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ABSTRACT

Flexibility in managerial decision making will alter the true value of real world
projects. Standard actuarial practice for evaluating real-world projects such as
commodity based mining operations rely upon Net Present Value methodology
and in essence ignore any flexibility available to the operator to vary the
project. Real Option analysis rectifies this to allow better evaluation of
economic investment decisions by incorporating managerial flexibility into an
option pricing framework. In this paper we extend the results of Konstandatos
and Kyng (2012) to evaluate a multi-stage compound mining investment
decision where the mining operators have the flexibility to delay project
commencement as well as options to abandon production and to expand
production to a new mining seam if conditions improve. We allow an
independent abandonment of the expansion from the underlying project. We
demonstrate that the flexibilities considered give rise to a third-order exotic
compound structure, which are evaluated in terms of first, second and third
order generalised compound option instruments (Konstandatos (2008)). Our
novel representations of the project values contain generalizations of standard
compound options and are interpretable as generalised call, call-on-call and
call-on-call-on-call type options on the mined commodity price. We provide
readily-implementable closed-form analytical formulae which are expressed in
terms of the wuni-variate, bi-variate and tri-variate Normal distribution
functions.

Keywords: Real Options, Commodity Mining Operations, NPV, Risk Neutral
Valuation, Exotic Compound Options

INTRODUCTION AND BACKGROUND
Capital budgeting, namely valuation of investment projects, and corporate value creation, are
central considerations for investment managers. Resource limitations necessitate accurate
valuation and analysis of real-world projects, making managerial flexibility paramount in
making decisions in situations with incomplete information. The framework of Real Options
naturally arises whenever economic decisions need to be made.

The first author to describe corporate economic assets in terms of financial option
considerations was Myers (1977) when examining the determinants of corporate borrowing.
Myers identified that the value of a firm reflects an expectation on the firm’s future
investments. Part of a firm’s value consists of the present value of all the options the firm has
available to make future investments on favourable terms, contingent upon the decision rule
employed to determine whether their managerial ‘options’ are to be exercised. It was Myers
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who coined the term ‘Real Option’ to describe such embedded project flexibilities. Real options
may therefore be identified in many industries. Pharmaceutical firms making staged
commitments to develop a new drug from concept, through research, manufacture and then
marketing is one example. The context considered in the present work, namely mineral
exploration and mining operations, is another. In mining operations the real options inherent
in the project become apparent where the mining operator is free to decide what
circumstances make it worthwhile to commence operations, to expand operations, to delay
operations or possibly to abandon existing operations. Real options arise naturally therefore in
the development of new mines, in joint ventures and in mineral exploration.

The application of Real Option analysis to commodity based investment operations is a logical
extension of traditional capital budgeting methods. In traditional capital budgeting problems
the ‘discounted cash-flow’ model provides the basic framework for most financial analysis.
Conventionally the Net Present Value of a project is assumed to be the appropriate measure of
the value the project will add to the firm choosing to invest in it. Surveys such as Bhappu and
Guzman (1995) and Slade (2001) conclude that discounted cash-flow methods form the basis
for investment decisions for most mining companies (Topal (2008)). However, mining
operations are extremely capital intensive and usually require many years of production
before achieving a positive cash-flow, with a longer project life than many other industries. As
observed in Myers (1977), limiting the analysis to discounted cash-flow calculations will tend
to understate the project value by ignoring the option value associated with the flexibility to
grow profitable lines of business. Dixit and Pindyck (1994) caution that ‘the simple net present
value rule is not just wrong, it is often very wrong’ (p136). The limitations of the discounted
cash-flow approach, which fails to consider managerial flexibilities arising from embedded
options to delay, expand or abandon a project has led to criticism and to calls for methods
which include scope for considering the embedded options when analyzing financial decisions.
Fundamentally, in the discounted cash-flow approach there is a failure to allow for the
stochastic nature of the output prices. It is this limitation which real option considerations
attempt to rectify.

Empirical analysis of investment real options in the mining industry is difficult since the
required information is usually private. The empirical study of Moel and Tufano (2002)
analysed a private database tracking the opening and closing of 285 developed gold mines in
North America in the period 1988-1997. Their analysis of the determinants for commencement
and abandonment of mining operations found that the decisions were largely exercised by the
mining corporations based on the spot price and volatility of the mined commodity. The study
of Colwell et al (2003) analysed the value of the abandonment option for 27 Australian mining
companies from 1992-1995 and found that on average the closure option accounted for
around 2% of the individual mine’s total value; although these authors cautioned that their
conclusions were highly sensitive to assumptions and to input parameters. Bradley (1985)
however found limited evidence that mining companies alter their production in light of the
movements of the commodity spot price. This study suggested that mining companies make
all-or-nothing decisions to commence mining operations and then simply produce at full
capacity as long as the spot price exceeds the marginal cost of production. The question of
whether mining companies exploit their flexibilities to the fullest extent possible remains open
at the moment. It would seem however that many companies underestimate the importance of
their available flexibilities to the overall value of their mining operations.

