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ABSTRACT	
In	this	paper,	we	consider	the	optimal	investment	problem	for	an	insurer	who	worries	
about	the	possibility	of	model	misspecification.	Without	 loss	of	generality,	we	assume	
there	 are	 only	 one	 risky	 asset	 and	 one	 risk-free	 asset	 in	 the	 financial	 market.	 With	
consideration	of	 the	existence	of	ambiguity,	we	aim	 to	obtain	 the	optimal	 investment	
policy	with	maximizing	the	expected	utility	of	terminal	wealth.	By	the	dynamic	optimal	
principle,	we	obtain	closed-form	solutions	of	 the	optimal	 investment	policy	and	value	
function.	 Furthermore,	 we	 find	 that	 our	 study	 contains	 some	 results	 which	 are	
investigated	in	Browne	(1995).	We	can	see	that	if	the	insurer	is	ambiguity	aversion,	he	
will	appear	more	conservative	about	the	risky	asset.	
	
Keywords:	 Ambiguity	 aversion;	 optimal	 investment;	 expected	 utility;	 penalty	 function;	
relative	entropy	

	
1.	INTRODUCTION	

As	an	 important	way	of	benefit	by	an	 insurance	 company,	 the	 investment	problem	has	been	
extensively	 studied	 in	 mathematical	 insurance	 literature.	 For	 example,	 Browne	 (1995)	
analysed	 the	 optimal	 investment	 policies	 with	 maximizing	 exponential	 utility	 of	 terminal	
wealth	 and	minimizing	 the	 probability	 of	 ruin;	 Hipp	 and	 Plum	 (2000,	 2003)	 considered	 the	
optimal	 investment	 problems	 for	 insurers	 and	 individuals	 respectively.	 In	 addition,	 many	
researchers	 not	 only	 investigate	 the	 optimal	 investment	 problem	 but	 also	 combine	 other	
optimal	 control	 problems.	 Schmidli	 (2001,	 2002),	 Irgens	 and	 Paulson	 (2004),	 Bai	 and	 Guo	
(2008),	Zhang	et	al.	(2009)	and	Liang	et	al.	(2011)	considered	the	optimal	investment	problem	
combining	with	reinsurance.	Some	researchers	also	investigated	the	investment	problem	with	
considering	 the	 optimal	 dividends	 problem,	 for	 example,	 see	 Paulsen	 and	 Gjessing	 (1997),	
Azcue	 and	 Muler	 (2010).	 Intuitively,	 the	 optimal	 investment	 problem	 paly	 a	 crucial	 role	 in	
actuarial	 science.	 In	 this	 paper,	 we	 study	 the	 optimal	 investment	 problem	 for	 an	 insurance	
company.		
	
In	 previous	 studies,	 the	 researchers	 often	 aim	 to	 obtain	 the	 optimal	 policies	 under	 a	
probability	measure	P .	A	basic	assumption	behind	these	problems	 is	 that	 the	 insurer	knows	
exactly	 about	 the	 true	 probability	measure	 P .	 However,	 some	 researchers	 have	 argued	 that	
the	assumption	 is	 too	strong.	We	know	that	 the	probability	measure	P 	is	constructed	by	the	
insurer’s	 limited	 information.	 In	other	words,	 the	 insurance	 company	estimates	P 	through	a	
mass	of	data	and	various	technologies.	Obviously,	 P 	may	be	misspecification	error.	Hence,	the	
insurer	 should	 be	 allowed	 to	 consider	 the	 optimal	 policies	 with	 considering	 alternative	
probability	measures.	In	this	paper,	we	consider	the	optimal	investment	and	premium	control	
problem	 for	 insurers	 in	 a	 diffusion	 model	 who	 worries	 about	 the	 model	 misspecification.	
Actually,	 some	 scholars	 have	 paid	 attention	 to	 the	 model	 misspecification	 problems,	 for	
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example,	see	Uppal	and	Wang	(2003),	Maenhout	(2004),	Zhang	and	Siu	(2009),	Yi	et	al.	(2013),	
Zeng	 et	 al.	 (2016).	 In	 our	 work,	 we	 use	 a	 diffusion	 model	 to	 describe	 the	 surplus	 of	 an	
insurance	 company.	 Based	 on	 this	 diffusion	 model	 and	 considering	 the	 existence	 of	 model	
ambiguity,	we	obtain	the	closed-form	solutions	of	optimal	investment	policy	and	value	function.	
We	compare	the	results	with	Browne's	(1995).	
	
