
European Journal of Applied Sciences - Vol. 13, No. 03

Publication Date: May 25, 2025 **DOI:**10.14738/aivp.1303.18737.

Granulometric Characterisation and Distribution of Contemporary Fluvial Sediment in the Magoye River Sink, Southern Zambia

Mafwabo Daniel

The University of Zambia, Institute of Distance Education

Manoah Muchanga

The University of Zambia, Geography and Environmental Education.

ABSTRACT

The study granulometrically characterised the contemporary fluvial sediment deposited at selected cross-sections of the river using field sampling, GPS, GIS and laboratory analysis of sediment using sieves. The study calibrated what in our view, was the first-ever regression model (Phi-mm) with contextual relevance to Zambian river catchments and channels as opposed to those devised outside the African context. This model can potentially be extrapolated to immediate neighbouring catchments within the region that hydrogeomorphological characteristics as the target river catchment in the study. On average, the downstream of the Magove River bed was characterised by sediment of diverse particle sizes with those above 2 mm constituting 29% of sediment, especially near the bridge. The sediments of 1 mm diameter were also in the same magnitude. On average, the rarest occurring sediment type were those equal to or less than 0.1mm as these take long to settle due to their minute sizes. A large proportion of sediment with particle size between 2mm and >2mm settled within the first 7-8 Km from the Magoye Bridge, which also attracted high occurrence of river bed sand and stone quarrying and hence, the observed buffer zone and bed degradation. Sediment particles between 1mm and 0.5mm showed a high variable geospatial occurrence, but the latter drastically increased towards the mouth, which confirms the influence of particle size on settling time. Furthermore, sediment with grain size of 0.25mm showed a high variability across the channel bed as compared to those whose grain sizes were 0.1mm to 0.05mm, which were usually in stable equilibrium throughout the channel profile in terms of relative abundance. Their low percentage of occurrence signify their low density and high affinity to remain suspended for longer time. For instance, the only highest occurrence for sediment with grain size of 0.1mm was record around 26 km away from the bridge near the mouth where river flow power tend to be exceedingly low. This pattern, seem to suggest that, most sediment particles below 0.1mm ended up into the Kafue River as they never significantly settled on the Magoye River bed. This signals water quality issues in the receiving Kafue Flats and River. In conclusion, the granulometric study of contemporary fluvial sediment in the Magoye River provides valuable insights into the sediment dynamics and the potential implications for neighbouring river catchments in Zambia and the subregion. The development of a regression model calibrated specifically for Zambian river catchments represents a significant advancement in the understanding of sediment transport and deposition in the region. The findings reveal a complex distribution of sediment particle sizes, with implications for sediment settling times and river bed characteristics. The downstream areas near the bridge exhibit diverse sediment sizes, with larger particles dominating, highlighting the impact of proximity to the bridge on sediment characteristics. Furthermore, the study underscores the influence of particle size on sediment settling patterns, with implications for sediment transport and water quality in the Kafue River. These findings have important implications for river management and conservation efforts in Zambia and neighbouring regions, providing a valuable foundation for further research and environmental protection initiatives within the catchments.

Keywords: Fluvial sediment, particle size, sediment transport, rivers.

PHYSICAL DESCRIPTION OF THE STUDY AREA

Magoye River is located in the Southern Province of Zambia, and the specific study area is located between 15° 50′ S to 15° 58′ S and longitude 27°32′ E to 27° 37′ E. Magoye River is located partly in the District of Pemba, Monze and Mazabuka (Baumle, 2007). Magoye River flows in the Mazabuka District between Magoye Bridge and Kafue flats. The Magoye River flows northbound to the Kafue Flats before reaching the Kafue River. It has a catchment area of 2,038.2 km², the headwaters are located in Pemba around Mookamunga in Muzandu Village, Hamaundu Chiefdom (MWDS, 2021). The total length of the Magoye River from headwaters to the confluence is 167 kilometres and on the downstream alone, it is 27.6 Kilometres (Baumle, 2007). The main tributaries of the Magoye River are the Ngwezi and Nalube Rivers and Kabomba Stream. The overall peak streamflow in the Catchment was noticed during the month of March for the simulated and observed respectively.

