual search application, and reported the SIFT feature 

descriptor as one of the promising one. The SIFT and SURF are concluded in Lankinen’s work [4] as the 

top two reliable descriptors for visual object classification. The BRISK descriptor is considered in our 

work because of its big advantage in computation speed.  
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3.1 Harris detector 

Harris detector, proposed by Harris and Stephens [7], is developed from the auto-correlation matrix, 

also called the second moment matrix. Given an image I, an approximation to the local auto-

correlation matrix of I is computed at every pixel (x, y):  
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M presents the gradient distribution in a local neighborhood of an image pixel (x, y). The image pixel 

can be classified into three regions according to the eigenvalues 
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image. In order to reduce the computation cost, Harris proposed a cornerness measure that derived 

from two eigenvalues: 
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where   c(x, y)denotes the cornerness measure, 
  det(M(x, y))  is the determinant of   M(x, y) , and 

  
trace( M(x, y)) is the trace of   M(x, y) . a  is the experience constant, typically ranging from 0.04 to 

0.06.  

Then, non-maximum suppression is performed in a  3´ 3 or  5´5  neighborhood, and the local maxima 

of the corneress function forms the corner features of the image. 

3.2 Features from Accelerated Segment Test  

FAST is a high-speed corner detector developed by Rosten and Drummond [21]. The detection is 

performed on a discrete Bresenham circle around a candidate image pixel p. If there is a set of 

contiguous pixels at least nine on the circle around p, and they are all brighter or darker than the 

intensity of p by a pre-defined threshold t, then p is considered as a corner candidate. Besides, the 

algorithm is accelerated with a decision tree to reduce the number of pixels that need to be processed. 

Subsequently, the following score is computed at each corner candidate to remove the false 

candidates:  
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where 
 
S

+
 is the subset of contiguous pixels that are brighter than p by t on the circle. 

 
S

-
 is the subset 

of contiguous pixels that are darker than p by t on the circle. The corner candidates, who have an 

adjacent corner with a higher score, will be removed. Then, non-maximum suppression is applied to 

locate corner features.  
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3.3 Binary Robust Invariant Scalable Key Points 

BRISK, proposed by Leutenegger et al. [22], is a binary local feature detection and description method 

with very high computational efficiency. The first step is to create a scale space pyramid, generally 

consisting of 4-layer octave images and 4-layer intra-octave images. Each octave is half-sampled from 

previous octave, and each intra-octave is down-sampled so that it is located between two octaves. 

Next, the FAST detector score s is computed at each octave and intra-octave to generate the keypoint 

candidates. Non-maximum suppression is then performed at each octave and intra-octave so that 

score s is the maximum within a  3´ 3 neighborhood; and score s is the largest among the scales above 

and below. These maxima are then interpolated using a 1D quadratic function across scale spaces and 

the local maximum is chosen as the scale for the feature found.  

Given a set of the detected keypoints, the BRISK descriptor is constructed as a binary descriptor by 

simple brightness comparison tests. The brightness comparison test is performed on the samples in a 

pattern. This pattern is defined as N equally spaced locations on circles concentric with the keypoint.  

3.4 Scale-Invariant Feature Transform  

SIFT, introduced by Lowe [9], is a scale invariant feature detector with highly distinctive feature 

descriptor. In order to achieve scale invariance, a scale space pyramid of images is first built through 

convolutions of image I with differences of Gaussians (DoG) at different scales s : 
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I
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 and 

  
I
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) at the same octave. These local extrema are 

considered as keypoints. Further, the keypoint location is refined by interpolating the sample points 

and its direct neighbors. Keypoints with low contrast and small ratio of principal curvatures are 

removed. Subsequently, the gradient magnitudes and orientations of the remaining keypoints are 

computed. The orientations are then weighted by a Gaussian window and the gradient magnitude, 

and the dominant orientations are sorted out from the histogram of the weighted orientations. If 

multiple dominant orientations exist at a keypoint, for every dominant orientation an additional 

keypoint are generated.  

Now, the located keypoints have been assigned with orientations and scales. A local coordinate system 

can be defined to compute the SIFT descriptor. A new orientation histogram is computed within a 

 16 ´16 local window and then  4´ 4 sub windows. For each sub window, the orientation histogram 

is calculated with 8 bins and weighted again by a Gaussian window and corresponding gradient 

magnitude. This yields the SIFT descriptor of length 128 ( 4´ 4 ´8).   

