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ABSTRACT	
This	paper	presents	the	measurement	of	irrationality	contained	in	the	continuous	
pricing	of	individual	stocks.	Irrationality	is	used	to	extend	the	concept	of	historical	
volatility	 by	 decomposing	 historical	 stock	 quotes	 into	 frequencies	 via	 Fourier	
transformation.	 The	 analysis	 in	 the	 frequency	 domain	 enables	 clustering	 of	 the	
contributions	of	short	and	long-term	fluctuations	to	the	overall	price	changes.	With	
the	resulting	ratio	 it	 is	possible	 to	rank	stocks	within	an	 index	according	 to	 their	
specific	fluctuation	profile.	The	analysis	is	performed	on	daily	stock	quotes	over	a	
period	of	20	years	(1997-01-02	until	2016-12-30).	Although	the	analysis	presented	
here	 focuses	 on	 the	 stock	 market,	 the	 concept	 of	 irrationality	 is	 transferable	 to	
other	 financial	markets	 as	 for	 bonds,	 housing	 prices	 or	 derivatives	 as	 well	 as	 to	
different	time	periods.	
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INTRODUCTION	

Mandelbrot	proved	 that	price	movements	 of	 stock	markets	do	not	 always	 follow	a	Gaussian	
distribution,	what	he	describes	as	mild	randomness.	Instead	historical	stock	quotes	should	be	
better	 described	 by	 a	 stable	 Paretian	 process	 to	 account	 for	wild	 randomness	 [1].	 The	wild	
behavior	of	stock	markets	can	be	investigated	with	the	use	of	Fourier	techniques.	The	spectral	
density	 being	 proportional	 to	1/~� 	and	/	=	 2	 in	 the	 frequency	 domain	 proves	 for	 mild	
randomness	known	as	red	noise	or	random	walk.	In	this	case	the	Gaussian	distribution	would	
hold,	 and	 the	 market	 is	 seen	 as	 efficient.	 Mild	 behavior	 of	 the	 market	 with	 thin	 tailed	
distributions	therefore	relates	to	the	efficient	market	hypothesis	(EMH)	as	described	by	Fama	
[2,3].	/ < 2	proves	for	wilder	randomness	and	may	be	described	with	the	concept	of	irrational	
exuberance	[4]	which	is	better	suited	to	explain	fat	tails.	Furthermore,	irrational	behavior	and	
therefore	 unexplained	 price	 movements	 by	 the	 EMH	 may	 be	 induced	 by	 the	 divergence	 of	
value	and	price	as	illustrated	by	Summers	[5]	as	well	as	Shiller	[6]	and	in	a	more	recent	study	
by	Appel	and	Grabinski	[7].		
	
The	purpose	of	 this	publication	 is	 to	develop	an	applicable	method	 to	quantify	 the	extent	of	
irrationality	in	the	valuation	of	the	share	prices	of	corporates.	The	resulting	ratio	is	consciously	
named	 irrationality	 to	 express	 that	 it	 does	 not	 only	 include	 speculative	 behavior	 of	market	
participants	but	also	the	behavior	of	the	corporate	management	including	its	decisions.	Other	
influences	such	as	political	decisions	or	interest	rate	decisions	by	central	banks	influence	the	
overall	 market	 and	 are	 not	 company-specific.	 Therefore,	 stocks	 within	 an	 index	 should	 be	
comparable.	The	general	idea	is	to	transfer	the	time	series	into	the	spectral	domain,	where	it	is	
possible	to	measure	the	influence	of	specified	frequency	ranges	with	longer	frequencies	from	
three	months	to	one	year	to	short	ones	ranging	from	ten	days	to	three	months.		The	reason	to	
exclude	 the	 frequencies	 below	 ten	 days	 is	 that	 with	 only	 one	 data	 point	 per	 day	 for	 the	
calculation,	this	range	equals	white	noise	and	is	further	based	on	unreliable	data	in	this	range.	
This	could	lead	to	signals	which	are	nothing	else	than	data	errors.		
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Even	though	there	is	irrational	behavior	in	the	timespan	from	the	tick	basis	to	three	months,	it	
is	not	possible	 to	separate	adjustments	 to	new	 information	 from	components	of	 irrationality	
like	 speculation.	 Long-term	 changes	 of	 over	 one	 year	 reflect	 actual	 changes	 in	 the	
macroeconomic	 environment	 as	 well	 as	 strategic	 decisions	 made	 by	 the	 board.	 So,	 the	
timespan	between	three	month	and	twelve	months	was	taken	as	the	closest	representation	for	
irrationality.	
	