All risk-neutral theories of option pricing, no matter the underlying asset price dynamics, all
assume freely traded securities in liquid markets for the underlying asset. The assets
underlying the options encountered in many kinds of real options analysis are often not traded
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in financial markets. The lack of a readily tradable underlying asset therefore giving rise to
objections to the application of modern option pricing theory. Despite this many leading
authors argue that it is valid to apply risk neutral valuation approaches to real options
situations.

Merton (1998) demonstrated in his Nobel Prize lecture that replication based valuation is still
appropriate for pricing derivatives even where replication of the underlying security is not
feasible because it is rarely traded. Further, Arnold and Shockley (2002) demonstrated that
valuation by no arbitrage pricing principles is the fundamental assumption of both the
traditional NPV and the Real Options approaches. In the case of commodity based enterprises
the real options based approach can be theoretically justified whenever the value of the project
may be expressed as an option on the underlying, liquid and actively traded, commodity.

Brennan and Schwartz (1985). Were amongst the first to apply option pricing theory to mine
and oil investment projects. They demonstrated that mining projects could be interpreted and
valued as complicated options on the underlying commodities, and used numerical
approximation finite difference techniques to perform their evaluations. The analysis of
Trigeorgis (1993) also utilised numerical approximation to determine the values of several
real option examples via the Binomial pricing method, a well-known numerical approximation
scheme for the Black-Scholes framework. This was followed by the first widely available work
for practitioners and academics (Trigeorgis (1996)) in which a variety of real option case
studies were considered with numerical approximation techniques for their evaluation. Other
influential works include Amram and Kulatilaka (1999) and Copeland and Antikarov (2001).
More recently Topal (2008) used a decision tree approach with Monte-Carlo simulation in his
‘real option’ analysis.

In the present paper we take a real options approach which models the stochastic nature of the
valuation of commodity-based mining operations using exotic compound option pricing
considerations. In our analysis we express the project flexibilities as highly exotic compound
options which are priced analytically in our valuation framework. This approach leads to
highly symmetric closed form analytic formulae in the Black-Scholes model. We consider
mining projects for commodities such as gold and silver, which are also financial assets which
are readily traded in highly liquid markets. In effect we demonstrate the valuation of the
mining projects under consideration as exotic options on the underlying highly liquid
commodity. Before we do that however, it makes sense to give some background to option
pricing.

In the standard or plain-vanilla call and put options, the underlying asset is the commodity or
stock price itself. Trading in standard options allows the holder to trade and hedge positions in
the underlying stock or commodity directly. Compound options in contrast are more
complicated instruments where the underlying asset the option is written on is itself another
option.

In the standard scenario a compound option confers the right on the holder to trade in a long
or short position in another underlying, option. That is, the underlying asset of the compound
option is another option contract which references the underlying asset or commodity. For this
reason such instruments are sometimes referred to as higher order exotics (Buchen (2004),
Konstandatos (2008)). A standard call-on-call compound option for instance will allow the
holder to receive a long position in a call option at expiry upon exercise, whereas a call-on-put
allows the holder a long position in a put option.
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Valuation formulae for European compound options were first developed by Geske (1979).
Extensions include the valuation of sequential exchange opportunities (Carr (1988)). Buchen
(2004) demonstrates the replication of numerous dual expiry exotic options in terms of
standardised ‘second-order’ instruments, which include as special cases the prices of the call-
on-call, call-on-put, put-on-call and put-on-put compound options of Geske. Theoretical
methods for the development and pricing of more generalised exotic compound options with
both barrier option and lookback option features may be found in Konstandatos (2003, 2008).
Lee et al (2008) also apply option pricing theory to evaluate generalised sequential compound
options.

The type of compound options we consider here arise naturally in the commodity mining
context and may be usefully thought of as non-standard or ‘generalised compound options’. We
build on Konstandatos and Kyng (2012), which applied similar methods to pricing commodity
based mining operations in which results were expressed in terms of dual-expiry (second-
order) instruments. The main result of this paper is the pricing of a commodity-based mining
project with the flexibility to delay, expand and abandon operations, in which the expanded
operations themselves have the added flexibility of abandonment after commencement,
requiring the use of first, second and third order generalised compound option instruments. To
do this we demonstrate the decomposition of our project valuations into first, second and
third-order generalizations of the Gap-option instruments as defined in Section 2.

