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ABSTRACT	

Decontamination	 of	 water	 distribution	 networks	 (WDNs)	 is	 a	 difficult	 process	 to	
conduct.	 Creation	 of	 an	 effective	 approach	 necessitates	 integrating	 rules	 and	
requirements	 from	 diverse	 knowledge	 domains	 in	 such	 a	 way	 that	 the	 operational	
goals	are	achieved	with	minimally	available	situational	information.	To	date,	there	has	
been	a	limited	amount	of	work	in	applying	expert	systems	in	this	problem	domain.	This	
research	 1)	 identifies	 and	 assimilates	 the	 knowledge	 necessary	 for	 WDN	
decontamination;	 and	 2)	 evaluates	 the	 relative	 benefits	 of	 forward	 and	 backward	
chaining	 inferential	 logic	 in	 WDN	 decontamination.	 Based	 on	 the	 results	 of	 this	
analysis,	 we	 developed	 a	 backward-chaining	 prototype	 expert	 system	 for	 WDN	
decontamination.	 The	 system	 provides	 reasoning	 routines	 and	 recommendations	 on	
the	 type	 of	 event	 and	 consequences	 on	 the	 water	 operator's	 clients,	 the	 public	 in	
general,	 the	 environment,	 and	 the	 potential	 hazards	 from	 the	 resulting	 chemical	
interactions.		
	
Keywords:	 Backward	 chaining;	 Expert	 system;	 Decontamination;	 Water	 distribution	
network;	Drinking	water;	Python.		

	
INTRODUCTION		

The	 United	 Nations	 International	 Strategy	 for	 Disaster	 Reduction	 defines	 a	 disaster	 as:	 “a	
serious	disruption	of	the	functioning	of	a	community	or	a	society	involving	widespread	human,	
material,	 economic	 or	 environmental	 losses	 and	 impacts,	 which	 exceeds	 the	 ability	 of	 the	
affected	 community	 or	 society	 to	 cope	 using	 its	 own	 resources”	 [1].	 	 Disasters	 can	 be	
categorized	into	three	main	groups	as	summarized	by	Shaluf	[2]:	natural	disasters,	manmade	
disasters,	 and	hybrid	disasters	 (e.g.	deforestation	 causing	 soil	 erosion	 leading	 to	 landslides).	
The	safety	of	water	distribution	networks	(WDNs)	has	long	been	a	concern	since	water	can	be	
polluted	by	a	variety	of	these	natural	or	manmade	disasters.	Decontamination	of	these	WDNs	is	
difficult	due	to	both	their	complexity	and	the	characteristics	of	the	specific	disaster	event.	After	
a	 contamination	 event	 takes	 place,	 human	 experts	 and	 decision	 makers	 must	 process	
knowledge	from	a	variety	of	different	fields	to	find	an	efficient	and	effective	solution	in	a	short	
time	as	well	as	assimilate	a	large	volume	of	information	regarding	the	impacted	WDN.	Issues	
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that	 impact	 assimilation	 of	 WDN	 information	 include:	 1)	 lack	 of	 a	 well-defined	 policy	
framework;	2)	difficulty	in	information	collection;	3)	variability	of	WDN	topology;	4)	aging	of	
WDN;	5)	shortage	of	human	experts	with	sufficient	empirical	knowledge;	6)	 loss	of	access	 to	
the	tacit	and	undocumented	expertise	once	the	specialists	leave	or	retire;	7)	inconsistency	of	
heuristic	 experience	 from	 different	 human	 experts;	 8)	 limitation	 of	 expertise	 in	 the	 distinct	
areas	 [3].	 Frequently,	 the	domain	expert	may	only	 rely	on	personal	heuristics,	 intuition,	 and	
experience.	
	
Decision	making	during	a	WDN	decontamination	event	is	a	potentially	complex	problem	where	
expertise	is	highly	valued.	These	decision	making	procedures	usually	begin	with	limited	initial	
information,	and	must	be	able	to	adapt	and	evolve	as	further	information	becomes	available.	A	
logical	next	step	is	to	develop	a	computer-based	tool	to	assist	in	this	decision	making	process.		
	