Irrationality	in	this	sense	is	neither	good	or	bad	per	se,	it	is	the	part	not	explained	by	rational	
behavior	as	proposed	by	the	EMH.	It	is	also	not	indicating	under-	or	overvaluation	of	the	asset	
as	 neither	 fundamental	 values	 nor	 discounted	 cash	 flows	 are	 considered.	 Therefore,	 stock	
prices	even	though	they	adjust	to	new	information	on	the	short-term	do	not	need	to	reflect	the	
actual	future	economic	benefits	of	the	stock.	
	
For	the	spectral	estimation	of	functions	or	time	series	a	broad	literature	body	exists	which	is	
still	extending.	The	mathematical	details	leading	to	the	spectral	estimation	method	used	in	this	
paper	are	given	in	the	next	chapter	where	the	presented	method	to	stock	prices	will	be	applied	
as	well.	
	
In	 the	 third	 chapter	 the	 results	 for	 stocks	 within	 an	 index	 as	 well	 as	 between	 indices	 are	
discussed.	 Therefore,	 a	 ratio	 of	 low	 frequencies	 to	 high	 frequencies	 closely	 linked	 to	 the	
concept	of	empirical	probability	is	build.	It	determines	the	amount	of	irrationality	in	contrast	
to	the	inherent	variance	of	the	specific	stock	for	adjusting	to	new	information.	Please	note	that	
this	is	a	relative	measure.	It	can	be	transformed	to	fit	into	analyses	based	on	volatility	or	beta	if	
needed.	To	get	the	real	proportions	of	the	power	frequency	bands,	one	may	divide	the	sum	of	
the	irrational	band	by	the	short-term	basis,	which	will	stretch	the	results	but	keep	the	ranking.	
	
The	 fourth	and	 last	chapter	summarizes	 the	results	and	gives	hints	 for	 further	research.	The	
main	 result	 of	 this	 analysis	 is	 that	 by	 applying	 Fourier	 techniques,	 the	 strength	 of	 different	
periodic	 components	 within	 financial	 time	 series	 can	 be	 used	 to	 measure	 and	 classify	 risk	
within	an	index.	
	

THE	FOURIER	TRANSFORMATION	
The	Fourier	transformation	is	an	over	200-year-old	tool	mostly	applied	to	analyze	frequencies	
in	a	signal	(spectral	analysis)	or	to	solve	an	arbitrary	set	of	linear	partial	differential	equations.	
First,	the	Fourier	series	is	introduced.		
	
Any	periodic	function	~(C)	can	be	written	as	a	series	of	harmonic	functions:	
	

																																																			~ C = ?ÅNLP A ∙ ÉC + ÑÅPHÖ A ∙ ÉC

Ü

Åáà

																																									(1)	

	
Here	 a	 period	 of	K	was	 assumed	 so	 that	É = 2â K	A ∈ ℕà.	 The	 coefficients	?Å 	and	ÑÅ 	are	
determined	by	
	

																			?Å =
2

K
åC	~(C) ∙ NLP A ∙ ÉC

7

à

							?Öå						ÑÅ =
2

K
åC	~(C) ∙ PHÖ A ∙ ÉC

7

à

																(2)	

	
A	 proof	 of	 Eq.	 (2)	 is	 performed	 by	 inserting	~ C 	of	 Eq.	 (1)	 into	 Eq.	 (2)	 and	 performing	 the	
integration.	A	Fourier	series	exists	only	if	the	integrals	of	Eq.	(2)	exist.	
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The	interpretation	of	a	Fourier	series	evaluates	?Å 	and	ÑÅ 	which	represent	the	strength	of	the	
frequency	AÉ.	 Eq.	 (1)	 can	 also	 be	 used	 as	 an	 approximation	 for	 a	 periodic	 function	 e.g.	 in	
forecasting.	Then	?Å 	and	ÑÅ 	are	considered	fit-parameters.	This	is	analogous	to	a	Taylor	series	
up	to	a	certain	power.		
	