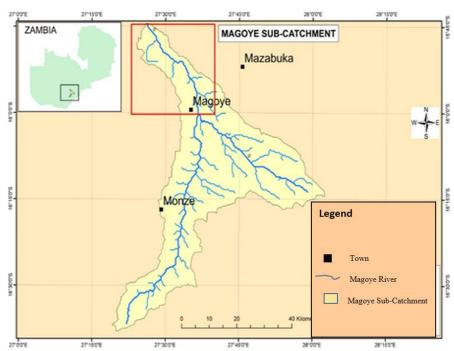


Figure 1: Map Showing the Geographical Location of Magoye sub-Catchment. Source: MWDS (2021).

DATA ANALYSIS

Bed load was analysed for particle size change using sediment sieves from the Geography Department at the University of Zambia. After particle size analysis was done, regression analysis was carried out to determine relationship between distance and changes in particles size and to extrapolate this relationship to stream power and modes of sediment transportation that are predominant downstream of the Magoye River. After particle size analysis, the type of materials transported were determined using Wentworth criteria (Table 4.4). Particle size were further analysed using descriptive statistics in form of graphs of frequencies and granulometric trend lines between the Magoye River Bridge and the mouth of the river.

Table 1: Wentworth's classification criteria for channel bed Materials

Channel Material	Particle size (mm)
Cobbles	64-80
Pebbles	5-63
Granules	2-4
Very coarse sand	1-1.99
Coarse sand	0.5-0.99
Very fine sand	0.063-0.49
Silt	0.032-0.062
Clay	< 0.032

Source: Wentworth (1922)

ETHICAL APPROAVAL

The study was submitted for ethical clearance to the University of Zambia, Natural and Applied Sciences Research Ethics Committee (UNZA-NASREC). Confidentiality and Anonymity for participants were upheld.

RESULTS OF THE STUDY

The study also granulometrically characterised the recent sediment deposited at selected cross sections of the river. The study calibrated the first ever regression model (Phi-mm) with a contextual relevance to Zambian river catchments and channels as opposed to those devised outside the country (Figure 5.10a). On average, the downstream of Magoye River bed was characterised by sediment of diverse particle sizes with those above 2 mm constituting 29% of sediment especially near the bridge. The sediments of 1 mm diameter were also in the same magnitude as those above. On average, the rarest occurring sediment type were those equal or less than 0.1mm as these takes long to settle due to their minute sizes (Figure 5.10b). A large proportion of sediment with particle size between 2mm and >2mm settled within the first 7-8 Km from the Bridge, which also attracted high river bed sand and stone quarrying and hence the degradation (Figure 5.10c). Sediment particles between 1mm and 0.5mm showed a high variable geospatial occurrence, but the latter drastically increase towards the mouth, which confirm influence of particle size on settling time (Figure 5.10d).

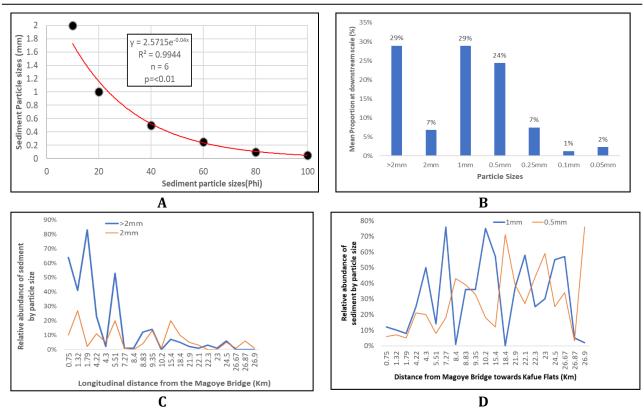


Figure 2: (a) Relationship between sediment particle sizes in phi and mm (b) average occurrence of sediment by particle size, (c-d) relative abundance and distribution of sediment by particle sizes and distance. Source: (Field data, 2022).