BACKGROUND	STUDIES	
The	 Critical	 Infrastructure	 Partnership	 Advisory	 Council	 (CIPAC)	 Water	 Sector	
Decontamination	Working	Group	identified	and	prioritize	16	key	decontamination	issues	and	
35	 corresponding	 recommendations	 in	 their	 2008	 report	 “Recommendations	 and	 Proposed	
Strategic	 Plan:	 Water	 Sector	 Decontamination	 Priorities”	 (referred	 to	 as	 the	 CIPAC	 2008	
report).	Utilizing	 these	 recommendations,	we	 investigated:	Priority	 Issue	4:	Decision-making	
frameworks	 for	decontamination;	Priority	 Issue	7:	 	Utility	communications	to	public	officials,	
responders,	 the	 public	 and	 others	 on	 decontamination;	 and	 Priority	 Issue	 9:	 Treatment	
procedures	of	contaminated	drinking	water	and	wastewater	[4]	to	define	the	project	scope	and	
problem	domain.	
	
An	 expert	 system	 is	 a	 computer-based	 system	 that	 can	 emulate	 a	 human	problem	 solver	 by	
applying	knowledge	and	reasoning	normally	known	and	used	by	experts	in	that	specific	field.	
They	 represent	 an	 increasingly	 practical	 tool	 for	 a	 variety	 of	 functions	 [e.g.	 5].	 The	
knowledgebase,	 inference	 engine,	 interface,	 and	 support	 environment	 represent	 the	
components	 of	 a	 traditional	 expert	 system	 [6].	 The	 knowledgebase	 is	 the	 repository	 for	 the	
problem-specific	 heuristics.	 These	 heuristics	 are	 frequently	 obtained	 from	 a	 human	 domain	
expert,	 then	 structured	and	 input	by	 the	knowledge	engineer	 through	 the	 system’s	 interface	
and	 support	 environment	 [6].	 Feigenbaum	 [7],	 often	 considered	 to	 be	 the	 “Father	 of	 Expert	
Systems”,	 asserted	 that	 expert	 systems	 gain	 their	 power	 from	 the	 specific	 knowledge	 they	
process,	rather	than	from	any	one	particular	scheme	or	formalism.	
	
Recently,	a	considerable	amount	of	research	utilizing	AI	or	expert	system	technology	has	been	
applied	 to	 the	 field	 of	 water	 management.	 Examples	 include:	 1)	 irrigation	 system	 network	
management	[8];	2)	minimization	of	water	leakage	in	the	pipe	networks	[9];	and	3)	prediction	
of	 drinking	 water	 distribution	 system	 pipe	 breaks	 [10]	 However,	 within	 the	 water	
management	research	community,	there	is	lack	of	expert	system	research	specifically	targeting	
WDN	decontamination.	
	

RESEARCH	OBJECTIVE	AND	METHODOLOGY	
The	objective	of	this	project	was	to	investigate	the	application	of	expert	system	technology	to	
the	WDN	decontamination	problem	domain	through	the	development	of	a	prototype	system.	In	
addition,	 this	 study	 will:	 1)	 identify	 and	 assimilate	 the	 knowledge	 necessary	 to	 WDN	
decontamination;	 2)	 evaluate	 the	 relative	 benefits	 of	 forward	 and	 backward	 chaining	
inferential	logic	relative	to	WDN	decontamination.			
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Accepted	expert	 system	methodology	 identifies	 three	primary	steps:	knowledge	engineering,	
system	development,	and	system	verification	and	validation	[5].	During	the	initial	knowledge	
engineering	phase,	 the	key	concepts,	relationships	and	heuristics	are	 identified.	An	extensive	
literature	 review	 was	 carried	 out	 via	 both	 internet	 and	 manual	 searches.	 Decontaminating	
water	 distribution	 networks	 requires	 the	 application	 of	 knowledge	 from	 a	 diverse	 range	 of	
knowledge	 domains	 including	 health	 impact,	 utility	operations,	 chemical	 characteristics,	 and	
hydraulics.	These	include	identifying	possible	contaminants	and	taxonomies	[11],	EPA	drinking	
water	 regulations	 [12],	 pipe	 material	 characteristics	 [13],	 pipe	 material	 –	 contaminant	
interaction	[14],	and	treatment	technologies	[15].		
	