The remainder of this paper is structured as follows. Section 2 provides an overview of option
pricing theory, and sets up the notation and framework which we employ in our analysis This
methodology is an extension of Buchen (2004) to the tri-expiry scenario, and forms the non-
standard methodology which we utilize to price the exotic option structures appearing in this
paper. Section 3 contains the main contribution of this paper. Section 3.1 provides a succinct
closed-form analytic expression for a ‘basic project’ with delay and abandonment. Our
valuation is expressed solely in terms of one first order Gap instrument and one second order
Gap option instrument, which are interpretable respectively as a generalised call option and a
generalised call-on-call type exotic compound option on the underlying commodity price. This
is a new representation for the value of such a project, and agrees with the previously
published formulae in Konstandatos and Kyng (2012). Section 3.2 contains the valuation of the
‘compound mining project’ in which we add an option to expand production, with the
expansion itself having its own option to abandon. Our closed form valuation formula requires
the tri-expiry valuation framework and the use of our third-order generalisations of the Gap
option instruments from Section 2. The appearance of the additional terms up to third-order in
the project value are then interpretable as the contribution of ‘call-on-call’ and ‘call-on-call-on-
call’ compound options on the commodity to the project price. Section 4 provides numerical
valuation and discussion of our formulae followed by a brief conclusion in Section 5.

OPTION PRICING FRAMEWORK
For completeness this section gives an overview of option pricing theory in the Black-Scholes
framework we’re working in, and a description of the notation which will be utilised our
analysis in Section 3. A readable introduction to the mathematics of option pricing theory may
be found in Wilmott et al (1995).

Review of Option Pricing Theory

The Black-Scholes Option Pricing model, building on Samuelson (1965), was developed in the
early 1970s and is now considered a classic result in the Finance industry. Using the idea of
efficient markets, Black and Scholes (1973) and Merton (1973) demonstrated that an option
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over a stock has an economic value depending on x, (the market price of the stock) and ¢, (the
time elapsed since the option was written). The model assumes the stock price process is
geometric Brownian motion, and makes several idealized assumptions about market frictions.
The underlying stock process is assumed to follow the dynamics described by the Log-Normal
Stochastic Differential Equation:

The parameters (u, q, o) represent the drift, continuous dividend yield and the volatility of the
asset. W, Represents a standard Wiener Process. In the mining context g will represent the
yield of the underlying asset net storage costs which are assumed to be proportional to the
spot price.

Let V(x, t) be the value at time t value of some option contract defined over an asset with
current valuex. V(x, t) Satisfies the Black-Scholes Partial Differential Equation (PDE) on the
domain D = {(x,t)|x > 0,0 <t < T}, subject to the terminal boundary conditionV(x,T) =
f(x), where f(x) is any payoff-function of the stock pricex.

v av 1 0%V
- _ _ 242 _ — 2
at+(r q)x ax+20' X 9 V=0 (2)

Where r is the risk-free rate. The time t=T is the ‘option maturity’. A European call of strike
price K has payoff f(x) = max(x —K,0) = (x — K)* and satisfiesV(0,t) = 0, namely the
option value is zero if the asset becomes worthless. The European put option satisfies similar
conditions. The solutions subject to the relevant boundary and expiry conditions for European
call and put options were shown by Black and Scholes (1973) to be given by:

BSCall(x,K,r,q,0,7) = xe"¥*N(d,) — Ke ""N(d,)

(3)
BSPut(x,K,r,q,0,7) = Ke ""N(—d,) — xe 1"N(—d,)

1

Where [d,,d,] = "

[ln(%) +(r—q i%az)r] andt =T —t.

The PDE approach for option pricing was first used in Black and Scholes (1973) to derive
analytic option pricing formulae. PDE methods also are the basis for various discretization
schemes such as finite differences for numerical approximation methods. An alternative
approach or option pricing is due to Harrison and Pliska (1981). This approach determines the
option price by computing the expected option payoff under the equivalent martingale
measure (also known as the risk neutral distribution), discounted at the risk free rate of
interest. This amounts to setting the dirft the risk-free rate, u = r in Eq (1). The risk neutral
expectations method is mathematically equivalent to solving PDE (1) subject to relevant
boundary conditions. This follows from the Feynman-Kac formula which relates the solutions
of parabolic Linear PDE boundary value problems to quadratures against densities satisfying
the forward and backward Kolmogorov equations defining certain transition probability
density functions (Kac (1949); Konstandatos (2008) has further details).

