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ABSTRACT	

In	 agricultural	 yield	 insurance	 practices,	 there	 are	 two	main	 categories	 of	 insurance	
products	 which	 differed	 from	 the	 targeted	 insured	 yield,	 namely	 area-yield	 based	
insurance	 and	 individual-based	 insurance.	 A	 common	 knowledge	 is	 that	 individual-
yield	based	insurance	has	more	flexibility	that	could	meet	the	real	demand	of	insureds,	
while	 having	 much	 more	 severity	 of	 moral	 hazard	 and	 higher	 administration	 costs.	
Relatively,	 area-yield	 based	 insurance	 has	 lower	 risk	 of	moral	 hazard,	 but	 obtaining	
bias,	 or	 so-called	 basis	 risk	 at	 the	 same	 time.	 In	 this	 paper,	 we	 use	 an	 improved	
modified	 Miranda	 Decomposition	 Model	 to	 establish	 a	 theoretical	 framework	 of	
farmers	 behaviors	 when	 assuming	 their	 goals	 are	 to	maximize	 the	 expected	 rate	 of	
return	 in	 agricultural	 production	 process	 under	 both	 individual-yield	 and	 area-yield	
insurance.	The	results	show	that	these	two	distinct	arrangements	may	cause	different	
motivation	to	farmers,	seducing	them	act	or	not	act	in	moral	hazard	manner.	
	
Key	words:	Moral	hazard,	Agricultural	yield	insurance,	Miranda	Decomposition.	

	
INTRODUCTION	

In	 many	 literature([1],	 [2],	 [3]),	 moral	 hazard	 is	 regarded	 as	 a	 very	 severe	 problem	 is	
agricultural	 insurance	 practices.	 Formally	 speaking,	 moral	 hazard	 refers	 to	 the	 act	 and	 its	
consequence	 that	 occurred	 when	 passive	 actions	 are	 taken	 under	 high	 risk	 situations	 that	
could	 cause	 unfavorable	 outcomes,	 i.e.,	 farmers	 get	 loss	 in	 their	 crop	 yield	 due	 to	 low	
precipitation.	Meanwhile,	 the	 argue	 about	 the	 implementation	 between	 individual-yield	 and	
area-yield	insurance	has	never	been	stopped.	Among	all	the	issues,	one	thing	should	be	figured	
out	first,	that	is,	how	farmers	would	behave	under	different	arrangements	of	insurable	“yield”.	
Thus,	we	use	some	mathematical	methods	to	analyze	it	throughout	this	paper.	
		 

STATIC	MODELS	OF	MIXED	COVERAGE	CROP	YIELD	INSURANCE	BASED	ON	THE	
MIRANDA	DECOMPOSITION	

Theoretical	framework	
In	 this	 section,	 we	 build	 a	 mathematical	 framework	 depicting	 the	 mixed	 coverage	 crop	
insurance	 based	 on	 the	 Miranda	 Decomposition.	 Suppose	 there	 are	O 	farmers	 conducting	
agricultural	 productions	 within	 a	 certain	 area,	 with	NK, P = 1,2, . . . O	denoting	 their	 individual	
yields,	 from	which	 any	 two	 are	 bilaterally	 linear	 correlated,	 and	NU = ∑WKX! YKNK 	denoting	 the	
average	 yield	 (area	 yield)	with	weights	YK, P = 1,2, . . . , O.	Miranda	 (1991)	 proposed	 a	 famous	
yield	decomposition	that		

NK − [K = \K(NU − [) + ]K,					
YℎJ_J						`(NK) = [K > 0,				`(NU) = [				cOd				`(]K) = 0.	 (1.1)	
	
It	 actually	 decomposes	 the	 individual	 yield	 deviation	 NK − [K 	into	 product	 of	 a	 partly	
correlated1	systemic	 component	NU − [	and	 a	 perfectly	 correlated	 non-systemic	 component	

																																																								
	
1	\K 	could	be	regarded	as	a	“slope",	but	not	the	linear	correlation	coefficient	
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]K − 0.	 Particulary,	\K =
:ef(2g,28)

hij(28)
	is	 used	 to	 describe	 the	 sensitivity	 of	 individual	 yields	 to	

systemic	components	for	the	reason	that	all	systemic	risk	factors	affecting	all	farmers	will	be	
reflected	 in	 the	deviation	NU − [.	 It	 is	 also	assumed	that	klm(NU, ]K) = 0,	∀P = 1,2, . . . , O,	which	
infers	them	to	be	uncorrelated	(Or	klm(NU, ]K|\K) = 0	which	could	be	verified	through	(1.1)	that	
indicates	NU 	and	]K 	are	 conditionally	 uncorrelated	 with	 respect	 to	\K).	 Moreover,	 it	 is	 also	
assumed	 that	 the	 area	 yield	NU 	and	 the	 non-systemic	 random	 disturbance	]K 	both	 have	
continuous	densities,	and	are	bounded	on	[0,pcq(NU)]	and	[pPO(]K),pcq(]K)]	respectively.	
	
