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ABSTRACT	

This	paper	investigates	the	combination	of	the	two	risk	measures	irrationality	and	
volatility	 for	 portfolio	 selection	 as	 well	 as	 irrationality	 as	 a	 standalone	 risk	
measure.	The	study	is	conducted	for	a	period	of	20	years,	ranging	from	1999-01-04	
to	 2018-12-31,	 using	 daily	 closing	 prices	 from	 1.295	 stocks.	 The	 companies	 are	
derived	 from	 the	 indices	 S&P	500,	 STOXX	600	 and	 a	 representative	 index	 of	 the	
German	market	 out	 of	 the	 indices	 DAX,	 MDAX,	 SDAX	 and	 TecDAX.	 The	 findings	
indicate	a	negative	relationship	between	risk	and	return	in	terms	of	 irrationality	
across	 the	 three	 indices.	 The	 effect	 is	 particularly	 evident	 when	 comparing	 the	
portfolios	with	the	lowest	and	highest	values	of	irrationality.	Further,	the	analysis	
provides	an	indication	of	how	an	index	can	be	replicated	with	fewer	expenses	and	
complexity,	 particularly	 regarding	 the	 fact	 that	 the	 volatility	 of	 the	 synthetic	
portfolio	is	equivalent.	
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INTRODUCTION	

The	 linear	 relationship	 between	 the	 expected	 risk	 and	 return	 is	 one	 of	 the	 fundamental	
assumptions	of	modern	portfolio	theory.	The	basic	idea	behind	this	relationship	goes	back	to	
Markowitz	 [1]	 and	 lies	 in	 the	 fact	 that	 investors	must	 accept	 a	 corresponding	 "variance	 of	
profits"	for	their	expected	returns.	If	an	investment	with	a	better	risk-return	ratio	exists,	this	
will	increase	the	demand	for	the	investment	opportunity	and	thus	place	the	ratio	back	in	the	
line	 of	 all	 other	 investment	 opportunities.	 Based	 on	 the	 resulting	 portfolio	 selection	 theory,	
which	 includes	 the	 liquidity	 preference,	 the	 Capital	 Asset	 Pricing	 Model	 (CAPM)	 was	
established	by	William	F.	Sharpe	[2]	and	John	Lintner	[3].	The	CAPM	assumes	that	the	specific	
risks	of	 the	 individual	 investments	are	offset	by	diversification	and	that	only	the	market	risk	
remains,	which	 cannot	 be	 further	 reduced.	 This	 risk	 is	 therefore	 borne	 by	 the	 shareholders	
who	invest	via	a	diversified	portfolio	along	the	capital	market	line,	which	represents	the	linear	
relationship	 between	 expected	 risk	 and	 return.	 Under	 the	 assumption	 of	 unrestricted	
borrowing	and	 lending,	 an	 investor	with	maximum	risk	aversion	would	 theoretically	receive	
exactly	the	risk-free	return.	
	
Assuming	that	the	market	portfolio	should	take	into	consideration	all	risk-bearing	investment	
opportunities,	the	hypothesis	of	a	linear	relationship	is	not	empirically	verifiable	or	falsifiable	
[4].	Empirical	studies	 therefore	analyze	samples	of	 the	market	portfolio	 for	example	through	
broad	stock	indices	that	cover	a	large	proportion	of	the	total	market	capitalization	of	a	country	
or	region.		
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Early	empirical	studies	such	as	Black,	Jensen	and	Scholes	[5]	therefore	used	portfolios	instead	
of	individual	stocks.	The	portfolios	covering	all	shares	of	the	New	York	Stock	Exchange	(NYSE)	
for	the	period	from	1926	to	1966	were	sorted	in	ascending	order	from	low	to	high	beta	values.	
The	 study	 confirms	 the	 linear	 relationship	 between	 risk	 and	 return,	 but	with	 a	 flatter	 curve	
than	assumed	by	the	CAPM.	The	returns	for	portfolios	with	lower	risk	are	higher	and	vice	versa	
lower	with	higher	risk.	In	a	more	recent	study,	Fama	and	French	[6]	confirmed	the	results	of	
Black,	Jensen	and	Scholes	for	the	shares	of	the	NYSE	over	a	period	from	1928	to	2003	and	the	
National	 Association	 of	 Securities	 Dealers	 Automated	 Quotations	 (NASDAQ)	 from	 1972	 to	
2003.	The	authors	conclude	as	well	that	the	relationship	between	risk	and	return	is	flatter	than	
assumed	by	 the	 single	 factor	model	 and	 thus	 the	CAPM	cannot	be	verified	 for	 the	portfolios	
under	 consideration.	 Hence	 low-risk	 equities	 are	 underpriced	 by	 the	 market	 and	 high-risk	
equities	are	attributed	too	high	future	returns.		
	