Furthermore, sediment with grain size of 0.25mm showed a high variability across the channel bed as compared to those whose grain sizes were 0.1mm to 0.05mm, which were usually in stable equilibrium throughout the channel profile in terms of relative abundance. Their low percentage of occurrence signify their low density and high affinity to remain suspended for longer time. For instance, the only highest occurrence for sediment with grain size of 0.1mm was record around 26 km away from the bridge near the mouth where river flow power exceedingly low (Figure 5.11. This pattern, seem to suggest that, most sediment particles below 0.1mm ended up into the Kafue River as they never significantly settled on the Magoye River bed. This signals water quality issues in the receiving Kafue Flats and River. Moreover, details on drastic changes in relative abundance of occurrence of sediments can be appreciated in Figure 5.12, which shows qualitative impression of how sediment grain sizes for each sampling point varied relative to others farther away from the Bridge. Figure 5.12 generally and quantitatively shows that the earlier sections of the channel bed were predominantly characterized by pebbles, cobbles (>2mm) whereas the latter end around the mouth were characterized by fine sand and silt as per Wentworth sediment grain size criteria.

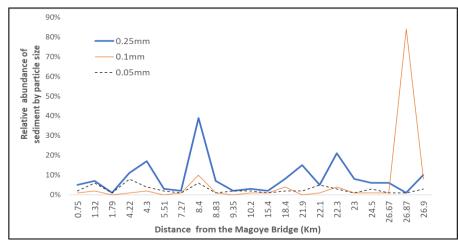


Figure 3: Distribution of sediment with grain size between 0.05 and 0.25 mm on the dry bed of the Magoye River from the Bridge to the mouth

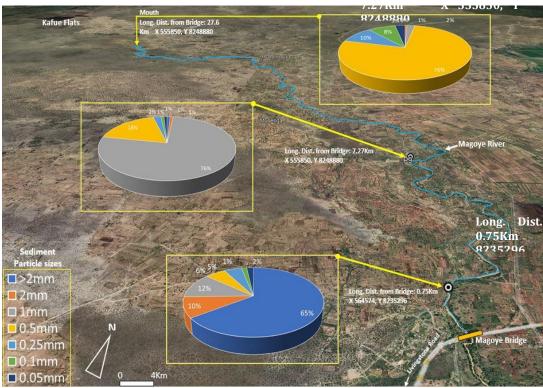


Figure 4: Sample Illustration of Sediment Granulometric Characterization at Different Cross Sections of The Downstream of The Magoye River.

Field Data (2022)

Relationship Between Sediment Depth and Sediment Volume on The Downstream

The study also estimated the volume of sediment that had accumulated on the bed of the river slightly after the Magoye small weir up to the mouth. Results show a very heavy burden of sediments on the riverbed amounting to over 5 Million Cubic Metres (5MCM) spread across 460,000 m² of dry bed surface area. This implies a high erosion and transportation processes from not only the immediate area, but from the upstream of the entire catchment at large. It also means that the downstream was experiencing large scale deposition especially towards

the mouth as the stream flow power reduce leading to large scale bed aggradation, loss of storage capacity and flooding in low lying areas near the mouth (Figure 5.8a-b).

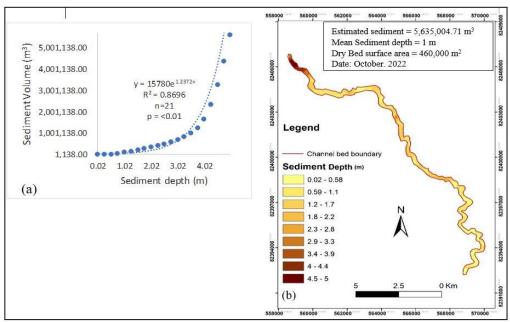


Figure 5: (a) Relationship between sediment depth and sediment volume; (b) Sediment accumulation map, downstream of Magoye river channel. (Field data, 2022).

DISCUSSION OF RESULTS

The most imposing was excessive siltation of the river channel bed leading to drastic loss of flowing water-holding capacity. This, coupled with large scale sand mining in the buffer zone triggered heavy burden of sediment on the riverbed amounting to over 5 million Cubic Metres (MCM) spread across 460,000 m² of dry bed surface area. This was as a result of high erosion and transportation processes from not only the degraded buffer zone with loose soils, but also from the upstream of the entire catchment at large where agricultural land had taken up vegetation cover leading to large scale sediment deposition on the downstream and especially towards the mouth. Earlier studies by scholars such as GRZ, (2019); Muchanga (2020), Sichingabula (2021) confirm that such high magnitudes of siltation are usually a function of destructive activities (especially agriculture and sand mining) happening in the entire catchment and buffer zone as indicated in the earlier section. Magoye Catchment has transitioned from positive to negative water balance with -86.368Mm³/year, revealed by Tena et al. (2021).