With	 the	help	of	 the	Miranda	Decomposition,	 the	 indemnity2	of	 a	 simple	 stop	 loss	 form	crop	
yield	 insurance	 distinctively	 covering	 both	 systemic	 yield	 risk	 and	 non-systemic	 yield	 risk	
could	 be	 expressed	 as 3 	 sK

tK/ = OU + OK = (qU − NU)( + (qK − ]K)( ,	 where	 qU 	and	 qK 	are	
predetermined	 indemnity	 thresholds	 for	 systemic	 and	 non-systemic	 yield	 risk	 coverage.	
Moreover,	it	could	be	deduced	that		
	

klm(NK, sK
tK/) = klm[[K + \K(NU − [) + ]K, (qU − NU)( + (qK − ]K)(]

= \Kklm(NU, OU) + klm(NK, OK).																	
	
Therefore,	 if	 for	 farmer	P,	 the	premium	 for	 such	 insurance	 is	uK

tK/ 	which	 is	deterministic,	his	
cash	 flow	 would	 be	NK

Wvw = NK + sK
tK/ − uK

tK/ ,	 and	 the	 variance	 reduction	 by	 purchasing	
insurance	would	be		
	

ΔK
tK/ = xc_(NK) − xc_(NK

Wvw)	
= −xc_(OU) − xc_(OK) − 2klm(OU, OK) − 2\Kklm(NU, OU) − 2klm(NK, OK).									

	
Because	NU 	and	]K 	are	 uncorrelated,	 so	 that	klm(OU, OK) = 0.	 Denote	\U = −

hij(W8)

":ef(28,W8)
	and	\y =

−
hij(Wg)

":ef(2g,Wg)
= −

hij(Wg)

":ef(zg,Wg)
,	the	variance	reduction	ΔK

tK/ 	thus	reducing	to		

	

ΔK
tK/ = xc_(OU) {

|g
|8
− 1} + xc_(OK) {

!

|~
− 1} ,				YℎJ_J				\U ≠ 0,				\y ≠ 0.	 (1.2)	

		
Obviously,	 the	variance	reduction	 in	(1.2)	depends	on	the	unknown	parameters	\K ,	\U 	and	\y .	
In	this	case,	based	on	sorts	of	assumptions	which	fit	the	reality	of	agricultural	production,	we	
give	some	lemmas	relating	to	\K 	and	\y 	with	simple	proofs.	Note	that	similar	results	have	been	
proposed	by	Miranda	in	his	paper,	but	without	proofs.		
	

Lemma	2.1		If	qU < [	and	qK < 0,	then	\U ∈ {0,
!

"
},	\y ∈ {0,

!

"
}.		

Proof.		Denote	Ç(⋅)	the	density	of	NU ,	by	definition,	we	have	 	
	

xc_(OU) + klm(NU, OU) = Ñ
/8

%
(qU − Ö)(qU − [)Ç(Ö)dÖ − ÜÑ

/8

%
(qU − Ö)Ç(Ö)dÖá

"

						

	 																						= ∫
/8
%
(qU − Ö)Ç(Ö)dÖâqU − [ − ∫

/8
%
(qU − Ö)Ç(Ö)dÖä < 0		 																

																						⇒ 0 < xc_(OU) < −klm(NU, OU).	

																																																								
	
2	the	indemnity	is	scaled	in	the	yield	per	insured,	without	considering	the	effect	of	price	
3	(q − N)( ≜ pcq(q − N, 0) 
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In	 addition,	 because	 xc_(]K) = xc_[]K + pPO(]K)] 	and	 klm(]K, OK) = klm[]K + pPO(]K), OK +
pPO(]K)],	 a	 similar	 form	 as	 the	 above	 could	 be	 implemented	 which	 leads	 to	0 < xc_(OK) <
−klm(]K, OK),	so	the	results	follow.		
	
Lemma	 2.2	 	 Under	 reasonable	 distribution	 assumptions,	 çPp

/8→%
\U = 0 ,	 çPp

/8→ti/(28)
\U =

!

"
,	

çPp
/g→tKW(zg)

\y = 0,	 çPp
/g→ti/(zg)

\y =
!

"
.		