During	 the	development	phase,	 the	acquired	knowledge	was	organized.	After	 identifying	 the	
knowledge	 necessary	 for	 WDN	 decontamination	 from	 the	 literature	 review,	 we	 pursued	 a	
process	 of	 assimilation	 into	 machine	 readable	 formats	 in	 order	 to	 complete	 the	 remaining	
project	elements.	The	selection	of	a	rule-based	system	was	 felt	appropriate	after	considering	
other	schemas.	Inference	rules	and	objects	were	constructed	and	formalized.		
	
Goal	Representation	
Based	on	the	information	obtained	from	the	CIPAC	2008	report	[4],	we	identified	our	system	
goals	 as:	 1)	 Goal	 Exceedances	 (GE),	 to	 determine	whether	 the	 concentration	 of	 contaminant	
exceeds	the	permissible	limit;	2)	Goal	Warnings	(GW),	to	identify	whether	public	health	and/or	
environment	is	in	danger;	3)	Goal	Interaction	(GI),	to	indicate	whether	the	contaminant	harms	
the	 WDN	 infrastructure,	 e.g.	 degrading	 the	 pipe;	 4)	 Goal	 Treatment	 Technologies	 (GT),	 to	
suggest	the	potential	treatment	technologies	for	decontamination.	These	four	goals	are	specific	
components	of	the	general	goal,	to	respond	to	a	WDN	contamination	event.	These	component	
goals	 are	 not	 comprehensive	 and	 do	 not	 address	 every	 issue	 that	 users	 might	 face.	 New	
demands	or	goals	can	be	incorporated	to	accommodate	an	expanding	set	of	issues.		
	
Knowledge	Representation	
In	 our	 systems,	 the	 knowledge	 covering	 the	 health	 impact,	 utility	 operations,	 chemical	
characteristics	and	hydraulics	of	the	WDN	decontamination	area,	can	be	broken	down	into	two	
primary	 categories:	 facts	 and	 rules.	 Facts	 are	 simple	 statements	 containing	 data	 values	 that	
represent,	and	show	relationships	among	entities;	Rules	are	declarative	knowledge	linking	sets	
of	premises	and	conclusions	[6].		
	
With	 the	 intention	of	 stability,	 ease	of	maintenance,	 and	 flexibility	of	our	system,	we	classify	
facts	as	static	global	facts	and	dynamic	case	facts.	Like	a	dictionary,	global	facts	represent	those	
general	and	common	facts	applicable	to	all	scenarios.	On	the	other	hand,	case	facts,	like	a	single	
word	or	only	a	few	words	in	the	dictionary,	record	the	specific	information	of	each	particular	
case.	Case	facts	can	be	represented	in	the	knowledge	base	by	a	series	of	questions	that	function	
as	placeholders	for	dynamic	provided	information.	Currently,	four	types	of	questions	would	be	
obtained:	1)	Contaminant	and	 its	 associated	 concentration;	2)	Taxonomies	of	 each	unknown	
contaminant;	 3)	 Materials	 found	 in	 the	 System;	 4)	 Expected	 effectiveness	 of	 the	 treatment	
technologies,	if	needed.	Besides	the	four	essential	series	of	questions	mentioned,	a	unique	case	
ID	will	be	 requested	 to	 specify	different	 scenarios	after	 the	 introductory	screen	as	well.	The	
reasoning	 rules	are	named	correspondingly	 to	 the	goals	 they	prove.	For	example,	RE,	RW,	RI,	
and	 RT	 are	 four	 sets	 of	 rules	 to	 prove	 GE,	GW,	GI,	 and	GT,	 respectively.	 How	 the	 knowledge	
primitives	 are	 incorporated/programmed	 into	 the	 system	 is	 dependent	 on	 the	 software	
platform	selected.		
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Development	Approach	
During	the	programming	phase,	these	formal	knowledge	representations	were	translated	into	
computer	 code.	 A	 series	 of	 commercial	 off-the-shelf	 software	 products	 were	 reviewed	 and	
considered.	These	included:	Visual	Basic	[16],	JESS	(Java	Expert	System	Shell)	[17],	CLIPS	[18],	
MATLAB	or	NETLAB	[19],	Visual	Rule	Studio	[20],	and	PyKE	(Python	Knowledge	Engine)	[21].		
	