Numerical methods are typically applied when it is difficult or impossible to derive analytical
valuation formulae. Various numerical methods exist for option pricing, most notably Monte
Carlo simulation (Boyle (1977)) and the binomial method (Cox, Ross and Rubinstein (1979)).
The binomial method is a discrete time, discrete state space approximation which models the
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asset price distribution as “log-binomial” rather than log-normal. Another approach is to apply
finite difference methods for parabolic PDEs to the Black-Scholes equation (Hull and White
(1990)). Examples of the use of numerical methods in the real options context can be found in
Trigeorgis (1993, 1996).

Generalised compound options

In this section we define and provide formulae for the non-standard instruments which we use
to represent our prices. The third-order instruments which we define below are the
generalisations to a tri-expiry framework of a dual-expiry pricing methodology outlined in
Buchen (2004). The ‘compound’ nature of our instruments arises from the payoffs which
define them. The holder of a generalised compound instrument is to receive another
(underlying) generalised compound instrument of lower-order with a longer expiry date
rather than the stock or commodity, provided the exercise condition is satisfied.

The most basic instrument we consider the first-order ‘Gap-option’. This isn’t a compound
option, but it is defined by its payoff at some timet = T. For reasons which will become
apparent we think of this as a ‘generalised first-order instrument’. It coincides with standard
call and put options for specific choices of parameters.

GExXle=r = X —K)L(s X >5¢) (4)

We have used the statistical indicator function 1(.) (i.e. the Heaviside step function) in the
payoff to specify the exercise condition on the underlying asset at expiry:

_f1 ifX=20

1X=20)= { 0 otherwise

The upper indexs = %1 in the definition is used to specify the direction of the greater-
than/less-than sign in the exercise condition for the asset price X in the Gap option payoff. It
should be clear that the above specification defines a generalised option with a decoupling of
the exercise price ¢ from the strike priceK. The particular choice of exercise condition s = +1
and exercise price ¢ = K coincides with a plain-vanilla call option of strike price K, whereas
s = —1,& = K reproduces the formula for a put option up to sign. Note also the upper and
lower index pairing of the exercise indicator with exercise price. Closed form formulae are
readily obtained in the Black-Scholes framework (see Konstandatos (2003, 2008):

G x(x,7) =xe™ TN(df) - K e‘”N(df — o1) (5)

Where d; = %\E [ln(x/f) +(r—q+ %az)r]. In the above notation we may express the prices of

standard call and put European options as follows, in agreement with Eqs (3):

BSCall(x,K,1,q,0,7) = Gg.x(x,T)
BSPut(x,K,r,q,0,7) = —Gg, x(x,7)

Where 7 = T — t is the time remaining to expiry? The above instrument has one expiry time,
t = T which corresponds to the option payoff.

Second-order instruments are defined with two future expiry times, (T;,T,) with T; < T,. At
expiry time T; this instrument pays a first-order Gap option as defined in Eq (5) with strike
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price K, index condition / exercise price ( s,¢;) and expiry time at time T, provided the
underlying asset exercise condition s; X > s; ; is satisfied at time T;. The exercise condition at
time T; is equivalent to the underlying asset being either above or below the exercise price &;
when s; = *1 respectively.

G;‘ll;zz;K(X)lt=Tl = G;;,K (X, T2 - T1)1(51 X > Sl 61) (6)

The closed-form analytic expression for the price of this instrument at time t <T; is
determined by expectations. The result is:

Ggllgzz;K(x' T1;T2)
T1
= xe_qTZNz dl,dz;slsz —
'z (7)
T
- Ke_rTZNZ d:’l,dé,;SZ
Ty
Where
, 1 X 1 )
, 1 X 1 .
ld,, d5] = a\/r_z[ln(f_) + (r— q iza >T2]

N, (x,y; p) Denotes the bi-variate Normal distribution function with correlation coefficient p.

The third-order generalised compound instruments are defined with three future expiry times,
(T, T,, T3) with T; < T, < T;. At expiry time T; this instrument pays a second-order Gap option
as defined in Eq (7) with strike price K and index conditions / exercise prices (s1¢;), (52¢2)

and dual expiry times (T,, T;), provided the underlying asset exercise condition s; X > s; &; is
satisfied at time T;.

$15,S
Gf11522533:K(X)|t=T1 ‘s
6511522:1( X, T, =Ty, Ts = T)1(s1 X > 51 &) 1(s, X (8)
> 53 §2)
It is also possible to derive the following closed-form analytic expression for this third-order

abstract instrument in terms of the tri-variate Normal distribution. (See Konstandatos (2008)
for details of the calculations).