	
Proof.	 	 Because	xc_(NU)	and	klm(NU, OU)	are	 continuously	 twice	differentiable4	functions	 of	qU,	
it	follows	that		
	
è

èqU
xc_(OU) = 2qU Ñ

/8

%
Ç(Ö)dÖ − 2Ñ

/8

%
ÖÇ(Ö)dÖ − 2qU ÜÑ

/8

%
Ç(Ö)dÖá

"

	

+ 2Ñ
/8

%
ÖÇ(Ö)dÖÑ

/8

%
Ç(Ö)dÖ																			

	 					= 2â∫
/8
%
qUÇ(Ö)dÖ − ∫

/8
%
ÖÇ(Ö)dÖäâ1 − ∫

/8
%
Ç(Ö)dÖä.																																																										

è

èqU
klm(NU, OU) = Ñ

/8

%
ÖÇ(Ö)dÖ − Ñ

/8

%
[Ç(Ö)dÖ	

												= êÑ
/8

%
ÖÇ(Ö)dÖ − Ñ

/8

%
qUÇ(Ö)dÖë í1 +

∫
/8
%
([ − qU)Ç(Ö)dÖ

∫
/8
%
qUÇ(Ö)dÖ − ∫

/8
%
ÖÇ(Ö)dÖ

ì.			

	
Note	 that	 in	 a	 common	 sense	 under	 agricultural	 production	 context,	 the	 density	Ç(⋅)	of	NU 	
should	satisfy5	Ç(0) = 0,	Ç[pcq(NU)] = 0,	Ç′(0) ≠ 0	and6	Ç′[pcq(NU)] ≠ 0,	thus	by	taking	limits	
at	qU → 0	and	using	ï		ñlóòPÖcç′ó		ôöçJ	for	twice,	we	have		
	

	 Lim
/8→%

∫
û8
, (ü†/8)°(w)yw

∫
û8
, /8°(w)yw†∫

û8
, w°(w)yw

= lim
/8→%

£6*∫
û8
, (§•û8)¶(-)~-5

£û8
6

£6*∫
û8
, û8¶(-)~-•∫

û8
, -¶(-)~-5

£û8
6

= lim
/8→%

(ü†/8)°ß(/8)

°(/8)
− 2 = ∞.					

	
Consequently,	again	with	ï		ñlóòPÖcç′ó		ôöçJ,	it	follows	that		
	
	 lim

/8→%

hij(W8)

:ef(28,W8)
= lim
/8→%

©hij(W8)/©/8
©:ef(28,W8)/©/8

= lim
/8→%

†"

!(
∫
û8
, (§•û8)¶(-)~-

∫
û8
, û8¶(-)~-•∫

û8
, -¶(-)~-

=
†"

™
= 0.	

	
On	 the	 other	 hand,	 as	qU	approaching	 to	∞,	OU 	will	 consistently	 vary	 in	 an	 opposite	 manner	
with	 any	 tiny	 variation	 of	NU .	 In	 this	 case,	NU 	and	OU 	will	 be	 perfectly	 negatively	 correlated,	
yields	their	linear	correlation	coefficient	to	be	-1,	hence	we	have	klm(NU, OU) = −xc_(OU).	As	a	
result,	 lim

/8→™

hij(W8)

:ef(28,W8)
= −1.		

	
Similar	analysis	could	be	implemented	to	]K 	and	qK,	therefore	proving	the	results.		

																																																								
	
4	because	all	integrands	are	continuous,	so	that	integrals	are	differentiable	with	respect	to	qU	
5 	such	 as	 general	 beta	 distributions	 with	 parameters	´ > 1 	and	\ > 1 ,	 which	 are	 often	 used	 to	 fit	 yield	
distributions	
6	Ç′	denotes	the	derivative	of	Ç	with	respect	to	qU 
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Normally,	 the	 monotonicity	 of	\U 	with	 respect	 to	 qU 	is	 vague	 because	
©hij(W8)

©/8
> 0 	and	

−
©:ef(28,W8)

©/8
> 0.	Moreover,	even	for	known	Ç(⋅),	the	monotonicity	is	still	hard	to	be	verified	as	

it	depends	on	both	qU	and	Ç(⋅).	Similarly,	the	same	situation	happens	on	\y 	with	respect	to	qK.	
Under	this	circumstance,	we	give	some	sufficient	but	unnecessary	conditions	for	\U 	increasing	
with	respect	to	qU	and	\y 	increasing	with	respect	to	qK	under	different	scenarios	as	convenient	
and	operative	tools	 in	examining	the	monotonicity.	 In	addition,	 for	simplicity	and	reality,	we	
only	consider	the	cases	where	qU < [	and	qK < 0.		
	
Lemma	2.3	 	Let	¨(⋅)	and	≠(⋅)	be	the	cumulative	distribution	function	and	the	survival	function	of	
NU ,	consider	the	cases	where	qU < [.		
	
1.	In	the	case	≠(qU) >

!