A	 functional	 system	 design	 (FSD)	 document	 was	 developed	 to	 further	 identify	 the	 overall	
system	architecture,	processing	considerations,	and	definition	of	displays	and	reports	[5].	The	
functional	system	design	carries	the	design	to	a	sufficiently	detailed	level	to	support	the	actual	
programming	of	the	system.	By	reviewing	the	FSD,	recommendation	of	a	specific	software	was	
then	based	on	an	investigation	of	functionality,	installation,	and	integration	characteristics,	as	
well	as	compatibility	with	existing	hardware,	software,	and	communications	investments.		
	
Within	the	expert	system,	the	inference	engine	provides	the	control	mechanism	for	the	expert	
system	by	 identifying	the	heuristics	 to	be	activated,	as	well	as	 the	sequence	of	activation	[6].	
Inference	 engines	work	 primarily	 in	 either	 a	 forward	 chaining	 or	 backward	 chaining	mode.	
Forward	chaining	starts	with	the	known	facts	and	then	works	top-down	to	assert	conclusions	
or	 new	 facts.	 Backward	 chaining	 begins	with	goals	 and	 then	works	 bottom-up	 to	determine	
what	facts	must	be	asserted	so	that	the	goals	can	be	achieved	[6].		
	
We	selected	an	expert	system	shell	 that	was	capable	of	both	backward	and	forward	chaining	
inferential	 logic,	 in	 order	 to	 support	 the	 subsequent	 comparative	 analysis.	 We	 selected	 a	
combination	 of	 Python	 and	 its	 Knowledge	 Engine	 PyKE	 [21].	 Use	 of	 PyKE	 facilitated	 system	
construction.	 It	 can	 use	 Microsoft	 Windows	 to	 provide	 a	 flexible,	 intuitive	 and	 expandable	
environment	 for	 delivering	 knowledge-based	 systems	 [21].	 Using	 PyKE,	 we	 developed	 two	
preliminary	 systems	 for	 further	 investigation:	 a	 forward	 chaining	 expert	 system	 framework,	
and	a	backward	chaining	expert	system	framework.		
	

COMPARISON	AND	RESULTS	
The	 architectures	 of	 the	 two	 preliminary	 systems	 are	 shown	 in	 Figure	 1	 and	 Figure	 2,	
respectively.		In	forward	chaining	and	backward	chaining	expert	systems,	operation	structures	
are	 compiled	 in	 the	 respective	 inference	 engines	 separated	 from	 the	 knowledge	 base	
containing	 questions,	 case	 facts,	 global	 facts,	 and	 rules	 [6].	 The	 forward	 chaining	 inference	
engine	begins	with	the	collection	of	all	available	information.	However,	the	backward	chaining	
inference	engine	 starts	 from	the	goal	 selection.	 Similar	 in	 structure	 to	other	 reasoning	rules,	
the	 strategy	 for	 asking	 questions	 is	 controlled	 by	 certain	 information	 query	 rules	 in	 the	
backward	chaining	system.	According	to	the	query	rules	for	each	selected	goal,	the	backward	
chaining	 inference	 engine	 collects	 necessary	 information	 from	 the	 existing	 case	 facts	 or	
previous	analyses	 first,	 then	conducts	conversations	between	users	and	the	system	to	collect	
the	 rest	 of	 the	 essential	 data	 (if	 there	 is	 any).	 After	 new	 case	 facts	 are	 asserted,	 the	 engine	
proves	a	certain	goal	with	all	related	case	facts,	global	facts,	and	reasoning	rules.	The	following	
discussion	 illustrates	 and	 analyzes	 the	 effectiveness	 of	 these	 inferencing	 approaches	 to	 the	
decontamination	problem	domain.	Simplified	forward	and	backward	chaining	logic	is	shown	in	
Figures	3	and	4,	respectively.		
	 	