G;lgzzg;l((x, T1,T5T3) = xe 9BN;(d,2) — Ke "N;(d', Q) 9)
() + (r-a+30%) ] @)+ (r-a-307)n]
Where = | o=[in () + (r—a+30%)w] |, @ = | = [n(2) + (r-a-307) 7]
= @)+ (r-a+ie)w] = @)+ (r—a-307)7]
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N;(d; Q) Denotes the tri-variate Normal distribution function with arguments d and with 3-D
correlation matrix, which depend on the overlapping times to the three expiry dates:

71 71
1 5152 - 5153 -
%) T3
T1 T2
.Q = 5152 - 1 5283 -
Ty T3
T1 T2
5153 - 5253 - 1
T3 T3

In the expressions for the second-order and third-order Gap option formulae (Egs (7, 9)) we
have denoted t; = T; — t for i = 1,2,3 to be the durations to the expiry times T; respectively.
Theé;, i = 1,2,3 are the generalised exercise prices for the correspondingT;. It is the existence
of the multiple expiry times and exercise prices in the definitions of our instruments that give
rise to the ‘dual-expiry’ and ‘tri-expiry’ structure in our analysis.

STRUCTURE OF COMMODITY BASED MINING PROJECT

In this section we recap the essential features of the commodity project framework set up in
Konstandatos and Kyng (2012) before extending the real option analysis to evaluate a more
complicated version of the mining operations considered in that paper. It is useful to think of
the mined commodity to be gold, as it is a mineral, a commodity and an investment asset
actively traded in financial markets. The market price is readily observable, along with gold
futures prices and the prices of standard options and other financial derivatives. Our analysis
however is applicable to any commodity based project. It transpires that all the project
variants considered in this paper have closed form analytic values which are expressible as
options on the commodity price, in terms of the exotic Gap option instruments described in
Section 2.

Flexible project with option to delay and option to abandon.

In this section we derive a new closed-form analytical formula for the basic project of this
paper, namely a project with an option to delay commencement with another option to
abandon the project at some future time after commencement for salvage value. To make the
ideas concrete, suppose the project sponsor has the option to commence some gold mining
project at some future timeT,,. By deciding to invest, the sponsor must outlay an initial amount
of capitalK,. In return, profits are received at times T, Ty, ..., T;, of amount X, — C at time T;
respectively, where X; is the time T; market price of gold and C is the cost of extracting and

processing the gold each period. We assume the cost of extraction is constant, and that by
committing the sponsor will be locked-in to the project and the cashflows until such time T, at
which the sponsor has the right to abandon the project if conditions have worsened (say with
the a substantial drop in the commodity price) for some salvage value S,,,. We will refer to the
structure outlined above as the ‘basic project’ which will serve as the building block for the
extra flexibility to be considered in the next section.

It is a basic financial result arising from arbitrage considerations that the expected commodity
price is the forward price for commodities which are also investment assets such as gold and
silver. Such assets provide owners with income as well as incurring storage costs. Let g denote
the net storage costs (convenience yield) calculated proportionally to the spot price, with the
risk-free rate r. For times T; > T,, we have that
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E{X;|X,} = e(T—CI)(Ti—To)XO

Following Konstandatos and Kyng (2012) we define the annuity factor for given integer
parameters (r,m,n) as follows:

n
A(r,m,n) = z e T (Ti=Tm)
i=1

With this annuity factor and the relationship between spot and forward prices we obtain the
following expression for the discounted expected cash-flows from times T to T, in terms of the
commodity price at time T, and the fixed cost of extraction per periodC:

n
Z e "TE(X, — C|Xp, } = A(q,0,n)X, — C A(r,0,n)

i=1

We now turn our attention to consider a project with an option to delay commencement until
some future time Ty with an added flexibility to abandon the project at time some time T,,, > T,
at which time the mining operators may recoup some salvage value for the project S, for the
abandoned operations before the project’s end at time T;,.

Consider the foregone cashflows at time T,,. clearly the mining operator will rationally choose
to abandon the project provided that the salvage value exceeds these foregone cashflows. Since
we have

PV {Foregone cashflows} = A(q,m,n) X,, — C A(r,m,n)
it follows the mining operator will choose between the greater:

PV {Project} = max(Sm ,A(g, m,n)X,, — C A(r,m, n))
=S, + (A(qmn)X,, — CA(r,mn)—S,)*

This is readily seen to be a call option on the time T;, commodity price. The project value at
time T, is therefore expressible as

Er {NPV{Project}} = A(q,0,m)X, — C A(r,0,m) — Ky + Sp,e "(Tm=To)
+A(q,m, n)G;,;K,(XO,Tm —Tp)

Where K' is defined in Eq (10). The reader should observe that the last term G,}LI;K,(XO, Ty —

T,) defines a call option on the commodity price with time T,,, — T, to expiry and with strike
price K'. with the further definition of the exercise price K"in Eq (10),

!