"
	and	2qU≠(qU) > [,	if	∫

/8
%
ÖÇ(Ö)dÖ <

Æ(/8)["/8Ø(/8)†ü]

"Ø(/8)†!
,	then	\U 	is	increasing	

with	qU.		
2.	In	the	case	≠(qU) <

!

"
,	if	∫

/8
%
ÖÇ(Ö)dÖ >

Æ(/8)["/8Ø(/8)†ü]

"Ø(/8)†!
,	then	\U 	is	increasing	with	qU.		

In	the	rest	cases,	whether	\U 	is	increasing	with	qU	is	hard	to	verify,	while	all	these	results	fit	the	
similar	way	for	\y 	with	qK.		
	
Proof.	 	 According	 to	 Lemma	 1.1,	 if	 qU < [ ,	 then	 0 < xc_(OU) < −klm(NU, OU) .	 Denote	
−klm(NU, OU) = xc_(OU) +p	where	p > 0,	we	obtain		
	
è[xc_(OU)/−klm(NU, OU)]

èqU
= {2 êÑ

/8

%
qUÇ(Ö)dÖ − Ñ

/8

%
ÖÇ(Ö)dÖë ê1 − Ñ

/8

%
Ç(Ö)dÖë [xc_(OU)	

	 																		−â∫
/8
%
[Ç(Ö)dÖ − ∫

/8
%
ÖÇ(Ö)dÖäxc_(OU)}/[klm(NU, OU)]".	

	
Consequently,	a	sufficient	but	unnecessary	condition	for	©[hij(W8)/†:ef(28,W8)]

©/8
> 0	is		

	
	 2âqU¨(qU) − ∫

/8
%
ÖÇ(Ö)dÖä[1 − ¨(qU)] > [¨(qU) − ∫

/8
%
ÖÇ(Ö)dÖ.	

	
Solving	this	inequality	leads	to	the	proof,	which	is	similar	to	the	proof	of	\y 	with	respect	to	qK.		
	
In	 comparison,	 as	 the	 same	 as	 in	 Miranda’s	 paper,	 the	 variance	 reduction	 for	 farmer	P	by	
purchasing	area-yield	crop	insurance	in	which	every	farmer	pays	identical	premium	and	gets	
indistinguishable	indemnity7	of	sK

ijvi = OU = (qU − NU)(	will	be		
	
	 ΔK

ijvi = xc_(OU) {
|g
|8
− 1}.																	 (1.3)	

	
Therefore,	according	to	Lemma	1.1,	by	comparing	(1.2)	and	(1.3),	the	following	proposition	is	
obtained.		
	
Theorem	 2.1	 	 Under	 full	 coverage	 level	 and	 reasonable	 setting	 of	 non-systemic	 indemnity	
threshold	qK < `(]K) = 0,	 if	 the	 systemic	 indemnity	 threshold	qU	is	 the	 same	 as	 the	 indemnity	
threshold	 in	area-yield	 insurance	arrangement,	 then	the	mixed	coverage	crop	yield	 insurance	is	
always	more	risk	reducing	(by	reducing	the	variance	of	net	production	 income)	compared	with	

																																																								
	
7	in	this	case,	sK

ijvi = s≤
ijvi ,	∀P, ≥ = 1,2, . . . , O		
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area-yield	crop	insurance	(Or	per	se,	¥KtK/ ⩾ ¥Kijvi ,	with	equation	holds	only	when	\K = 1,	that	is,	
xc_(OK) = 0).		
	
Meanwhile,	if	a	farmer	is	free	to	choose	his	coverage	level,	then	a	procedure	of	coverage	level	
optimization	 could	 be	 implemented	 relative	 to	 some	 certain	 purposes.	 Specifically,	 with	∂K 	
denoting	the	selected	coverage	level	of	area-yield	crop	insurance	for	farmer	P,	∑K 	denoting	his	
selected	coverage	level	of	mixed	coverage	crop	yield	insurance,	we	have	by	(1.2)	and	(1.3)		
	
ΔK
ijvi = xc_(OU) {

|g
|8
∂K − ∂K

"},																																																																									 (1.4)	

		

ΔK
tK/ = xc_(OU) {

|g
|8
∑K − ∑K

"} + xc_(OK) {
!

|~
∑K − ∑K

"}.							(1.5)	

	

Note	that	
©∏g
πgû

©∫g
< 0	and	

©∏g
ªºΩª

©æg
< 0,	which	 infer	potential	unique	global	maximums.	Therefore,	

the	optimal	coverage	levels	maximizing	the	variance	reductions	(1.4)	and	(1.5)	will	be		
	

	 ∂K
∗ =

|g
"|8
				cOd		∑K

∗ =
!