	

	

Archives	of	Business	Research	(ABR)	 Vol.7,	Issue	7,	July-2019	

Copyright	©	Society	for	Science	and	Education,	United	Kingdom	 273	

	
Figure	1.	Architecture	of	the	forward	chaining	expert	system.	

	

	
Figure	2.	Architecture	of	the	backward	chaining	expert	system	
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Figure	3.	Simplified	forward	chaing	logic	to	prove	goal.	

	

	
Figure	4.	Simplified	backward	chaining	logic	to	prove	goal.	

	
With	 regard	 to	 proving	 Goal	 Exceedences,	 only	 the	 information	 about	 the	 species	 and	
concentration	of	contaminant	is	essential.	Therefore,	the	backward	chaining	inference	engine	
only	 collects	 those	 two	 facts;	 while	 the	 forward	 chaining	 inference	 engine	 also	 collects	
extraneous	 information,	 e.g.	 pipe	 material,	 target	 removal	 rate,	 and	 taxonomies	 of	 the	
contaminant.	The	performance	of	a	predecessor	forward	chaining	expert	system	[22]	indicated	
that	users	have	to	provide	the	complete	query	sessions	for	all	incorporated	goals	in	order	for	
the	expert	system	to	complete	processing,	even	when	some	of	this	information	is	not	available	
or	is	not	of	interest	to	the	uses.	
	
The	identification	of	pipe	material,	target	removal	rate,	and	taxonomies	of	the	contaminant	are	
unnecessary	 if	 contaminant	 concentration	 is	 not	 greater	 than	 regulatory	 exceedance	 levels.	
Thus,	user	 input	 is	not	always	necessary.	An	expert	system	can	 infer	much	 information	 from	
the	analyses	of	previous	results	and/or	from	other	user	input.	For	example,	the	expert	system	
can	create	another	new	fact,	e.g.	“Benzene	is	a	VOC”	(volatile	organic	compound),	to	prove	GT	if	
needed.	(See	Figure	5.)	Only	when	the	species	of	contaminant	is	unknown	and	the	users	need	
to	prove	GI	or	GT,	should	the	expert	system	require	user	 input	on	taxonomies.	Consequently,	
direct	user	input	should	be	required	only	as	needed.	
	
User	input:	Contaminate	is	benzene.	 	

	 Knowledge	primitive	1:	Benzene	is	a	hydrocarbon.	
	 Knowledge	primitive	2:	Hydrocarbons	can	degrade	PVC	(polyvinyl	chloride).	
è Infer	new	knowledge	primitive:	Benzene	can	degrade	PVC.	

Figure	5.	Example	of	systemic	creation	of	new	fact.	
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The	 efficiency	 of	 the	 user	 query	 session,	 and	 subsequent	 processing	of	 the	 knowledge	 base,	
were	 considered	 critical	 to	 the	 success	 of	 this	 expert	 system.	 Based	 on	 the	 comparison	 and	
analysis	 of	 these	 preliminary	 systems,	 we	 continued	 to	 develop	 a	 more	 detailed	 backward	
chaining	 prototype	 expert	 system	 for	 WDN	 decontamination,	 referred	 to	 as	 “Decon”.	 The	
prototype	 system	 was	 developed	 and	 delivered	 on	 a	 stand-alone	 IBM	 compatible	
microcomputer.	 As	 noted	 in	 Figure	 6,	 Decon’s	 extended	 knowledge	 base	 encompasses	 the	
health	 impact,	 utility	 operations,	 chemical	 characteristics	 and	 hydraulics	 of	 a	 WDN	
decontamination	event.	