All	these	studies	are	conducted	based	on	the	assumption	that	risk	is	fully	captured	in	terms	of	
volatility	 -	 the	 annualized	 standard	 deviation	of	 returns	 -	which	 is	 a	measure	 of	 the	 overall	
margin	of	fluctuations.	In	our	analysis	we	examine	the	inclusion	of	irrationality	as	a	measure	of	
risk	in	addition	to	volatility	as	well	as	irrationality	as	a	standalone	risk	measure.	Irrationality	
as	 defined	 by	 Schädler	 [7]	 measures	 the	 ratio	 of	 long	 to	 short	 frequency	 components	 of	
historical	 stock	quotes	 in	 relation	 to	each	other.	Therefore,	 it	 is	 a	 relative	measure	which	 in	
contrast	to	volatility	does	not	consider	the	overall	fluctuation	margin.	A	possible	advantage	in	
the	combination	of	the	two	risk	measures	may	be	that	irrationality,	unlike	volatility,	does	not	
assume	a	standard	normal	distribution	of	returns.	
	
The	 difference	 to	 volatility	 becomes	 apparent	when	 one	 considers	 an	 ideal	 company	which	
grows	 linearly	without	 uncertainties	 about	 the	 future	 course	 of	 business	 and	 no	 exogenous	
cycles.	In	this	case,	under	the	premise	of	efficient	markets,	the	price	of	the	shares	would	move	
within	a	narrow	corridor	around	the	present	value	of	the	company,	which	results	purely	from	
the	 usual	 trading	 of	 the	 shares.	 The	 irrationality	would	 then	 tend	 towards	 zero.	 In	 the	 next	
step,	market	participants	are	 introduced,	who,	driven	by	 irrational	behavior,	cause	the	share	
price	 to	 fluctuate	 around	 the	 actual	 company	 value.	 In	 the	 extreme	 case	 of	 very	 high	
fluctuations	around	 the	actual	value,	 irrationality	would	 tend	 towards	one,	 as	 the	additional	
fluctuations	would	have	a	much	stronger	 impact	on	the	development	of	 the	share	price	than	
the	usual	 trading	 in	 the	above	example.	Empirical	 values	are	somewhere	between	 these	 two	
extremes	of	the	idealized	company.		
	
Both	Shiller	[8]	and	Appel	and	Grabinski	[9]	conclude	that	price	fluctuations	are	three	to	five	
times	higher	than	the	change	in	the	discounted	future	cash-flows	of	the	companies	considered.	
To	 take	 this	 into	 account,	 it	 is	 assumed	 that	 equity	 markets	 are	 efficient,	 meaning	 that	 all	
available	information	is	priced	directly	into	the	market.	Therefore,	it	is	not	possible	to	generate	
a	 constant	excess	 return	based	on	new	 information.	 “Efficient”	however,	does	not	mean	 that	
valuations	on	the	stock	exchange	should	by	no	means	deviate	from	the	actual	company	value.	
In	order	to	reflect	this	in	the	risk	indicator	irrationality,	it	is	assumed	that	the	maximum	time	
interval	 between	 the	 release	 of	 new	 information	 is	 no	 more	 than	 three	 months	 apart	 and	
possible	price	fluctuations	accounting	for	the	information	are	offset	within	the	same	period.		
	