"
í
¿g¡ªº(¬8)

¿8
(
¡ªº(¬g)

¿~

hij(W8)(hij(Wg)
ì.																															 (1.6)	

	
Obviously,	from	(1.6),	it	could	be	deduced	that	|g

|8
>
!

|~
		⇔ 		∂K

∗ > ∑K
∗.	However,	the	conclusion	

about	which	one	 is	 larger	 could	 only	 be	 clarified	 empirically	 in	 terms	 of	 the	 assumptions	 in	
(1.1)	which	 infer	\K ,	\U 	and	\y 	to	be	uncorrelated.	Meanwhile,	 intuition	suggests	 that	∂K

∗ → ∑K
∗	

as	\K → 1	(xc_(OK) → 0).	 On	 the	 other	 hand,	 in	 practice,	 insureds	 are	 not	 allowed	 to	 select	
coverage	 levels	 larger	than	1.	With	the	 fact	 that	\K 	will	 fluctuate	around8	1,	∀P = 1,2, . . . , O	and	
some	simulation	results,	in	most	cases,	both	∂K

∗	and	∑K
∗	will	exceed	1,	thus	driving	most	farmers	

choose	to	purchase	a	full	coverage.	
	

DYNAMIC	MODELS	OF	MIXED	COVERAGE	CROP	YIELD	INSURANCE		
A	modified	Miranda	Decomposition	
Going	back,	the	Miranda	Decomposition	(1.1)	is	actually	a	static	approach	with	predetermined	
[K 	and	[ 	that	 constructs	NK 	through	 the	 product	 of	 external	 random	 variables	NU 	and	]K ,	
therefore	farmers’	control	towards	their	production	activities	are	not	reflected.	In	this	case,	we	
make	 some	 sight	 modifications	 on	 (1.1)	 to	 make	 it	 feasible	 of	 reflecting	 farmers’	 dynamic	
behaviors.	
	
Based	on	(1.1),	NK 	could	be	decomposed	in	a	dynamic	way,	that	is,		
	
	 NKw = [Kw + ƒ\K(NUw − [) + ƒ]Kw,																																																																					 (2.1)	

	 YℎJ_J				`(NUw) = [,				`(]Kw) = 0,				ƒ = ≈
üg-
∆
,				PÇ				[Kw > 0,

0,								PÇ				[Kw = 0.
	

		
The	assumptions	 in	(2.1)	are	analogous	to	those	 in	(1.1)	expect	no	longer	assuming	an	time-
invariant	[K .	 In	 fact,	[Kw 	measures	 the	 willingness	 yield	 (or	 controllable	 yield)	 for	 farmer	P	at	
time	Ö,	 given	 all	 the	 information	 up	 to	 time	Ö	(including	 premium	 and	 cost	 function,	 etc).	

																																																								
	
8	see	Miranda’s	paper 
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Besides,	NUw 	and	]Kw 	are	 still	 uncontrollable9	for	 farmer	P 	so	 that	 their	 expectations	[ 	and	0	
remain	to	be	time-invariant.	As	a	simple	 fact,	 the	 fluctuation	of	NKw − [Kw 	should	be	 increasing	
with	[Kw ,	therefore	we	further	assume	the	distributions	of	NUw 	and	]Kw 	to	be	ƒNU∆	and	ƒ]∆ ,	where	
NU∆ − [	and	]∆	refer	 to	 the	 standardized	 systemic	and	non-systemic	 fluctuations	under	 input	
«.	Moreover,	\K 	is	 also	 time-invariant	because	we	are	not	 intend	 to	model	 it	due	on	 the	 fact	
that	 it	 is	 not	 fully	 controllable	 for	 farmer	P.	 With	 the	 help	 of	 (2.1),	 we	 could	 model	 the	
behavioral	dynamics	for	an	individual	farmer	under	different	insurance	arrangements.	
	
Optimizing	 farmers’	 production	 dynamics	 under	 area-yield	 and	 individual-yield	 crop	
insurance	
Suppose	[Kw 	is	 the	willingness	 yield	 for	 farmer	P	at	 time	Ö,	 the	 aggregated	 production	 cost	 for	
producing	 such	 amount	 is	ñK(»w, [Kw)	with	»w 	denoting	 the	 external	 conditions	 at	 time	Ö	
systemically	affecting	all	farmers’	productions	that	will	change	the	shape	of	ñ	as	an	adjuster.	In	
nature,	for	any	given	»w ,	ñ	should	be	a	non-negative	increasing	function	of	[K,w.	For	simplicity,	
we	further	assume	ñK(»w, [Kw)	to	be	strictly	convex	increasing10	with	respect	to	[Kw ,	∀		»w .	So	we	

have	©…g( -,üg-)
©üg-

> 0	and	©
6…g( -,üg-)

©üg-6
> 0.	At	this	phase,	we	consider	a	fairly	intuitive	optimization	

criteria,	 which	 is,	 farmer	 P 	decides	 his	 willingness	 yield	[Kw 	at	 time	 Ö 	in	 a	 manner	 that	
maximizes	 his	 expected	 income-cost	 ratio	`[ôKw(»w, [Kw)] = ` *