A	series	of	stock	prices	is	most	likely	not	periodic.	Analyzing	the	frequencies	of	stock	prices	for	
e.g.	20	years,	one	may	assume	that	stock	prices	have	a	period	of	20	years.	
	
Instead	of	having	discrete	frequencies,	also	continuous	frequencies	can	be	applied.	?Å 	or	ÑÅ 	are	
then	becoming	a	function	rather	than	a	set	of	discrete	parameters.	This	leads	to	the	so-called	
Fourier	 transformation.	 The	 Fourier	 transformed	~(É)	of	 a	 not	 necessarily	 periodic	 function	
~ C 	is	defined	by	
	

																																																																				~ É ≡ åC	~ C ∙ Bb,é-
Ü

bÜ

																																																					(3)	

	
As	usual	H' ≡ −1.	There	is	also	a	backward	transformation	given	by	
	

																																																																~ C =
1

2â
åC	~ É ∙ B,é-

Ü

bÜ

																																																					(4)	

	
The	proof	of	Eq.	(3)	or	(4)	is	again	performed	by	inserting	Eq.	(3)	into	Eq.	(4)	or	vice	versa.	The	
Fourier	transformed	exists	if	the	integral	in	Eq.	(3)	exists.	Eq.	(4)	is	the	continuous	analogue	to	
Eq.	(1).	The	sum	in	Eq.	(1)	is	transformed	into	an	integral	and	the	discrete	coefficients	?Å 	and	
ÑÅ 	are	now	a	 function	~ É .	Please	do	not	be	confused	that	~ É 	has	complex	values	(even	 if	
~ C 	is	real).	The	identity	
	
																																																														B,é- = NLP ÉC + H ∙ PH� ÉC 																																																						(5)	

	
shows	that	the	real	part	of	~ É 	corresponds	to	?Å 	and	the	imaginary	part	to	ÑÅ .	In	this	sense	
one	sometimes	speaks	of	the	cosine	or	sine	transformed	function.	In	the	same	token	one	may	
use	Eq.	(5)	to	rewrite	Eq.	(1)	into	
	

																																																																				~ C = NÅ ∙ B
Å∙,é-

Ü

ÅábÜ

																																																												(6)	

	
with	NÅ ∈ ℂ	given	by	
	

																																																																						NÅ =
1

K
åC	~(C) ∙ BbÅ∙,é-

7

à

																																																				(7)	

	
Applying	it	to	share	prices	is	now	possible.	The	variation	of	stock	prices	can	be	described	by	a	
function	~ C .	Eq.	(2),	(3),	or	(7)	can	be	used	to	determine	the	frequency	spectrum	and	build	a	
ratio	like:	
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Åáà
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																																																																									(8)	
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With	É = 2â K	the	sum	in	the	numerator	gives	the	sum	of	the	(angular)	frequencies	starting	
from	zero	until	2âc K.	Of	course,	low	frequencies	belong	to	a	longer	time	span.	In	the	case	of	
stock	 quotes,	 one	may	 find	 it	 reasonable	 that	 price	 fluctuations	 adjust	 for	 new	 information	
within	 one	 day	 to	 three	 months,	 as	 being	 the	 frequency	 of	 publishing	 quarterly	 financial	
statements.	Longer	timespans	until	one	year	indicate	irrationality	as	dividends	and	cash	flows	
rather	change	as	a	smooth	polynomial	function.		
	
The	main	mathematical	 problem	with	 stock	 prices	 is	 that	 they	 are	 (strictly	 speaking)	 not	 a	
function	of	time	in	the	sense	required	here.	They	are	always	mapping	a	finite	number	of	time	
points	 on	 a	 finite	 number	 of	 prices.	 However,	 any	 integral	 over	 such	 functions	 is	 zero.	 This	
contrasts	with	discrete	time	series	in	natural	science.	There	one	may	observe	or	calculate	data	
at	certain	time	points	via	digital	or	numerical	approaches.	However,	the	data	does	exist	at	any	
time.	A	function	from	ℝ → ℝ	or	even	ℂ → ℂ	can	be	obtained	by	interpolation.	
	