The	remainder	of	this	paper	is	as	follows.	In	Section	2,	we	give	the	model	used	in	this	paper,	
describe	 the	 objective	 function	 in	 Browne	 (1995).	 In	 Section	 3,	 we	 discuss	 the	 existence	 of	
ambiguity	and	present	the	objective	function.	In	Section	4,	we	obtain	the	closed-form	solutions	
of	optimal	policy	and	value	function	for	the	problem.	
	

2.	THE	MODEL	
We	describe	the	surplus	of	an	insurance	company	at	time	 t 	by	 ( )S t 		
	

dS(t)	=	adt	+	bdB1(t),		 (0) ,S x= 																(2.1)	
	
where	 0, 0;> > 	 1( )B t 	is	a	standard	Brownian	motion.	We	consider	 there	 is	only	one	risk-
free	asset	 (a	bond)	and	one	 risky	asset	 (a	 stock)	 in	a	 financial	market.	We	assume	 the	price	
process	 0 ( )P t 		of	the	risk-free	asset	satisfies	
	

0 0d ( ) ( )dP t rP t t= ,																									(2.2)	

	
where	 0r 	is	the	risk-free	interest	rate.	Furthermore,	the	price	process	 1( )P t 	of	the	risky	asset	
satisfies	the	standard	geometric	Brownian	motion:	
	

dP1	(t)	=	P1(t)	[µdt	+	s	dB2	(t)],															(2.3)	
	
where	 		 and	 		 are	 positive	 constants,	 2 ( )B t 	is	 the	 standard	 Brownian	 motion.	 To	 avoid	
triviality,	we	assume	 r> 	.	We	assume	that	the	dependence	of	the	insurance	market	and	the	

financial	 market	 is	 described	 by	0 1< ,	 i.e.,	 1 2( ( ), ( ))Cov B t B t t= ,	 by	 standard	 Gaussian	

linear	regression,	we	have	
	

,	
	
where	 3( )B t 	is	a	standard	Brownian	motion	that	is	independent	of	 1( )B t 	.	Therefore,	the	(2.3)	
becomes	
	

,													(2.4)	
	
The	 insurer	 is	allowed	 to	 invest	 in	 the	risky	asset	or	risk-free	asset	by	himself,	and	 the	 total	
amount	of	money	invested	in	the	risky	asset	at	time	 t 	is	denoted	as	 tf .	Therefore,	the	wealth	
process	of	the	insurance	company	with	the	investment	policy	 f 	can	be	written	as	
	

		 (2.5)	
	

where	 (0)fS x= .		
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Browne	(1995)	investigated	the	optimal	investment	policies	by	maximizing	the	expected	utility	
of	terminal	wealth	and	minimizing	the	probability	of	ruin	corresponding	a	certain	probability	
measure	 P .	In	Browne	(1995),	the	objective	function	is	
	

	 	 (2.6)	
and	

	 	 	 	
	
where	 PE 	denotes	expectation	operator	under	probability	measure	P ,	U 	is	a	utility	 function	
satisfying	 ' 0, '' 0,U U> < T < is	 the	 terminal	 time, inf{ : ( ) },f