This	 rational	part	of	 the	 fluctuations	 is	 compared	 to	 fluctuations	 that	 are	 in	a	range	of	more	
than	 three	 months	 to	 one	 year,	 in	 which	 no	 new	 information	 is	 available.	 Therefore,	 this	
irrational	part	 is	 adjusted	 for	 the	overall	 trend	of	 the	 company's	development,	which	affects	
fluctuations	over	a	period	 longer	 than	one	year.	The	historical	development	of	 a	 share	price	
can	thus	be	described	by	the	following	model	
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whereby	 solely	 the	 rational	 and	 irrational	 fluctuations	 are	 considered	 in	 the	 calculation	 of	
irrationality.	
	
The	next	chapter	outlines	the	selection	and	the	way	the	individual	stocks	used	for	the	analysis	
are	 preprocessed.	 The	 calculation	 of	 the	 two	 risk	 ratios	 is	 then	 presented	 in	 detail.	 While	
volatility	 is	 calculated	 using	 logarithmic	 returns,	 irrationality	 is	 calculated	 over	 three	 steps.	
First,	 the	 logarithmized	 time	 series	 are	 detrended	 with	 a	 linear	 regression	 model	 whose	
parameters	are	estimated	via	the	ordinary	least	squares.	The	resulting	weakly	stationary	time	
series	 can	 then	 be	 used	 to	 calculate	 the	power	 spectrum	via	 the	 discrete	 Fourier	 transform.	
The	last	step	is	to	accumulate	the	corresponding	frequency	bands	and	to	put	them	in	relation	
to	each	other.	
	

RESEARCH	DESIGN	
We	 analyzed	 daily	 historical	 stock	 quotes	 ex-post	 on	 a	 total	 return	 basis	 for	 a	 period	 of	 20	
years,	 ranging	 from	1999-01-04	 to	2018-12-31.	The	data	used	were	 taken	 from	Datastream.	
Since	it	is	assumed	that	shares	with	high	market	capitalization	within	developed	countries	are	
efficient,	the	following	indices	were	selected.		
	
For	 the	 German	 market,	 the	 performance	 indices	 DAX,	 MDAX,	 SDAX	 and	 TecDAX	 were	
combined	 to	 form	 the	 German	 Major	 Indices	 Index	 (GMII),	 adjusted	 for	 double	 listings	 of	
individual	stocks	as	provided	by	Deutsche	Boerse	AG.	The	STOXX	600	was	used	as	a	proxy	for	
the	European	market	as	provided	by	STOXX	AG.	The	American	market	 is	represented	by	the	
S&P	500	as	provided	by	the	Standard	and	Poor’s	Corporation	(S&P).	All	data	 for	 the	analysis	
were	accessed	on	2019-05-29.	
	
The	daily	values	of	 the	 time	series	had	 to	be	 checked	 for	missing	values	 first.	 Shares	with	a	
history	of	 less	 than	20	years	were	excluded	from	the	analysis.	Furthermore,	price	recordings	
on	public	holidays	were	eliminated.	 In	order	 to	exclude	 systematic	 errors	 in	 the	data	 series,	
these	were	 cross-checked	with	 the	 stock	 price	 data	 of	 Thomson	Reuters	 Eikon.	 The	 existing	
survivorship	bias	is	accepted	due	to	data	availability	and	required	history	of	20	years.	
	
Table	1	shows	the	number	of	shares	contained	in	the	respective	index	compared	to	the	number	
of	shares	available	for	our	analysis.	
	