_CAr,mn)+S, . CA®,0,m)+K,—Spe " TmTo)

A(gmmn) ' B A(g,0,m) (10)

We write the value of the project as a strictly increasing function of the commodity price x at
timeT,.

Val{Proj}z,(x) = A(q,0,m)(x — K") + A(q,m,n)Gr . (x, Ty, = Tp)  (11)
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We may solve this equation numerically for the critical price x = a for which Val{Proj}  (x) >
0 whenever x > a and vice-versa. In terms of the critical price the project value for times
before commencement, in terms of the currently observed commodity price X; = x is
expressible solely in terms of one first order instrument with exercise/strike (a; K'') and one
second order instrument of generalised exercise prices (a, K") and strike priceK":

Val{Proj};<r, (x)
=A(q,0,m)G+ (x,TO —t)+G;;,;K,(x,T0 —t,Tm—t)

a;K"

(12)

Note this very brief representation of the project value is deceptively simple. The complexity of
the underlying structure is subsumed into the definitions of the first order and second order
instruments which we utilised from the framework in Section 2. When expanded fully the
representation of the project value requires first and second order instruments expressible in
terms of the uni-variate and bi-variate cumulative Normal Distribution functions respectively.
It is relatively straightforward to demonstrate that this representation agrees with
Konstandatos and Kyng (2012) when fully expanded. The utility of the above representation
will become apparent in the next section, where we consider a more complicated project with
option to delay commencement with abandonment, with a further option to expand
production, where the project expansion also comes with its own option to abandon, mirroring
the flexibility a mining operator may have to expand production and scale the expansion back
independently of an ongoing underlying project.

Flexible compound project: flexible project with a flexible expansion.

In this section we will extend the results of the previous section to evaluate a project with the
added right to expand production at some future stage after project commencement. We
maintain the basic structure from the previous section, namely an underlying mining project
with a right to defer commencement to a future time Tywith the right to abandon at timeT,,.
Added to this is the further operating flexibility to expand mining production at some time T,
with different underlying cost structures.

To commence the overall project the sponsor must outlay an initial amount of capital Kj,.at
time T, In return, the mining operator will receive profits at times T, T5, ..., T, of amount
Xr, — Cy attime T; respectively, where X; is the time T; market price of the commodity and C, is
the cost of extracting and processing each period. Furthermore, if the mining operator chooses
to expand mining production at time T,, say, they will receive profits at times Ty 1, Tp42, -, Tyt
of amounts X; — C,, where C,, represents the (possibly higher) cost of extracting the ore from
the expanded operations, and where time T, is the end-time for the expanded component of
the project. Furthermore, we will allow that the mining operator has the option to abandon the
expanded component of the project if they so choose at some timeT,,,» < T,r. We also allow the
added flexibility that the expanded project component may be abandoned without necessarily
abandoning the basic project. We introduce this structure with following rationale. As prices
rise for the underlying commodity it may make it profitable for the mining operator to expand
production and mine ore which is more difficult and costly to mine, possibly by sinking a
deeper shaft or by commencing operations in another costlier location. The flexibility in
mining the costlier ore is considered independently from mining the less costly ore in the basic
project. It should be apparent to the reader that the basic structure we are considering is of a
mining project with an option to delay commencement and with the option to abandon at some
time after commencement, as well as a further set of options to expand mining operations if
the commodity price improves, with the expansion itself having an option to abandon if
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conditions subsequently worsen. The pricing of this project demonstrates the higher-order
compounding effects in the decision process, requiring the appearance of first, second and
third order cumulative Normal distribution functions in the framework we’re utilising from
Section 2.. The extension of the pricing formulae in Konstandatos and Kyng (2012) to the
pricing of this flexible project with a flexible expansion is the basic new result of this paper.

To begin our analysis we consider the project at timeT,. The expanded component of the
project at this point in time may be considered as a project with an option to delay
commencement with abandonment at times (T, T,,,/) respectively. From the representation in

Eq (12) we can write the value of the expanded project as a function of the time T, commodity
price Xy:
Aq,p,m)G}, ki Xo, To = ) + A(q, m, n’)G;f;{é;Ké (X0, Ty = To, Ty — To)

Where Kj, Kz the generalised compound exercise are prices and where x = a' is the critical
value solution of

A(q,p,m')(x — K§) + A(q,m’,n’)G;‘g;Ké(x, T, — Tp) =0 (13)
Assuming that K, is the fixed cost for commencement of the expansion component in the event

the option to expand production is exercised, the following expressions follow for the
generalised exercise prices:

,  CA,m' n)+S,  CAlr,p,m') + K, — S, 1" (T =Tp)
E— A(q,m’,n’) PUE A(q,O,n)