ÀWUetv( -,üg-)

:eÃw( -,üg-)
5 .	 Furthermore,	

under	 given11	»w 	and	 fixed	 price	 per	 product	E,	 if	 farmer	P	purchases	 a	 full	 coverage	 level	 of	
area-yield	 crop	 insurance	 with	 indemnity	sKw

ijvi = OUw = (qUw − NUw)(	and	 premium	uKw
ijvi ,	 his	

optimal	willingness	yield	is	determined	by		
	

	 max
üg-
`[ôKw([Kw)] = max

üg-
` œ
–[üg-(—|g(28-†ü)(—zg-(W8-]

…g(üg-)(“g-
ªºΩª ” = max

üg-
œ–[üg-(‘(W8-)]
…g(üg-)(“g-

ªºΩª”.	(2.2)	

	
Consequently12,		

	 ©‘[’g-(üg-)]

©üg-
=
–{…g(üg-)(“g-

ªºΩª†[üg-(‘(W8-)]…ßg(üg-)}

[…g(üg-)(“g-
ªºΩª]6

,																																											

	
yields	the	first	order	condition	to	be		
	
	 ñK([÷Kw) + uKw

ijvi − [[÷Kw + `(OUw)]ñ′K([÷Kw) = 0												 (2.3)	
	
So	that		

	 ©6‘[’g-)]

©üg-6
|üg-Xü◊g- =

†[ü◊g-(‘(W8-)][…g(ü◊g-)(“g-
ªºΩª]6…ßßg(ü◊g-)

[…g(ü◊g-)(“g-
ªºΩª]6

< 0,																											

	
which	infers	an	unique	global	maximum.	
	
In	order	to	extract	mathematical	conclusions,	we	assume	ñK([Kw)	to	be	an	exponential	function	
of	[Kw ,	 which	 is,	ñK([Kw) = kKJÿgüg- ,	 with	kK 	denoting	 the	 fixed	 cost	 for	 any	 willingness	 yield.	
Moreover,	 it	 is	apparent	 that	…ßg(üg-)

…g(üg-)
= ŸK 	which	states	 that	 the	growth	rate	of	production	cost	

with	respect	to	willingness	yield	is	time-invariant	to	a	farmer	while	distinctive	among	farmers.	

																																																								
	
9	Despite	the	fact	that	NU = ∑

W
KX! ⁄KNK,	farmer	P	makes	nearly	no	influence	on	NU,	which	is	same	for	the	cases	if	NU	is	

replaced	by	weather	index	or	other	external	random	variables	
10	strictly	increasing	marginal	costs	
11	in	this	case,	ñK(»Kw, [Kw)	and	ôKw(»Kw, [Kw)	are	denoted	as	ñK([Kw)	and	ôKw([Kw)	
12	denote	ñK′(⋅)	and	ñ′′K(⋅)	the	first	and	second	order	differentials	of	ñK(⋅)	with	respect	to	[Kw 
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Therefore,	ŸK 	could	 be	 regarded	 as	 a	measure	 of	 production	 efficiency	 for	 farmer	P.	 Together	
with	kK ,	we	could	compare	the	production	costs	within	all	farmers	on	a	standardized	basis.	In	
this	case,	substituting	ñK([Kw) = kKJÿgüg-	into	(2.3),	the	first	order	condition	will	be		
	

kKJÿgü◊g- + uKw
ijvi − [[÷Kw + `(OUw)]kKŸKJÿgü◊g- = 0																			

	 								⇔ 		1 +
“g-
ªºΩª

:g
(J†ÿg)ü◊g- = [[÷Kw + `(OUw)]ŸK.																																															 	(2.4)	

	
Clearly,	 the	 left-side	 and	 right-side	 term	 of	 (2.4)	 could	 be	 regarded	 as	 an	 decreasing	
exponential	 function	 (given	 that	ŸK < 1)	 and	 an	 increasing	 linear	 function	 of	[÷Kw	respectively,	
yields	[÷Kw	to	 be	 positioned	 at	 the	 unique	 intersection	 point	 of	 these	 two	 functions.	 Together	
with	the	boundary	condition	[Kw ⩾ 0,	we	obtain		
	
	 max

üg-
`[ôKw([Kw)] = `[ôKw([Kw

∗ )] =

¤

–‘(W8-)

:g(“g-
ªºΩª |üg-∗ X%,														PÇ				1 +

“g-
ªºΩª

:g
⩽ `(OUw)ŸK,												

–

ÿg:gv
›g§◊g-
|üg-∗ Xü◊g-fi%,				PÇ				1 +

“g-
ªºΩª

:g
> `(OUw)ŸK.												