Table	1.	Stock	count	after	cleaning	per	index	
Indices	 Total	individual	

stocks	
Individual	stocks	
count	after	cleaning	

GMII	 190	 73	
STOXX	600	 600	 368	
S&P	500	 505	 380	

	
	
The	next	step	is	to	calculate	the	historical	volatility	of	the	time	series.	Historical	stock	volatility	
as	a	measure	for	dispersion	of	returns	defined	as		
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is	 the	 annualized	 square	 root	 of	 the	 variance,	 with	iÄ	being	 the	 logarithmic	 returns	 of	 the	
respective	historical	stock	quotes	]Ä	and	i̅	the	expected	value.	Due	to	the	handling	of	daily	data	
with	 the	 length	} 	and	^ 	the	 number	 of	 years	 under	 consideration,	 the	 raw	 variance	 is	
annualized	 by	 the	 square	 root	 of	}/^.	 The	 annualization	 is	 done	 for	 consistency	 and	 has	 no	
influence	on	the	relative	risk	in	sense	of	a	risk	ranking	as	all	stocks	are	handled	equally.	
	
As	described	above,	 irrationality	 is	 calculated	over	 three	 steps.	First,	 the	 logarithmized	 time	
series	are	detrended	with	a	linear	regression	model	as	the	data	must	be	weakly	stationary	for	
being	 applicable	 to	 the	 discrete	 Fourier	 transform.	 In	 this	 paper,	 the	 adjustment	was	made	
using	a	 fourth-degree	polynomial	regression	model,	which	was	 found	to	be	a	good	fit	 for	 the	
analyzed	data	series.	
	
In	the	general	case,	the	parameters	of	a	k-th	degree	polynomial	regression	model	
	
																																																			eÜ = _G + _($Ü + _A$Ü
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are	estimated	via	the	ordinary	least	squares	in	its	well-known	matrix	form	
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by	minimizing	the	sum	of	squares	residuals	where	eÜ 	represents	the	logarithmized	time	series.	
_ä 	being	the	coefficient	vector	with	the	parameters	_G,… , _à	and	U	the	; × p	design	matrix.	To	
detrend	the	stock	quotes,	the	values	of	the	regression	model	will	be	deducted	from	the	original	
logarithmized	time	series.	In	the	next	step,	the	Power	spectrum	is	estimated.	
	
For	 a	 finite,	 stationary	 time	 series	 the	 power	 spectrum	\(;)	is	 defined	 as	 the	 squared	
convolution	of	the	magnitude	of	the	frequency	components	and	its	complex	conjugate.	
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The	frequency	components	are	derived	via	the	discrete	Fourier	Transform.	v(d)	denoted	as	the	
logarithmized,	 detrended	 historical	 stock	 quotes,	 N	 the	 number	 of	 daily	 observations	 of	 the	
time	 series,	 n	 the	 respective	 frequency	 bins	 and	bA ≡ −1.	 Although	 stock	 prices	 do	 not	 hold	
energy	in	a	physical	sense,	the	use	of	this	analogy	is	useful	to	compare	the	strength	or	influence	
of	 frequency	 bands	 relative	 to	 each	 other.	 It	 is	 important	 to	 note,	 that	 a	 comparison	 of	 the	
summed	 absolute	 magnitudes	 of	 frequency	 bands	 would	 be	 biased	 towards	 shorter	
frequencies.	In	the	final	step	the	values	of	the	corresponding	frequency	bands	are	accumulated	
and	put	in	relation	to	each	other.	
	