a t S t a= inf{ : ( ) }f
b t S t b= 	,	

f 	is	 an	 admissible	 policy.	 A	 basic	 assumption	 behind	 this	model	 is	 that	 the	 insurer	 knows	
exactly	about	true	probability	measure	P 	used	in	computing	above	equation.	However,	some	
researchers	have	argued	that	the	assumption	is	too	strong.	The	 insurer	should	be	allowed	to	
consider	 the	 optimal	 policies	 for	 model	 ambiguity.	 Therefore,	 there	 are	 many	 investigators	
have	studied	the	optimal	policies	with	model	ambiguity.	For	example,	see	Hansen	and	Sargent	
(2001),	Uppal	and	Wang	(2003).	As	a	result,	we	will	consider	the	optimal	investment	policies	
with	model	 ambiguity.	 In	 the	 following	 subsection,	 we	 present	 the	model	 ambiguity	 in	 our	
optimal	control	problems.	
	

3.	MODEL	AMBIGUITY	
We	 know	 that	 the	 probability	 measure	 P 	above	 is	 constructed	 by	 the	 insurer's	 limited	
information.	In	other	words,	the	insurance	company	estimates	P 	through	a	mass	of	data	and	
various	 technologies.	We	call	 this	 P 	the	reference	probability	or	reference	model.	Obviously,	
the	insurer	is	sure	about	the	insurance	market,	while	he	is	not	sure	about	the	financial	market.	
Hence,	 we	 can	 see	 that	 the	P 	is	 the	 right	 model	 to	 insurance	 market	 and	 it	 may	 be	
misspecification	error	about	financial	market.	Naturally,	the	insurer	would	consider	alternative	
models	 corresponding	 to	 financial	 model,	 moreover,	 the	 alternative	 won't	 change	 the	
insurance	model.	 In	addition,	 the	alternative	models	 considered	by	 insurer	 should	similar	 to	
the	 reference	model,	 so	we	define	 the	 alternative	models	 by	 a	 class	 of	 probability	measures	
which	are	equivalent	to	P 	and	aren't	able	to	change	model	(2.1):	
	

Q	isn’t	able	to	change	model	(2.1)}												(3.1)	
	
Since	Q ! 	is	equivalent	 to	P 	and	 isn't	able	 to	change	model	 (2.1)	 ,	applying	 the	Girsanov's	
theorem	(	Klebaner	(2008)),	Q 	is	sure	that	satisfies	
	

	 (3.2)	
	
where	

	
is	 a P -martingale	 with	 filtration	 [0, ]{ }t t TF ,	 ( )m t 	is	 a	 regular	 adapted	 process	 satisfying	
Novikov's	condition,	i.e.,	
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By	Girsanov's	theorem,	the	standard	Brownian	motion	 ( )B t 	under	probability	measure	 P 	can	
be	represented	as	
	

	 	 (3.3)	
	
where	 3 ( )

QB t 	is	a	standard	Brownian	motion	under	probability	measure	Q ,	furthermore,	 1( )B t 		
is	also	a	standard	Brownian	motion	under	probability	measureQ .	We	should	derive	the	wealth	
process	under	Q .	Inserting	(3.3)	and	into	(2.5),	we	have	
	

	

(3.4)	
	
For	the	purpose	of	considering	the	alternative	model	Q ,	we	need	to	measure	the	discrepancy	
between	 each	 alternative	model	 and	 reference	model	 by	 using	 relative	 entropy.	 The	 use	 of	
relative	entropy	is	a	well-established	approach	in	measuring	the	discrepancy	between	Q 	and	
P .	 Numerous	 studies	 have	 used	 relative	 entropy	 to	measure	 it,	 for	 example,	 see	 Uppal	 and	
Wang	 (2003),	 Maenhout	 (2004),	 Yi	 et	 al.	 (2013).	 The	 relative	 entropy	 between	 	Q 	and	 P is	
given	by	
	

	
	
Since 3 ( )

QB t is	a	standard	Brownian	motion	under	probability	measure	Q ,	we	have	
	

	 (3.5)	
	

where 21( ) [ ( )]
2

Z s m s= .	 Hence,	 ( )Z t 	measures	 the	 ( )[0, ]tH Q P! .	 If	 the	 insurer	 rejects	 the	

reference	model	P 	and	accepts	the	alternative	model	Q ,	a	penalty	is	incurred.	Obviously,	the	
larger	 the	 ( )[0, ]tH Q P! 	is,	 the	 larger	 the	 penalty	 is	 incurred.	 It	 is	 similar	 to	Uappl	 and	Wang	