3.5 Speeded-Up Robust Features  

SURF, designed by Bay et al. [12], is similar to SIFT with faster feature detection and description. SURF 

detector is developed from the determinant of the Hessian matrix: 
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It then employs box filters to approximate the second order Gaussian partial derivative for scale space 

analysis. The score in SURF is defined as: 

   
s(x, y,s ) = D

xx
(s ) iD

yy
(s ) - [0.9D

xy
(s )]2 » det(H(x, y,s )) 

where 
 
D
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, 
 
D
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D
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 are the convolution of the image using box filters. Constant factor 0.9 is 

chosen to make the approximate solution closer to   
det(H(x, y,s )) . Then, a non-maximum 

suppression is performed in a  3´ 3´ 3 neighborhood, and the resulted maxima are interpolated 

across scale spaces to localize the keypoints. 

Once the SURF features are localized, the SURF description is addressed in two steps: first, extracting 

an orientation according to the information from a circular region around the keypoints; second, 

defining a square region oriented along the formed orientation, and computing the SURF descriptor 

from the square region. Specifically, the circular region in the first step is convoluted with Haar wavelet 

along x and y axes. The radius of the circular neighborhood is decided by the scale, at which the 

keypoint is detected. So do the sampling step and wavelet response. The wavelet response is then 

weighted with a Gaussian, and represented as a vector with response strength along x and y axis. The 

dominant orientation is determined by the sum of all responses within a rotating square window. 

Next, this orientation window is further split up to  4 ´ 4  sub square windows, and the descriptor 

vector is defined as:  
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x
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d

y
 denote the Haar wavelet responses in x and y directions for each sub square region. The 

generated descriptor vector has a length of 64 ( 4´ 4 ´ 4). 

4 Experiments and Analysis 

4.1 Data Set 

In order to evaluate the performance of different feature detectors and descriptors, we conducted 

several experiments of image matching on the benchmark dataset of Oxford Dataset [23]. We also 

perform experiments on the benchmark dataset of Columbia Object Image Library - COIL 100 [24]. 

Figure 1 show typical images selected from these datasets. The Oxford dataset has been widely used 

for evaluating performance of local image descriptors. It contains image pairs under various image 

transformations, including scale, rotation, image blur, illumination, JPEG compression and viewpoint 

changes. The dataset also contains ground truth homographies corresponding to the image pairs. 

Figure 1 (a) shows some image pairs under different image transformations in this dataset. COIL 100 

is a database of color images of objects. The objects are placed on a motorized turntable against a 

black background. The turntable is rotated through 360 degrees to vary object pose with respect to a 

fixed color camera. Images of the objects are taken at pose intervals of 5 degrees. This corresponds to 

72 poses per object and the images are size normalized.  
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(a) 

 

(b) 

Figure 1. Typical images selected from the datasets: (a) Oxford dataset (b) COIL 100 dataset 

4.2   Experimental Evaluation and Analysis 

In this experiment we implement 5 feature detectors (Harris, BRISK, FAST, SIFT and SURF) and 3 

descriptors (BRISK, SIFT, and SURF) in MATLAB. All combinations are evaluated except for the SIFT-

BRISK, since the SIFT detector is not compatible with BRISK descriptor.  

Table 1. Average Accuracy for Different Combinations of Feature Detectors and Descriptors 

 Descriptor 
Detector BRISK SIFT SURF 

Harris 0.3351 0.3264 0.3018 
BRISK 0.4288 0.4113 0.3907 
FAST 0.4637 0.5021 0.4579 
SIFT N/A 0.5173 0.3725 

SURF 0.411 0.4556 0.423 
 

The average accuracy of image matching for every combination of feature detectors and descriptors 

are recorded in Table 1. The results show that the combination of SIFT-SIFT provides the most accurate 

matching features at matching rate of 0.5173. Following it, the combination of FAST-SIFT achieved 

comparable performance of matching rate 0.5021. With the same detector, SIFT descriptor and BRISK 

descriptor performs better than SURF descriptor generally, except for the case of SURF detector.  

5 Conclusion 

In this paper, we evaluated the effectiveness of different combinations of local feature detectors and 

descriptors for non-rigid 3D objects. We selected several classic and widely used visual feature 

detectors (Harris, BRISK, FAST, SIFT, and SURF) and descriptors (BRISK, SIFT, and SURF). The primary 

difference between this work and the comparison studies of other researchers is that they are 

targeted in different applications, so that face in different visual characteristics and raise new 

challenges. It was unclear which feature detection and description methods are best suitable for non-

rigid 3D objects. Our evaluation results indicated that the SIFT achieved the best overall performance 

in describing image local features. This finding could benefit reshaping existing or ongoing other 

research work based on visual feature, such as non-rigid object visual search. We will use these 
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findings in the future to tune and design new visual features to improve object recognition accuracy 

and adapt to different applications.  
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