The sediment that accumulated on the downstream of the Magoye River channel were of varied sizes over space and distance from the Magoye Bridge. Accumulated sediment was clastic in nature produced by the physical disaggregation of pre-existing rocks during weathering and mechanical erosion (Panchuk, 2016). Sandy group of sediment was the most predominant (Panchuk, 2016) and, this explains why sand mining is very common on the downstream of the river channel. To this effect, socioeconomic challenges and water crises were not the only variables that triggered excess sand mining, but also the geological nature of parent rocks, which supplied the clastic sandy sediment over time. The most uncommon sediment type was

very fine sand and silt (0.1mm-0.05) (Panchuk, 2016; Gadisa and Madega, 2021) as these take long to settle due to their minute sizes (Figure 5.10b) and most likely, these found their way into the Kafue flats and the Kafue River. According to Sichingabula (1999), such classes of sediment usually carry chemicals and depending on the nature of the chemicals they contain, they may be either detrimental or useful to the receiving hydrologic system and biodiversity.

However, 0.1mm to 0.05mm sediment were usually in stable equilibrium throughout the channel profile in terms of relative abundance. Their low percentage of occurrence indicate their tendency to remain suspended for longer time due to low density compared to water (Leopold *et al.*, 1957; Sichingabula, 1999). For instance, the only highest occurrence for sediment with grain size of 0.1mm was recorded around 26 km away from the bridge near the mouth where according to Mueller (1965), flow velocities tend to be extremely low for further transportation of sediment. Whereas the upstream of the Magoye River, was getting clustered with reservoirs, the downstream was becoming drier and silted due to lack of outlet valves on most of the reservoirs on the upper catchment (Sichingabula *et al.*, 2014; MWDS, 2021).

Generally, the downstream of Magoye River channel was characterized by different geomorphic features such as sand bars, meanders of different types with some having potential to evolve into oxbow lakes, very low gradient and slope percentage punctuating high settling of sediment of different type and size with sandy sediment as the most commonly distributed. The river had arguably evolved from being a single naturally uniform river into being Reservoir River upstream and Sandbank River on the downstream due to anthropogenic influence of dams. As of 2022, the river was classified to be highly sinuous heavily inundated with sediment.

In conclusion, the fact that, human activities in the wider catchment context was predicting the human activities within the buffer zone was clear indicator of poor implementation of the law regarding the protection of the buffer zone. The river channel was severely silted as exemplified by more than 5 Million m³ of sediment overlaid over the 27.6Km stretch from the Magoye Bridge to the mouth.

Appendix I: Technical Data on Sediment Particles Weights for Granulometric Analysis

			Distance from		Initial Weight of	Phi10 Sieve +	Sediment
Sample Field ID	X	Υ	Bridge (Km)	ELEVATION (M)	Phi 10 Sieve (g)	Sediment (g)	weight (g)
11	565006	8239957	0.77	1001	91	384	
10	555983	8248577	8.4	992	91	93	2.00
3a	558193	8247114	22.3	994	91	92	3.50
3b	564574	8235296	0.75	1003	91	267	176.00
2	558441	8247201	21.9	991	91	96	5.00
Α	565482	8237646	4.3	1003	91	95	4.00
MBIYA	565458	8237603	4.22	1000	91	122	31.00
MAGOYE	560414	8246203	18.4	997	91	95	4.00
P4	564884	8235696	1.32	1005	91	195	104.00
M4	557874	8246988	23	994	91	92	1.00
P9	56439	8239027	7.27	998	91	93	2.00
M6	556719	8247382	24.5	991	91	102	11.00
P17	564266	8241031	9.35		91	126	35.00
M10	555850	8248880	26.9	992	91	105	14.00
TP	565262	8235907	1.79	1006	91	562	471.00
MAGOYE2	561526	8244206	15.4	997	91	100	9.00
ТВ	558400	8247131	22.1	987	91	93	2.00
P15	564567	8240852	8.83		91	127	36.00
P5	564378	8238351	5.51		91	265	174.00
P17	564269	8241441	10.2		91	91	0.00
M9	555985	8248439	26.67	988	91	91	0.00