The	limits	of	the	frequency	bands	depend	on	the	number	of	years	under	observation	and	the	
number	of	trading	days	per	year.	While	the	one-year	boundary	ℎ	matches	the	number	of	years	
under	observation,	the	three-month	p	and	the	ten	days	threshold	ë	are	selected	as	the	closest	
to	 the	 corresponding	 frequency	 bin.	 The	 sum	 of	 the	 power	 of	 the	 frequency	 components	
relative	to	each	other	returns	the	value	of	irrationality.	
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Irrationality	 can	 thus	 rise	 in	 two	 ways.	 On	 one	 hand,	 it	 increases	 if	 the	 influence	 of	 long	
frequencies	 on	 the	 price	 development	 increases.	 On	 the	 other	 hand,	 it	 increases	 when	 the	
influence	of	short-term	frequencies	declines	if	all	else	is	equal.	We	would	like	to	point	out	anew	
that	short-term	fluctuations	reflect	the	risk	inherent	in	the	respective	business	model	and	thus	
form	the	basis	of	the	calculation	which	the	long-term	fluctuations	are	compared	to.	
	
From	 the	 calculation	 logic	 it	 can	 further	 be	 concluded	 that	 irrationality	 is	 less	 volatile	 than	
volatility	itself.	An	increase	in	very	short	fluctuations	under	10	days	will	not	have	a	direct	effect	
on	the	results.	Significant	fluctuations	over	a	period	of	more	than	10	days	increase	the	signal	
strength	of	the	short	frequencies	and	only	influence	long-term	frequency	ranges	over	a	longer	
period.	 In	 addition,	 it	 should	 be	 noted	 that	 a	 single	 data	 error,	 even	when	more	 than	 5.000	
measurement	points	are	considered,	can	have	such	a	strong	influence	on	volatility	that	a	value	
which	 is	within	 the	market	average	 in	 terms	of	volatility	may	be	 classified	as	very	 risky.	By	
excluding	all	frequencies	below	10	days,	irrationality	is	resistant	to	such	data	errors.	
	

RESULTS	
As	described	above,	the	individual	shares	of	the	indices	analyzed	were	split	according	to	their	
respective	values	of	irrationality	and	volatility.	The	division	of	the	portfolios	results	from	the	
process	of	first	sorting	the	individual	stocks	in	ascending	order	from	low	to	high	irrationality.	
This	enables	the	subdivision	into	two	halves,	while	in	the	case	of	an	odd	number	of	shares,	the	
portfolio	with	a	comparatively	higher	risk	receives	one	more	share.	Subsequently,	each	of	the	
two	portfolios	were	separated	according	to	low	and	high	volatility	and	divided	into	lower	and	
higher	 risk	 portfolios.1	For	 each	 quadrant,	 the	 compound	 annual	 growth	 rate	 (CAGR)	 of	 the	
respective	portfolio	was	calculated.	As	the	market	capitalization	changes	significantly	over	the	
period	of	20	years,	we	preferred	to	measure	the	CAGR	on	an	equal	weighted	basis.	The	total	
return	CAGRs	of	the	equal	weighted	portfolios	are	presented	in	Figure	1.	The	colors	in	the	plot	
are	scaled	from	red	to	green	whereby	red	indicates	the	lowest,	green	the	highest	value	in	terms	
of	CAGR.	
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Figure	1.	Total	return	CAGRs	per	index	and	equal	weighted	portfolios	

Across	all	three	indices	a	consistent	pattern	for	the	CAGRs	emerges.	High	returns	can	be	found	
in	 portfolios	 in	 the	 lower	 half	 of	 irrationality	 regardless	 of	 volatility.	 This	 is	 evident	 for	 all	
indexes	 analyzed.	 In	 terms	 of	 volatility,	 the	 American	 market	 differs	 from	 the	 European	
market.	 While	 the	 European	markets	 have	 a	 higher	 CAGR	 for	 the	 lower	 half,	 the	 American	
market	shows	a	higher	CAGR	for	the	higher	half	of	volatility.	
	