	

Figure	6.	Knowledge	contents	of	Decon.	
	

USE	OF	THE	DECON	EXPERT	SYSTEM	
System	 initiation	 activates	 the	 main	 module,	 from	where	 the	 four	 primary	 modules	 can	 be	
accessed.	These	subordinate	modules	are	based	on	the	system	sub-goals	previously	discussed:	
Goal	 Excedences	 (GE),	 Goal	 Warnings	 (GW),	 Goal	 Interaction	 (GI),	 and	 Goal	 Treatment	
Technologies	 (GT).	 These	 four	 sub-goals	 are	 specific	 components	 of	 the	 general	 goal	 of	
response	to	a	WDN	contamination	event.		
	
Consider	a	scenario	 in	which	a	 large	 fuel	 tank	 is	damaged	 in	an	accident.	Benzene,	 the	most	
common	 component	of	 gasoline,	 permeates	 into	 the	 soil,	 and	may	 enter	 into	 the	 underlying	
water	 pipe	 through	 cracks	 [23,	24].	 In	 this	 hypothetical	 disaster,	 the	water	 utility	managers	
may	first	want	to	know	if	they	need	to	be	concerned	regarding	contamination	of	the	WDN	due	
to	 the	 spill.	 Upon	 system	 initiation,	 Decon	 instantiates	 the	 GE	 module	 logic	 to	 determine	
whether	 the	 benzene	 exceeds	 local	 drinking	 water	 standards.	 In	 this	 scenario,	 assume	 the	
concentration	 of	 benzene	 is	 0.05mg/L.	 As	 indicated	 in	 Table	 1,	 three	 permissible	 limits	 are	
exceeded:	the	maximum	contaminant	level	(MCL)	of	0.005mg/L,	maximum	contaminant	level	
goal	 (MCLG)	 of	 0mg/L,	 and	 the	minimal	 risk	 level	 (MRL)	 of	 0.0005mg/kg/day	 [15].	 At	 this	
point,	 the	water	 sector	managers	will	want	 to	 know	“How	does	 the	 contaminant	 impact	 the	
public	health	and/or	environment?”	(referring	to	GW).	A	warning	report	is	then	generated	by	
the	system	to	address	these	questions.	A	portion	of	this	report	is	depicted	in	Table	2.	
	

Table	1.		Example	exceedences	report.	
Contaminant	 Concentration	 Unit	 Trigger	 Limit	 Unit	

Benzene	 0.05	 mg/L	 MCL	 0.005	 mg/L	

Benzene	 0.05	 mg/L	 MCLG	 0	 mg/L	

Benzene	 0.05	 mg/kg/day	 MRL	COI	 0.0005	 mg/kg/day	
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Table	2.		Example	warnings	report	
Contaminant	 Concentration	 Unit	 Alert	Type	 Action	Needed	 Health	or	Environment	

Benzene	 0.05	 mg/L	
Public	
Health	

Concentration	is	
sufficiently	high	to	cause	
a	public	health	concern.	
Please	notify	your	
consumers	and	your	
public	health	agency.	
Potential	health	impacts	
include:	

Anemia;	decrease	in	
blood	platelets;	
increased	risk	of	cancer	

	
After	the	managers	read	the	warning	report,	they	may	want	to	know:	“Which	technologies	can	
be	 used	 in	 response?”	 	 Processing	 for	 GT	 is	 initiated.	 Assume	 that	 the	 target	 removal	 rate	 is	
80%.	 Based	 on	 the	 fact	 that	 benzene	 is	 a	 volatile	 organic	 compound	 (VOC),	 possible	
technologies	 with	 the	 efficiencies	 greater	 than	 or	 equal	 to	 80%	 are	 listed	 in	 the	 output	
technologies	 report.	 In	 this	 scenario,	 nine	 potential	 technologies	 (i.e.	 activated	 carbon,	
activated	alumina,	 air	 stripping,	 chloramination,	 chlorine	dioxide,	direct	 filtration,	ozonation,	
ultraviolet,	and	advanced	oxidation	processes)	and	their	brief	descriptions	are	provided	in	the	
output	[15].		
	