A: Phi 10

			Distance from		Initial Weight	Phi20 +	Sediment
Sample Field ID	Х	Υ	Bridge (Km)	ELEVATION (M)	of Phi 20 (g)	Sediment (g)	weight (g)
11	565006	8239957	0.77	1001	94	115	21
10	555983	8248577	8.4	992	94	94.5	0.5
3a	558193	8247114	22.3	994	94	95	1
3b	564574	8235296	0.75	1003	94	120	26
2	558441	8247201	21.9	991	94	106	12
Α	565482	8237646	4.3	1003	94	103	9
MBIYA	565458	8237603	4.22	1000	94	109	15
MAGOYE	560414	8246203	18.4	997	94	102	8
P4	564884	8235696	1.32	1005	94	160	66
M4	557874	8246988	23	994	94	94	0
P9	56439	8239027	7.27	998	94	96	2
M6	556719	8247382	24.5	991	94	104	10
P17	564266	8241031	9.35		94	125	31
M10	555850	8248880	26.9	992	94	95	1
TP	565262	8235907	1.79	1006	94	107	13
MAGOYE2	561526	8244206	15.4	997	94	122	28
ТВ	558400	8247131	22.1	987	94	98	4
P15	564567	8240852	8.83		94	105	11
P5	564378	8238351	5.51		94	157	63
P17	564269	8241441	10.2		94	95	1
M9	555985	8248439	26.67	988	94	95	1

B: Phi 20

			Distance from		Initial Weight	Phi40 +	Sediment
Sample Field ID	х	Υ		ELEVATION (M)	of Phi 40 (g)	Sediment (g)	weight (g)
11	565006	8239957	0.77	1001	90		
10	555983	8248577	8.4	992	90	91	1
3a	558193	8247114	22.3	994	90	150	60
3b	564574	8235296	0.75	1003	90	122	32
2	558441	8247201	21.9	991	90	178	88
Α	565482	8237646	4.3	1003	90	172	82
MBIYA	565458	8237603	4.22	1000	90	123	33
MAGOYE	560414	8246203	18.4	997	90	90	0
P4	564884	8235696	1.32	1005	90	114	24
M4	557874	8246988	23	994	90	137	47
P9	56439	8239027	7.27	998	90	269	179
M6	556719	8247382	24.5	991	90	200	110
P17	564266	8241031	9.35		90	178	88
M10	555850	8248880	26.9	992	90	94	4
TP	565262	8235907	1.79	1006	90	133	43
MAGOYE2	561526	8244206	15.4	997	90	167	77
ТВ	558400	8247131	22.1	987	90	179	89
P15	564567	8240852	8.83		90	196	106
P5	564378	8238351	5.51		90	135	45
P17	564269	8241441	10.2		90	232	142
M9	555985	8248439	26.67	988	90	198	108

C: Phi 40

			Distance from				
Sample Field ID	Х	Υ			Initial Weight of Phi 60 (g)		
11	565006	8239957	0.77	1001	87	99	
10	555983	8248577	8.4	992	87	161	74
3a	558193	8247114	22.3	994	87	194	107
3b	564574	8235296	0.75	1003	87	102	15
2	558441	8247201	21.9	991	87	181	94
Α	565482	8237646	4.3	1003	87	120	33
MBIYA	565458	8237603	4.22	1000	87	115	28
MAGOYE	560414	8246203	18.4	997	87	147	60
P4	564884	8235696	1.32	1005	87	106	19
M4	557874	8246988	23	994	87	183	96
P9	56439	8239027	7.27	998	87	129	42
M6	556719	8247382	24.5	991	87	136	49
P17	564266	8241031	9.35		87	167	80
M10	555850	8248880	26.9	992	87	220	133
TP	565262	8235907	1.79	1006	87	114	27
MAGOYE2	561526	8244206	15.4	997	87	104	17
ТВ	558400	8247131	22.1	987	87	129	42
P15	564567	8240852	8.83		87	197	110
P5	564378	8238351	5.51		87	112	
P17	564269	8241441	10.2	-	87	120	33
M9	555985	8248439	26.67	988	87	152	65