Stock	prices	are	men-made	due	to	trading.	They	do	not	exist	per	se.	Therefore,	one	may	gather	
stock	 prices	 every	 second.	 Connecting	 them	 by	 straight	 lines	 appears	 to	 be	 a	 reasonable	
interpolation.	However,	it	must	be	kept	in	mind	that	stock	exchanges	are	predominantly	closed	
for	more	 than	 10	 hours	 in	 between	 trading	 days	 and	 around	 30%	 of	 calendar	 days	 are	 no	
trading	 days.	 Additionally,	 having	 a	 stock	 price	 every	 second	 will	 never	 cover	 every	 price	
change	on	a	 tick	basis.	Furthermore,	 it	 is	hardly	possible	 to	 scrutinize	 reliable	data	covering	
every	second	especially	from	several	stock	exchanges.	It	 is	even	challenging	to	get	these	data	
for	 a	 longer	 period	 of	 say	 the	 last	 20	 years.	 In	 this	 paper	 each	 stock	 price	 per	 day	 was	
generated	by	taking	the	mean	of	the	daily	open	and	close	price.	Beyond	filtering	for	unreliable	
data	even	with	cleaned	data	 there	 is	 still	an	ambiguity	at	weekends	and	holidays.	Therefore,	
the	most	reasonable	approach	with	these	data	would	be	to	connect	the	consecutive	points	by	
straight	 lines	or	even	better	exponential	 functions.	Because	of	dealing	with	 financial	markets	
an	 interpretation	of	(positive	or	negative)	compound	interest	seems	to	be	appropriate.	From	
that	 results	 a	 continuous	 function	 of	 time	 and	 Eq.	 (3)	 can	 be	 used	 to	 get	 the	 Fourier	
transformed.	Of	 course,	 the	backward	 transformation	via	Eq.	 (4)	will	 lead	 to	 the	 exact	 stock	
price.	The	integral	in	Eq.	(3)	can	be	calculated	analytically,	because	it	is	just	an	integral	over	a	
piecewise	exponential	function.	However,	this	approach	consumes	vast	amounts	of	computing	
power.	 Furthermore,	 it	 is	 doubtful	 whether	 it	 will	 lead	 to	 better	 results	 than	 given	 by	 the	
method	described	below.	Though	one	 should	perform	 these	 calculations	 in	 the	 future,	when	
faster	data	processing	power	will	reach	the	threshold	to	reduce	calculation	time	into	a	matter	
of	days,	in	order	to	prove	it.		
	
A	second	approach	would	be	to	assume	that	 the	price	of	a	stock	 is	always	constant	over	one	
trading	 day.	 This	 will	 lead	 to	 a	 rectangular	 curve.	 Because	 integrals	 can	 be	 taken	 over	
discontinuous	functions	Eq.	(3)	or	(7)	can	be	used	to	calculate	the	Fourier	transformed	or	the	
amplitudes	NÅ 	respectively.	Please	note	 that	 this	will	 consume	 the	 same	computing	power	as	
the	 exponential	 interpolation	 of	 the	 last	 paragraph.	 However,	 there	 is	 another	 problem.	 A	
rectangular	 curve	 changes	 within	 zero	 time	 at	 its	 discontinuous	 points.	 So,	 it	 will	 lead	 to	
infinite	 high	 frequencies,	 which	 are	 not	 connected	 to	 the	 stock	 price.	 The	 so	 found	 short	
frequencies	will	 be	 high,	 even	 if	 there	 are	none.	 For	 instance,	 consider	 a	 stock	which	 grows	
constantly	by	five	percent	annually.	Having	just	one	price	per	day,	the	approach	would	lead	to	
high	 frequencies,	 though	a	Fourier	 transformed	of	 an	exponential	 curve	will	decay	with	1/ω	
for	ω → ∞.	
	