A	subsequent	user	inquiry	to	the	expert	system	might	be	GI:	“Does	the	contaminant	harm	the	
water	distribution	pipe?”	In	the	case	of	the	previously	discussed	benzene	spill,	assume	that	the	
pipe	 material	 for	 this	WDN	 is	 polyvinyl	 chloride	 (PVC).	 As	 indicated	 in	 Table	 3,	 the	 Decon	
system	 then	 displays	 the	 message	 “Prolonged	 exposure	 to	 hydrocarbons	 causes	 PVC	 to	
degrade.”	This	output	indicates	that	benzene	is	a	hydrocarbon,	and	warns	the	managers	of	the	
interaction	between	the	contaminant	and	the	WDN	pipes	[14].	
	

Table	3.		Example	interactions	report.	

Benzene	 Hydrocarbon	 PVC	
Prolonged	 exposure	 to	 hydrocarbons	 causes	
PVC	to	degrade	

	
VERIFICATION	AND	VALIDATION	

Verification	and	validation	are	important	requirements	to	ensure	quality	and	reliability	of	the	
system	[25].	The	verification	of	the	system	ensures	that	the	system	is	error-free	and	robust.	All	
components	 of	 an	 expert	 system	 are	 subject	 to	 verification:	 i.e.	 the	 knowledge	 base,	 the	
inference	engine,	and	the	user	interface	[26].	The	knowledge	base	is	verified	by	examining	the	
consistency,	correctness,	and	completeness	of	the	knowledge.	It	involves	detecting	errors	such	
as	 redundancy,	 contradiction,	 and	 circular	 dependency.	 The	 inference	 engine	 is	 verified	 by	
examining	 the	 reasoning	 process	 of	 the	 system.	 It	 assesses	 not	 only	 if	 the	 expert	 system	 is	
producing	 correct	 intermediate	 and	 final	 results	 but	 also	 if	 the	 expert	 system	 is	 using	 the	
correct	reasoning	process.	The	user	interface	is	verified	by	examining	the	functionality	of	every	
component	in	the	appropriate	screens	and	reports.	
	
Verification	 is	performed	to	determine	 if	 the	expert	system	is	producing	the	correct	answers	
and	 using	 the	 correct	 reasoning	 process.	 Consistent	 with	 accepted	 software	 engineering	
practices,	 the	verification	of	DECON	involved	conducting	unit	 tests,	module	tests,	and	system	
tests	 [27].	Unit	 tests	were	conducted	to	verify	 individual	 functions	of	 the	various	modules	of	
the	 system.	 Module	 tests	 were	 conducted	 to	 verify	 the	 outputs	 given	 by	 these	 modules.	
Additionally,	a	system	test	was	also	required	to	ensure	that	all	the	modules	of	the	system	have	
been	seamlessly	integrated	and	that	they	perform	well	as	a	single	system	[27].	All	components	
of	the	prototype	system	were	verified	after	the	development	was	completed.	Each	module	was	
tested	 using	 pre-designed	 cases.	 Pre-designed	 test	 cases	 were	 also	 utilized	 to	 verify	 the	
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inference	engine	while	conducting	system	testing.	Upon	indication	of	any	errors,	a	structured	
problem	resolution	procedure	was	conducted.	Problem	resolution	included	resetting	improper	
parameter	values,	and	the	correction	of	control	code.	
	