(2003),	 Maenhout	 (2004),	 we	 formulate	 robust	 control	 problems	 in	 the	 following.	 The	
objective	of	maximizing	exponential	utility	of	terminal	wealth	with	ambiguity	is	set	as	
	

	 (3.6)	
	
where	 , [ ] | ( ) ,Q Q Q

t xE E S t x= = 	 ( ) 0> 	is	a	standardization	function	that	converts	the	penalty	

to	 the	 same	 order	 of	 magnitude	 as	 the	 order	 of	 	 ( , )V t x ,	 the	 special	 form	 of	 ( ) 	is	 usual	
selected	for	analytical	simplicity,	 0> 	denotes	the	insurer's	confidence	on	reference	model	 P ,	
the	larger	the	 	is,	the	insurer	has	more	confidence	on	P ,	 that	the	 	is	the	set	of	admissible	
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policies	will	be	detailed	later,	the	 inf term	reflects	the	insurer's	aversion	to	ambiguity,	in	other	
words,	the	insurer	is	conservative	and	then	he	will	consider	the	worst	result	with	ambiguity.	In	
the	 extreme	 case,	 	means	 that	 the	 insurer	 is	 extremely	 confident	 about	 the	 reference	
model	 and	 the	 use	 of	 any	 alternative	 model	 will	 incur	 the	 heavily	 penalty,	 therefore,	 the	
problem	 (3.6)	 reduces	 to	 (2.6).	 On	 the	 other	 hand,	 0 	means	 that	 the	 insurer	 has	 no	
information	about	the	reference	model.	Hence,	we	assume	0 < < 	in	the	following	study.	
	

4.	MAXIMIZING	EXPONENTIAL	UTILITY	OF	TERMINAL	WEALTH	WITH	AMBIGUITY	
Suppose	that	the	insurer	has	a	CARA	utility	
	

		 (4.1)	
	
where	 0> 	is	a	constant	absolute	risk	aversion.	
	
For	 a	 Markov	 control	 process	 f 	and	 any	 function	 1,2( , )g t x ! ,	 we	 define	 a	 generator	
corresponding	to	(3.4)	is	denoted	as		
	

	

(4.2)	
	
In	addition,	we	give	a	definition	of	the	set	that	contains	all	admissible	policies.	
	
Definition	4.1.	We	say	that	 [0, ]{ }  t t Tf= is	an	admissible	set,	if	

(i)	The	process	 { ,0 }tf f t T= < < 	is	a	predictable	and	satisfy	that	

	
(ii)	The	stochastic	differential	equation	(3.4)	determines	a	unique	strong	solution.	
We	can	easily	to	get	that	the	value	function	 ( , )V t x 	of	(3.6)	satisfies	that ( , ) 0V t x < ,		

	
According	to	 the	technique	of	dynamic	programming	principle,	 ( , )V t x 	satisfies	 the	Hamilton-
Jacobi-Bellman	(HJB)	equation	(see	Fleming	and	Soner	(2006))	
	

	 	 (4.3)	
	
with	the	boundary	condition	 ( , ) ( )V T x U x= .	
	
Theorem	4.1	(Verification	Theorem)	If	 1,2( , )t x ! 	is	the	solution	to	HJB	equation	(4.3)	with	
the	boundary	condition	 ( , ) ( ),T x U x= 	then	 ( , ) ( , ).t x V t x= 		
	
Proof.	The	proof	is	normal.	We	omit	it	here.	



Liu,	B.,	&	Chen,	C.	(2019).	Optimal	Investment	Policy	for	an	Insurer	with	Ambiguity	Aversion:	Maximizing	Exponential	Utility	of	Terminal	Wealth.	
Archives	of	Business	Research,	7(1),	339-347.	
	