At	an	individual	portfolio	level,	no	definite	conclusion	can	be	drawn	for	the	lowest	CAGR	value.	
It	is	noticeable	that	all	the	portfolios	with	the	highest	CAGR	are	in	the	range	of	low	irrationality.	
																																																								
	
1		 Thresholds	 	 GMII	 STOXX	600	 S&P	500	
	 Irrationality	Threshold	 	 77.8%	 					77.6%	 77.2%	
	 Volatility	Threshold	low	Irrationality	 32.1%	 					30.8%	 30.9%	

Volatility	Threshold	high	Irrationality	 37.8%	 					34.4%	 37.4%	
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Especially	the	portfolios	with	low	irrationality	and	high	volatility	show	higher	returns	than	the	
market	portfolio.	
	
From	 the	 results	 it	 appears	 that	 a	 strategy	 with	 low	 irrationality	 is	 advantageous	 for	 the	
European	market	as	well	as	the	American	market,	while	an	investment	decision	favoring	high	
volatility	irrespective	of	irrationality	is	most	advantageous	for	the	US	market.	It	is	interesting	
to	note	that	low	irrationality	is	associated	with	higher	CAGRs.	In	other	words,	the	assumption	
of	the	CAPM	that	higher	returns	are	associated	with	higher	risk	-	defined	as	volatility	-	cannot	
be	 confirmed	 for	 irrationality.	 Therefore,	 an	 analysis	 of	 irrationality	 as	 a	 standalone	 risk	
measure	by	dividing	it	into	quarters	should	confirm	the	results.	
	
The	analysis	with	irrationality	as	a	standalone	risk	ratio	is	presented	in	the	Table	2	based	on	
equal-weighted	 portfolios.	 All	 Shares	 portfolios	 contain	 all	 evaluated	 equities	 within	 the	
respective	 index.	The	other	portfolio	names	are	 in	ascending	order	by	 irrationality	whereby	
the	First	Quarter	contains	the	shares	with	the	lowest	and	the	Fourth	Quarter	the	stocks	with	
the	 highest	 irrationality	 values.	 The	 thresholds2	result	 from	 this	 classification	 and	 represent	
the	upper	limit	for	the	respective	portfolio.	
	
Sharpe	 ratios	 are	 calculated	with	 a	 risk-free	 rate	 of	 zero.	 The	maximum	Drawdown	 (MDD)	
measures	 the	 highest	 loss	 throughout	 the	 whole	 time	 series	 in	 percentage	 points	 from	 the	
highest	point	before	the	drawdown	and	the	subsequent	 trough.	Calmar	Ratios	are	defined	as	
the	CAGR	of	the	portfolio	divided	by	the	corresponding	MDD.	Statistical	significance3	of	Sharpe	
ratios	and	Calmar	ratios	of	the	four	portfolios	based	on	irrationality	was	tested	against	die	All	
Shares	portfolios	on	a	rolling	annual	basis	using	the	Mann-Whitney	U	test.	
	

Table	2.	Descriptive	statistics	of	the	total	return	portfolios	
Index	 Portfolio	 CAGR	 Volatility	 Sharpe	