											 (2.5)	

	
Indeed,	 if	 farmer	P	doesn’t	purchase	any	 insurance,	his	optimal	willingness	yield	[Kw

∗ 	is	 simply	
determined	by		
	
	 max

üg-
`[ôKw([Kw)] = max

üg-
` fl
–[üg-(—|g(28-†ü)(—zg-]

…g(üg-)
‡ = max

üg-
fl –(üg-)
…g(üg-)

‡ ⇒ [Kw
∗ =

!

ÿg
> 0.	 (2.6)	

	

From	(2.5),	we	know	that	if	1 +
“g-
ªºΩª

:g
⩽ `(OUw)ŸK ,	the	optimal	willingness	yield	under	area-yield	

insurance	would	be	0,	which	is	less	than	!
ÿg
	for	no	insurance	case.	Though	an	individual	farmer	

could	not	control	the	indemnity	in	area-yield	insurance,	but	he	could	still	reach	the	maximum	
expected	 income-cost	 ratio	 at	willingness	 yield	 as	0	under	 certain	 circumstances.	 Therefore,	
we	refer	 to	 this	situation	as	“moral	hazard”	 in	area-yield	 insurance.	On	the	other	hand,	 if	1 +
“g-
ªºΩª

:g
> `(OUw)ŸK ,	 farmer	P	would	 purchase	 an	 area-yield	 insurance	 only	 when	[÷Kw 	extracted	

from	(2.4)	is	less	than	!
ÿg
.	Because	otherwise	the	maximum	expected	income-cost	ratio	will	be	

less	 than	 that	when	he	doesn’t	purchase	 insurance,	 since	`[ôKw([Kw
∗ )]	is	decreasing	with	[Kw

∗ 	in	
both	 cases.	The	 case	[Kw

∗ = 0	may	 seem	 to	be	 fairly	abnormal	 in	 the	 first	 glance,	but	 it	makes	
sense	if	farmers	are	allowed	to	freely	choose	what	they	do	to	make	income.	Indeed,	`[ôKw([Kw

∗ )]	
could	 be	 treated	 as	 the	 maximum	 rate	 of	 return	 in	 conducting	 agricultural	 production	 for	
farmer	P	at	time	Ö.	When	[Kw

∗ = 0,	he	could	put	the	rest	of	his	capital	(and	labor,	time,	etc)	into	
relatively	more	profitable	activities	rather	than	agricultural	production.	Besides,	the	results	we	
get	are	derived	from	relatively	strong	assumptions	such	as	strictly	convex	increasing	cost13	and	
ignorance	of	utility14,	which	may	lack	reliability	in	practices.	
	
From	 the	 previous	 analysis,	we	 obtain	 that	 farmer	P	will	 purchase	 individual-yield	 insurance	
and	reach	a	positive	optimal	willingness	yield	if	and	only	if		
	

																																																								
	
13	in	practice,	cost	functions	are	more	common	to	be	concave-convex	function	with	potential	inflection	points	
14	we	only	consider	```(ô)"	instead	of	```[„(ô)]" 
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	 1 +
“g-
ªºΩª

:g
> `(OUw)ŸK				cOd				[÷Kw <

!

ÿg
																																								

	 ⇔ ‰
1 +

“g-
ªºΩª

:g
> `(OUw)ŸK																																																																										

ñK([÷Kw) + uKw
ijvi − [[÷Kw + `(OUw)]ñßK([÷Kw)|ü◊g-X

1
›g

< 0
			

		⇔ 				
uKw
ijvi

kKJ
< `(OUw)ŸK < 1 +

uKw
ijvi

kK
,	

		
which	yields	the	following	proposition.		
	
Proposition	2.1	 	Under	area-yield	coverage	arrangement,	farmer	P	will	purchase	insurance	and	
reach	 a	 positive	 optimal	 willingness	 yield	 only	when	“g-

ªºΩª

:gv
< `(OUw)ŸK < 1 +

“g-
ªºΩª

:g
,	 otherwise	 he	

would	either	quit	insurance	([Kw∗ >
!

ÿg
)	or	act	in	a	moral	hazard	manner	([Kw∗ = 0).		