	
	

URL:	http://dx.doi.org/10.14738/abr.71.6083.	 344	

Furthermore,	 as	 mentioned	 before,	 in	 order	 to	 converts	 the	 penalty	 to	 the	 same	 order	 of	
magnitude	as	the	order	of	 ( , )V t x ,	we	choose	a	suitable	form	of	 ( ) 	
	

			 																									(4.4)	
	
Substituting	(4.4)	into	(4.3),	we	have	

	

									(4.5)	

Since 21 ( , ) 0
2
V t x m > ,	 in	 accordance	 with	 the	 first-order	 conditions,	 the	 function	 *m 		

minimizes	the	(4.5)	that	has	the	following	form	
	

	 	 (4.6)	
	
Substituting	(4.6)	into	(4.5),	yields	
	

	
To	 obtain	 the	 optimal	 policies,	 we	 should	 have	 the	 explicit	 solution	 to	 (3.6).	 With	 the	
exponential	form	of	utility	function,	we	speculate	that	the	value	function	has	the	following	form	
	

	 (4.8)	
where	 ( )D t 	,	 ( )L t 	is	 suitable	 function	 respect	 to	 t .	 Since	 ( , ) ( )V T x U x= ,	 we	 have	 ( ) 1D T = ,
( ) 0.L T = 	Then,	we	have	

	
	
Putting	(4.9)-(4.11)	into	(4.7),	we	have	
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																 								(4.12)	
	
Since	 ( , ) 0V t x < ,		dividing	 ( , )V t x 	by	both	sides	of	(4.12),	we	have	
	

	
	
According	to	first-order	conditions,	we	have	
	

	 	 	 (4.14)	
	
Inserting	(4.14)	into	(4.13),	we	obtain	
	

	 (4.15)	
	
Equation	(4.15)	holds,	if	the	following	equations	are	satisfied:	

	
	
By	the	boundary	condition	 ( ) 1D T = 	and	 ( ) 0L T = ,	we	have	

	

(4.17)	
	
Substituting	(4.16)	into	(4.14),	yields	
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Before	 we	 give	 the	 follow	 theorem,	 we	 also	 need	 to	 verify	 that	 the	 Novikov's	 condition	 is	
satisfied.	 In	 other	 words,	 we	 should	 guarantee	 ( )T 	with	 *m 	is	 a	 P-martingale.	 Hence,	 we	
should	have	
	

	
	
we	know	that	 *

tf < ,	 ( )D t < ,	T < 	and	other	parameters	are	constants,	therefore	(4.18)	is	

satisfied.	In	the	above	process,	we	have	proved	the	following	theorem.	
	
Theorem	4.2.	For	the	problem	(3.6)	with	(4.4),	if	the	insurer	has	a	CARA	utility	function	(4.1),	
we	can	obtain	the	optimal	policy	in	the	following:	
	

	
	
where	 ( )D t 	and	 ( )L t 	are	given	by	(4.16)	and	(4.17)	respectively.	
	
Remark.	 The	 optimal	 investment	 is	 verified	 same	 as	 the	 ones	 without	 considering	 model	
misspecification	 when	 .	This	 is	 because	 that	 the	 	means	 that	 the	 insurer	 is	
extremely	 confident	 to	 the	 reference	 model	P .	 Hence,	 there	 is	 no	 ambiguity	 about	 the	
reference	 model	 and	 the	 research	 problem	 in	 this	 paper	 reduce	 to	 Browne's	 (1995).	
Furthermore,	the	optimal	policy	is	same	as	the	corresponding	part	in	Browne	(1995).	On	the	
other	 hand,	 when	 0 ,	 * 0tf .	 This	 is	 because	 0 	means	 that	 the	 insurer	 has	 no	
information	about	this	finance	market.	Thus,	the	insurer	will	not	invest	in	this	finance	market.	
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Remark.	Specially,	if	the	risk-free	interest	rate	 0r = ,	the	optimal	investment	policy	becomes	
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