D: Phi 60

			Distance from				
Sample Field ID	Х	Υ	Bridge (Km)	ELEVATION (M)	Initial Weight of Phi 80 (g)	Phi80 + Sediment (g)	Sediment weight (g)
11	565006	8239957	0.77	1001	85	90	5
10	555983	8248577	8.4	992	85	152	67
3a	558193	8247114	22.3	994	85	136	51
3b	564574	8235296	0.75	1003	85	98	13
2	558441	8247201	21.9	991	85	121	36
Α	565482	8237646	4.3	1003	85	113	28
MBIYA	565458	8237603	4.22	1000	85	100	15
MAGOYE	560414	8246203	18.4	997	85	92	7
P4	564884	8235696	1.32	1005	85	103	18
M4	557874	8246988	23	994	85	97	12
P9	56439	8239027	7.27	998	85	90	5
M6	556719	8247382	24.5	991	85	96	11
P17	564266	8241031	9.35		85	91	6
M10	555850	8248880	26.9	992	85	102	17
TP	565262	8235907	1.79	1006	85	91	6
MAGOYE2	561526	8244206	15.4	997	85	88	3
ТВ	558400	8247131	22.1	987	85	93	8
P15	564567	8240852	8.83		85	106	21
P5	564378	8238351	5.51		85	95	10
P17	564269	8241441	10.2		85	90	5
M9	555985	8248439	26.67	988	85	96	11

E: Phi 80

			Distance from				
Sample Field ID	х	Υ		ELEVATION (M)	Initial Weight of Phi 100 (g)	Phi100 + Sediment (g)	Sediment weight (g)
11	565006	8239957	0.77	1001	85	87	2
10	555983	8248577	8.4	992	85	102	17
3a	558193	8247114	22.3	994	85	95	10
3b	564574	8235296	0.75	1003	85	89	4
2	558441	8247201	21.9	991	85	85	0
Α	565482	8237646	4.3	1003	85	89	4
MBIYA	565458	8237603	4.22	1000	85	87	2
MAGOYE	560414	8246203	18.4	997	85	88	3
P4	564884	8235696	1.32	1005	85	89	4
M4	557874	8246988	23	994	85	86	1
P9	56439	8239027	7.27	998	85	87	2
M6	556719	8247382	24.5	991	85	86	1
P17	564266	8241031	9.35		85	84	-1
M10	555850	8248880	26.9	992	85	85	0
TP	565262	8235907	1.79	1006	85	86	1
MAGOYE2	561526	8244206	15.4	997	85	86	1
TB	558400	8247131	22.1	987	85	87	2
P15	564567	8240852	8.83		85	88	3
P5	564378	8238351	5.51		85	86	1
P17	564269	8241441	10.2		85	86	1
M9	555985	8248439	26.67	988	85	87	2

F: Phi 100

Daniel, M. & Muchanga, M. (2025). Granulometric Characterisation and Distribution of Contemporary Fluvial Sediment in the Magoye River Sink, Southern Zambia. European Journal of Applied Sciences, Vol - 13(03). 97-107.

			Distance from				
Sample Field ID	х	Υ	Bridge (Km)	ELEVATION (M)	Initial Weight of Phi 120 (g)	Phi120 + Sediment (g)	Sediment weight (g)
11	565006	8239957	0.77	1001	53	56	3
10	555983	8248577	8.4	992	53	64	11
3a	558193	8247114	22.3	994	53	60	7
3b	564574	8235296	0.75	1003	53	58	5
2	558441	8247201	21.9	991	53	57	4
А	565482	8237646	4.3	1003	53	59	6
MBIYA	565458	8237603	4.22	1000	53	64	11
MAGOYE	560414	8246203	18.4	997	53	55	2
P4	564884	8235696	1.32	1005	53	67	14
M4	557874	8246988	23	994	53	54	1
P9	56439	8239027	7.27	998	53	55	2
M6	556719	8247382	24.5	991	53	59	6
P17	564266	8241031	9.35		53	57	4
M10	555850	8248880	26.9	992	53	58	5
TP	565262	8235907	1.79	1006	53	56	3
MAGOYE2	561526	8244206	15.4	997	53	55	2
ТВ	558400	8247131	22.1	987	53	61	8
P15	564567	8240852	8.83		53	57	4
P5	564378	8238351	5.51		53	58	5
P17	564269	8241441	10.2		53	57	4
M9	555985	8248439	26.67	988	53	55	2

G: Phi 120