The	 validation	 process	 establishes	 that	 the	 system’s	 functionality	 will	 address	 the	 original	
engineering	problem	and	the	user’s	needs.	According	to	the	literature,	there	are	two	validation	
strategies	available	 for	 consideration:	 	 validation	against	 expert	performance,	 and	validation	
by	 field	 testing	 [28].	 They	 can	 be	 used	 alone	 or	 in	 combination,	 depending	 upon	 the	
application.	Validation	against	expert	performance	can	be	achieved	by:	comparing	the	expert	
system	 against	 operational	 expert	 judgments;	 comparing	 test	 case	 results;	 or	 comparing	
against	project	expert	judgments	[28].	Validation	by	field	testing	involves	running	the	program	
under	 actual	 or	 equivalent	 operational	 conditions.	 The	 field	 trial	 may	 be	 conducted	 either	
during	 initial	 production	 use	 or	 in	 parallel.	 A	 validation	 against	 expert	 performance	 was	
conducted	 to	 evaluate	 the	 prototype	 system	 developed	 during	 this	 research.	 This	 included	
utilization	of	pre-designed	test	cases.	These	compared	to	the	outcomes	of	the	system	with	the	
expected	 results	 from	 the	 literature.	A	validation	against	 expert	performance	was	 conducted	
by	nine	water	decontamination	practitioners.	The	outcomes	of	 the	system	were	compared	to	
their	judgments.	The	knowledgebase	was	subsequently	modified	and	extended	in	response	to	
the	practitioners’	feedback.	System	validation	confirmed	that	a	correct	system	was	developed	
according	to	user’s	requirements.	
	

CONCLUSION	
Decision	 making	 regarding	 WDN	 decontamination	 events	 is	 a	 complex	 problem	 requiring	
highly	 specialized	 expertise.	 This	 decision	making	 process	 normally	 begins	with	 incomplete	
and	 vague	 information,	 and	must	 be	 able	 to	 adapt	 and	 evolve	 as	 new	 information	 becomes	
available.	Consistent	with	the	established	capabilities	of	expert	systems	[e.g.	29],	WDN	utility	
managers	need	a	computer-based	tool	that	can:	1)	replicate	the	logic	and	reasoning	of	human	
experts;	 2)	 recognize	 and	 collect	 data	 related	 to	 progressive	 goals;	 3)	 determine	 possible	
solutions	in	a	stable	and	fast	manner;	4)	explain	basis	for	the	reasoning;	and	5)	can	easily	adapt	
to	meet	new	standards	or	methods	of	decision	making.	This	research	identified	the	knowledge	
required	 to	 conduct	 WDN	 decontamination.	 Upon	 assimilation,	 we	 developed	 a	 knowledge	
base	 incorporating	 both	 dynamic	 and	 static	 knowledge	 primitives	 collected	 from	 official	
documents	and	refereed	journal	papers.	We	also	explain	how	the	knowledge	is	compiled,	and	
how	 the	 compiled	knowledge	 is	 stored,	 shared	and	driven	by	 inferential	 logic.	The	 resulting	
prototype	 system	 applies	 the	 collected	 knowledge	 to	 provide	 analysis	 of	 both	 contaminant	
exceedance	 and	 public	 health	 threats	 in	 order	 to	 guide	 water	 sector	 managers.	 Further,	
information	 is	 provided	 by	 the	 system	 to	 guide	 these	 decision	makers	 in	 selecting	 potential	
technologies	for	WDN	decontamination.		
	
Further,	 to	 meet	 the	 water	 utility	 managers’	 evolving	 demands	 (referred	 to	 as	 goals)	 and	
growing	new	information	on	WDN	decontamination,	the	backward	chaining	method	is	proved	
to	work	more	effectively	than	forward	chaining	because	it	enables	the	expert	system	to	search	
for	the	necessary	data	from	the	result	of	the	previous	analyses,	and	thus	limit	the	requirements	
for	direct	user	input.		
	
Although	 the	 existing	 version	 of	Decon	works	with	 limited	 goals	 for	WDN	decontamination,	
more	 goals	 (related	 to	 other	 key	 issues	 identified	 in	 the	 CIPAC	 2008	 report)	 and	 their	
corresponding	 knowledge	 can	 be	 added	 to	 the	 system.	 For	 example,	 interactions	 between	
multiple	contaminants	could	be	taken	 into	consideration,	as	well.	Moreover,	external	sources	
such	 as	 EPANET	 could	 be	 linked	 to	 the	 expert	 system	 to	 conduct	 a	 more	 comprehensive	
analysis	for	the	entire	WDN,	rather	than	one	isolated	node.		
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