(14)

The expected NPV of the whole project at time T, is therefore:

E{NPV{Proj}}TO (X,) =

A(g,0,m)X, 4 CoA(r,0,m) — Ky + Spe~"Tm=To)
+ A(Q; m, n)(;;é ; K(’) (XOr Tm - To) + A(q, D, m’)G;,; Kg (XOJ TO — t)

+ A(q'm"”')G;';g;Kg(Xo; Ty =To, Ty — To)

Where K|, is the fixed cost of commencing the whole project at timeT,,. This expression consists
of the project cashflows from time T, to abandonment time T,,and the T, value of the
expansion component of the project. we can write the T, expected NPV in the symmetric form:

E{NPV{Pro j}}TO (X,) =
A(q,0,m) (Xo — Ko) + A(q,m,)Gpgr s (Xo, T — To)

1
+ A(q,p, m’)G;’,’,Ké’ (Xo, Ty — ) (15)
+ A(q,m’, n’)G;f;{é;Ké (X0, Ty = To, Ty — To)
Where we have introduced the exercise prices
, _ CA(r,mn)+S, . CoA(r,0,m)+ Ky — Spe”"Tm=To) (16)
=

A(qmmn) % A(q,0,m)
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Each term in Eq (15) for the expected NPV is a strictly increasing function of X, which may be
zero. The rational mining operator will proceed when the commodity price exceeds some
threshold value X, = a, and will not otherwise proceed with the project. In terms of this
critical value, we can we see that the whole project can be thought of as a complicated exotic
option on the commodity price at time Ty, with t < T, price given in terms of four discounted
expectations:

e" M=y al{Pro j}e<r, ()
= EQ{A(Q; 0,m) (Xo — Ko )1(Xp > a)|X, = x}
+ A(q,m,n) Ey{ GI'(*(;;K(,)(XO,Tm —T)1(X, > a)|X, = x} (17)
+ A(q, 0, m)Eo{Gyr, 11 (X0, Ty — To)1(Xo > @)|X, = x}
+ A(gm',n') Eyf G;,J;(E;KE(XO, Ty — To, Tryr — To)1(Xo > a)|X, = x }

The expectations are conditional on X; = x, the observed time ¢t commodity spot-price. Note
we have taken the exponential discount factor to the left hand side in Eq (17). Given the
numerical critical values (a,a’) obtained via numerical solution of Eq (15) and Eq (13)
respectively, under the framework of Section 2 .we obtain the following compact expression
for the value of the project conditional on the currently observed commodity price x :

Val{Proj}e<r, (x)
= A(q,0,m) G:{;K(;’ (x, Ty — t)

+ A(q,m,n) G;;(;;K(; (x,Tg —t, T, — t) (18)
+ A(q; p' m,) G(;I—L:—’;Ké’(x' TO - t, Tp - t)
+A(q,m',n") G (x,To—t,Ty —t,Tppy — t)

a'KL; Kg

In the order appearing above, we see that the value of the project depends on one first-order
instrument on the commodity price expressible in terms of the uni-variate Normal distribution,
two second-order instruments expressible in terms of the bi-variate Normal distribution; and
one third-order instrument expressible in terms of the tri-variate Normal distribution. These
instruments may be interpreted respectively as follows: a generalised call option on the
commodity price with exercise prices and strike prices (a, K;'); two generalised call-on-call
type options on the commodity price with generalised exercise prices and strike prices
(a,Kp) and (a, a’, K;) respectively; and finally one generalised call-on-call-on-call type option
on the commodity price with generalised exercise prices and strike (a,a’, Kz). In the above
scenario we have assumed that T, =T, the case T, <T, involves a more complicated
decision structure requiring fourth order instruments which we do not cover here.

NUMERICAL IMPLEMENTATION AND DISCUSSION
In this section we present numerical valuations of Eq (12) and Eq (18). The calculations were
implemented in Matlab. The algorithm of Drezner (1989) was used to compute the bi-variate
normal cumulative density function (also documented in Hull (2009)). The tri-variate normal
cumulative density function was implemented using the quasi-monte Carlo algorithms
documented in Gentz (1993).

Project 1, is a ‘basic flexible project’ of Section 3.1 (Eq (12)). It has an option to commence gold
mining operations in one year, with 3-monthly commodity extraction for 6 years with an
option to abandon after 3.5 years for salvage value S,,. The extraction costs are
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Co, =$800/0ounce with a fixed cost of commencement of $2mil and salvage value of $1mil. The
parameters used are summarised in the table below for risk-free rate r, convenience yield y
and commodity volatility:

Table 1: Parameters for Project 1.