Ratio	 MDD	 Calmar	
Ratio	

	       
GMII	 All	Shares	 10.0%	 18.9%	 					0.50	 59.4%	 					0.17	

	 First	Quarter	 11.8%	 19.6%	 					0.57*	 59.9%	 					0.20***	

	 Second	Quarter	 9.8%	 21.0%	 					0.44***	 59.9%	 					0.16	

	 Third	Quarter	 9.9%	 20.7%	 					0.46***	 63.9%	 					0.16***	

	 Fourth	Quarter	 7.9%	 24.7%	 					0.31***	 65.6%	 					0.12***	

	       
STOXX	600	 All	Shares	 11.4%	 17.6%	 					0.62	 54.5%	 					0.21	

	 First	Quarter	 12.0%	 17.1%	 					0.66	 46.3%	 					0.26***	

	 Second	Quarter	 11.7%	 16.4%	 					0.68	 50.7%	 					0.23	

	 Third	Quarter	 11.3%	 18.1%	 					0.60**	 55.8%	 					0.20*	

	 Fourth	Quarter	 10.5%	 20.7%	 					0.48***	 66.7%	 					0.16***	

	       
S&P	500	 All	Shares	 12.8%	 19.9%	 					0.61	 50.6%	 					0.25	

	 First	Quarter	 15.0%	 20.0%	 					0.70	 47.0%	 					0.32***	

	 Second	Quarter	 12.4%	 18.9%	 					0.62**	 46.2%	 					0.27***	

	 Third	Quarter	 11.1%	 21.3%	 					0.49***	 54.6%	 					0.20***	

	 Fourth	Quarter	 12.1%	 22.6%	 					0.51***	 58.1%	 					0.21***	
																																																								
	
2		 Thresholds	 	 GMII	 STOXX	600	 	 S&P	500	
	 First	Quarter	 	 75.6%	 					75.3%	 	 			74.3%	
	 Second	Quarter	 77.8%	 					77.6%	 	 			77.2%	
	 Third	Quarter	 	 80.6%	 					80.1%	 	 			79.6%	
3		 *,	**	and	***	denote	statistical	significance	at	the	90%,	95%	and	99%	levels. 
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The	Sharpe	Ratios	of	 the	First	Quarter	portfolios	are	consistently	higher	compared	to	the	All	
Shares	 portfolios.	 Both	 the	 First	 Quarter	 and	 the	 All	 Shares	 portfolios	 have	 higher	 Sharpe	
Ratios	 than	 the	 Fourth	Quarter	 portfolios.	 Besides	 the	 lower	 CAGR,	 the	main	 reason	 for	 the	
lower	Sharpe	Ratios	is	that	the	highest	volatility	is	measured	for	the	portfolios	with	the	highest	
risk.	 Further,	 the	 high	 risk	 of	 the	 Fourth	 Quarter	 portfolios	 is	 reflected	 in	 the	 highest	MDD	
values	over	the	20-year	period.	Rising	MDD	in	accordance	with	risk	from	the	first	to	the	fourth	
Quarter	portfolios	and	the	CAGR	falling	simultaneously	lead	to	decreasing	Calmar	ratios.	This	
effect	is	evident	across	all	three	indices.	In	summary,	we	conclude,	that	higher	risk	in	terms	of	
irrationality	is	not	compensated	by	higher	returns	for	the	analyzed	equity	universe.		
	
The	statistical	significance	of	the	Sharpe	ratios	from	the	95%	level	upwards	indicates	that	the	
All	Shares	portfolio	can	be	replicated	by	the	First	Quarter	portfolio.	In	this	case,	an	equivalent	
volatility	with	statistically	significant	higher	Calmar	ratios	can	be	assumed.	
	

CONCLUSIONS	
Due	to	the	exclusion	of	frequencies	below	10	days,	irrationality	is	per	design	less	volatile	than	
volatility	itself.		Furthermore,	irrationality	is	more	robust	against	erroneous	data	series.	While	
even	a	single	measurement	error	may	have	a	significant	effect	on	volatility,	the	irrationality	in	
this	 case	would	hardly	 change.	 Irrationality	 can	 therefore	be	a	valuable	addition	 to	volatility	
when	measuring	risk.	
	
Irrationality	 differs	 markedly	 from	 volatility.	 Whereas	 the	 literature	 assumes	 a	 linear	
relationship	 of	 higher	 CAGRs	 and	 increasing	 volatility,	 the	 expected	 returns	 decrease	 with	
increasing	 irrationality.	 Since	 irrationality	 is	 associated	with	 speculative	 behavior,	 it	 can	 be	
concluded	that	equities	with	a	high	speculative	component	in	relation	to	rationally	explainable	
fluctuations	are	associated	with	lower	CAGRs.		
	
For	the	management	of	equity	portfolios,	the	analysis	provides	an	indication	of	how	an	index	
can	be	replicated	with	fewer	expenses	and	complexity,	particularly	regarding	the	fact	that	the	
volatility	of	the	synthetic	portfolio	is	equivalent.	
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