	
Moreover,	 if	 farmer	 P 	purchases	 a	 full	 coverage	 of	 individual-yield	 crop	 insurance	 with	
indemnity	sKw

KWy 	and	premium	uKw
KWy ,	we	still	 intend	to	use	the	same	method	as	 in	above	to	 find	

out	his	optimal	willingness	yield.	Practically,	the	indemnity	for	individual-yield	crop	insurance	
is	usually	of	the	form	sKw

KWy = (cKw − NKw)(	with	cKw 	as	its	threshold.	Yet	mathematically,	`(sKw
KWy) =

`[cKw − [Kw − ƒ\K(NUw − [) − ƒ]Kw](	composed	 of	 a	 non-random	 component	[Kw 	and	 a	 random	
component	 ƒ\K(NUw − [) + ƒ]Kw 	could	 not	 be	 further	 decomposed 15 ,	 which	 makes	 the	
optimization	 of	`[ôKw([Kw)]	infeasible.	 In	 this	 case,	 we	 implement	 a	 special	 form	 that	sKw

KWy =
(cKw − [Kw)(	with	 the	 rest	 random	 terms	 of	NKw 	dropped	 in	 order	 to	 emphasize	 the	 greater	
control	 of	 farmer	P	towards	 his	 indemnity	 payment	 under	 individual-yield	 crop	 insurance	
arrangement.	 Hence,	 the	 optimal	 willingness	 yield	[Kw

∗ 	for	 farmer	P 	at	 time	Ö 	under	 a	 full	
coverage	level16	of	individual-yield	crop	insurance	is	determined	by		
	

max
üg-
`[ôKw([Kw)] = max

üg-
œ–[üg-((ig-†üg-)0]
…g(üg-)(“g-

g¬~ ” = 															max																		üg-
‰

–ig-
…g(üg-)(“g-

g¬~ ,				PÇ				[Kw ∈ [0, cKw],

–üg-
…g(üg-)(“g-

g¬~ ,				PÇ				[Kw > cKw.						
		(2.7)	

From	(2.7),	we	know	that		
	 ©‘[’g-(üg-)]

©üg-
|üg-∈[%,ig-] =

†–ig-…ßg(üg-)

[…g(üg-)(“g-
g¬~]6
< 0.																																									 (2.8)	

	
Moreover,		

	 ©‘[’g-(üg-)]

©üg-
|üg-fiig- =

–[…g(üg-)(“g-
g¬~†üg-…g(üg-)]

[…g(üg-)(“g-
g¬~]6

																									

																																		⇒ 		ñK([÷Kw) + uKw
KWy = [÷KwñßK([÷Kw)																																																									(2.9)	

	 ⇒
©6‘[’g-(üg-)]

©üg-6
|üg-Xü◊g- =

†–ü◊g-…ßßg(ü◊g-)[…g(ü◊g-)(“g-
g¬~]6

[…g(ü◊g-(“g-
g¬~)]Ê

< 0															 (2.10)	

	
	infers	an	unique	local	maximum.	Therefore,	by	(2.8),	(2.9)	and	(2.10),	it	is	obtained	that		

																																																								
	
15	because	(c + Á)( ≠ c( + Á( 
16	note	 that	 the	 variance	 reduction	 of	 individual-yield	 crop	 insurance	 is	 increasing	 with	 coverage	 level,	 thus	
leading	full	coverage	to	be	optimal 
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	 max
üg-
`[ôKw([Kw)] = `[ôKw([Kw

∗ )] =

‰

–ig-
:g(“g-

g¬~ |üg-∗ X%,								PÇ				
–

Wg:gv
›g§◊g-
⩽

–ig-
“g-
g¬~(:g

				l_				[÷Kw ⩽ cKw,

–

ÿg:gv
›g§◊g-
|üg-∗ Xü◊g-,				PÇ				

–

ÿg:gv
›g§◊g-
>

–ig-
“g-
g¬~(:g

,				[÷Kw > cKw.				
											 (2.11)	

	
From	(2.11),	we	know	that	under	individual-yield	insurance	arrangement,	farmer	P	could	reach	
an	maximum	expected	 income-cost	ratio	at	a	non-negative	willingness	yield	only	 if	[Kw

∗ 	equals	
to	[÷Kw	derived	from	(2.10).	Hereby,	substituting	[÷Kw =

!

ÿg
	into	(2.10),	we	have		

	

	 ñK([÷Kw) + uKw
KWy − [÷Kwñ′K([÷Kw)|ü◊g-X

1
›g

=
“g-
g¬~

:gv
> 0.																																															(2.12)						

Consequently,	 (2.12)	 indicates	 that	 farmer	P	will	 not	 choose	 a	 positive	[Kw
∗ 	under	 individual-

yield	 coverage,	because	he	needs	 to	acquire	 larger	optimal	willingness	yield	while	obtaining	
less	expected	income-cost	ratio	compared	with	the	no	insurance	case.	Therefore,	the	following	
proposition	holds.		
	
Theorem	2.2	 	Under	individual-yield	coverage	arrangement,	moral	hazard	will	bound	to	occur	
([Kw
∗ = 0)	if	farmer	P	choose	to	purchase	an	insurance.	Therefore,	moral	hazard	in	individual-yield	

insurance	is	far	more	severe	than	that	in	area-yield	insurance.		
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