T, T T, K, Sm Co r y o

lyr 3.5yrs| o6yrs | $2,000,00¢ $1,000,00¢ $800 0.10 0.02 0.15

x 10
10 - - r
Project 1
Y I R S N Bt E(NPV(P1)) //
pd

6 ~

Value
\
N

600 700 800 900 1000 1100 1200
Commodity Spot Price

Figure 1. Project 1. Mining project with delay and abandonment / expected NPV.

Project 2 corresponds to the flexible project of Section 3.2 (Eq (18)) and consists of Project 1
(and with an option to delay commencement of all operations untilT,) with a further option to
expand production 1 year after commencement for 3 years. The option to abandon the
expanded operations is taken to occur one year after the commencement of the expansion. The
expansion also has 3-monthly commodity extraction for the maximum 3 year life with higher
extraction costs of C, per ounce, a lower salvage value for the expanded component S, and a
higher fixed cost of commencementK,,. The parameters for Project 2 are otherwise the same as

in Table 1 with the extra requirements summarized in Table 2:
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Table 2: Parameters for Project 2.

T ! Tn’ Kp Sm’ Cp

m

3yrs 4yrs $3,000,000 $750,000 $1100/ounce

Matlab’s numerical solver was used to solve the transcendental equation Eq (11) obtain the
critical value x = a for Project 1 and to numerically solve the transcendental Eqs (13, 17) for
x = (a’, a) respectively for Project 2.

7

x 10
20 - - F F F
Project 2
————— E(NPV(P2))
15 s
’/
/,’,
,/
1 A,’
7
’/

S 05 -
g

At - - - - :
600 700 800 900 1000 1100 1200 1300 1400 1500
Commodity Spot Price

Figure 2. Project 2. Compound mining project with delay, abandonment plus expansion with
abandonment / expected NPV.

Figures 1 and 2 show the value of Projects 1 and 2 respectively, calculated by two different
methods for different values of the spot commodity price. The blue curves represent the
project values using real-option analysis as given by Eq (12) and Eq (18) respectively. The
dashed red line represents the value for the projects calculated using the Expected Net Present
Value for the different spot values. Clearly the expected NPV calculation ignores the flexibilities
available to the mining manager so it must consistently understate the project’s value, as can
be seen for the range of commodity spot prices in the graphs. The two ‘real options’ implicit in
Eq (12) and the four implicit in Eq (18) are the options to delay and the option to abandon for
the basic project and the expansion respectively. As expected, as the spot value increases, the
value of the implicit ‘real options’ go to zero - the value of waiting for more information and
the value to forego future cash flows (including costs) will have little value when the spot value
is high enough. The value of the options have an inverse relation to the spot price With
increasing spot commodity prices therefore we observe the project values asymptotically
approaching the values predicted by the Net Present Value considerations.
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Figure 3 graphs the values of Project 1 and Project 2 on the same scale. Note how the extra
flexibility of Project 2 is reflected in the consistently higher valuation, with the difference
lessening as the spot price decreases. Due to the non-linear nature of the ‘real option’
components of the project values, the marginal value added by the extra flexibility of Project 2
compared to Project 1 is not simply additive but rather diminishes with each extra flexibility.
This is consistent with the numerical observations in Trigeorgis (1996).

6

x 10
18 . - - - : .

Project 1
Project 2 |-

16

14

12

/
y s

10

Value

7
/

4 //
’ e

/

0.___//_

600 700 800 900 1000 1100 1200 1300 1400 1500
Commodity Spot Price

Figure 3. Project 1 and Project 2 on same scale against spot price

CONCLUSION

We have considered the economic valuation of compounded commodity-based mining
projects within a tri-expiry framework which we have generalised from the dual-expiry
framework of Buchen (2004) to three expiry times. The projects we considered contain several
managerial flexibilities, namely the flexibility to delay project commencement, with the further
options to abandon production and expand production at later dates. Using the rationale that
rising commodity prices would make it economically feasible to expand operations in an
already existing project to mine less accessible and more costly ore, we have allowed the added
managerial flexibility for optional expanded operations with different (possibly greater)
associated fixed costs with their own option to be abandoned independently of the underlying
project if conditions deteriorate. We have presented closed-form analytic expressions for the
projects solely in terms of first, second and third order Gap instruments. We obtain succinct
and novel representations for the value of the projects in terms of option components which
are readily interpretable within our methodology as generalised call options, generalised call-
on-call options and generalised call-on-call-on-call options respectively on the commodity
price. With increasing spot commodity prices we expect the value of the real option component
to diminish, and our formulae predict values which asymptotically approach the values
predicted by Net Present Value considerations. Extensions of the analysis requiring fourth
order and higher instruments are left for a subsequent treatment.
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