Therefore,	the	best	approach	to	realize	a	fast	and	practicable	process	is	via	the	discrete	Fourier	
transform,	even	though	the	historical	stock	quotes	are	obviously	neither	weakly	stationary	nor	
equidistant.	 These	 shortcomings	must	 be	 accounted	 for	 via	 detrending	 and	 the	 assumption	
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that	there	is	no	difference	if	the	market	was	opened	or	closed	the	day	before.	The	mathematics	
behind	the	discrete	Fourier	transform	is	as	follows.	Instead	of	starting	with	ω	=	2π⁄T	(with	T	
in	 this	paper	being	20	years)	which	would	 lead	 to	arbitrary	high	 frequencies	and	an	 infinite	
number	of	NÅ ,	one	may	choose	a	KU 	≈	T	with	Aóòô/KU ≙ 1	day.	This	will	reduce	calculation	time	
tremendously.	Furthermore,	 it	will	be	 consistent	 to	have	a	 finite	amount	of	 amplitudes	 for	a	
finite	amount	of	data	points.	Squaring	the	time	series	as	well	as	its	frequency	spectrum	equals	
the	 same	 power	 on	 both	 sides	 known	 as	 the	 Parseval’s	 theorem	which	 leads	 to	 the	 power	
spectrum	 and	 shows	 how	 the	 variances	 are	 distributed	 over	 the	 frequencies.	 In	 the	 next	
chapter	the	transformation	of	the	historical	stock	quotes	of	SAP	SE	from	the	time	domain	to	the	
frequency	 domain	will	 be	 demonstrated	 and	 afterwards	 the	 power	 spectra	 of	 various	 stock	
price	series	will	be	evaluated.	
	

RESULTS	FOR	STOCKMAKETS	
As	 described	 above,	 the	 discrete	 Fourier	 transformation	 has	 been	 applied	 to	 all	 stocks	 in	
various	 indices	 such	 as	 the	 Deutsche	 Boerse	 AG	 German	 Stock	 Index	 (DAX).	 A	 period	 of	 20	
years	 from	 1997-01-02	 until	 2016-12-30	 was	 considered,	 containing	 slightly	 over	 5,000	
trading	days	or	data	points	 for	each	stock.	All	raw	data	were	derived	from	Thomson	Reuters	
Eikon.	Figure	1	shows	the	historical	stock	quotes	of	SAP	SE	in	the	time	domain	as	well	as	 its	
spectral	 counterpart	 with	 absolute	 values	 of	NÅ 	in	 the	 frequency	 domain	 containing	 the	
equivalent	information:	
	

 
Figure	1.	Time	domain	and	Frequency	domain	of	SAP	SE	-	historical	stock	quotes	

	
The	absolute	values	of	NÅ 	were	taken.	This	also	implies	symmetry	because	the	discrete	Fourier	
transformation	gives	a	complex	amplitude	and	its	conjugate.	Furthermore,	?Å 	and	ÑÅ 	of	Eq.	(2)	
may	have	positive	or	negative	values	while	|NÅ|	is	always	positive.	Also,	the	real	and	imaginary	
part	 of	NÅ 	can	 be	 used,	 which	 correspond	 to	?Å 	and	ÑÅ 	of	 Eq.	 (2),	 respectively.	 The	
representation	of	the	frequency	domain	in	this	form	is	for	demonstration	purposes	only.	
	
Several	procedures	have	been	applied	to	avoid	undue	disturbances.	One	important	step	was	to	
extract	 the	 (exponential)	 growth	or	decay	of	 the	 stock	price.	 Essentially,	 the	 trend	has	been	
subtracted	from	the	time	series.	It	leads	to	a	stock	price	fluctuating	around	zero.	That	leaves	all	
relevant	frequencies	untouched	but	removes	the	trivial	ones	due	to	growth	or	decay.	
	
The	 lowest	 frequency	 is	 given	 by	1 20	years.	 This	 is	 artificial	 due	 to	 the	 period	 of	 20	 years	
under	 consideration.	 Because	 of	 the	 detrending,	 very	 low	 frequencies	 are	 reduced	 to	 a	
minimum.	The	high	 frequencies	above	1/10	days	are	not	 reliable	because	of	having	 just	one	
price	 per	 day,	 so	 only	 frequencies	 from	 1/10	 days	 until	 1/1	 year	 were	 considered.	 The	
accumulated	 signal	 power	 in	 the	 range	 of	 three	 months	 to	 one	 year,	 defined	 as	 the	 sum	
squared	amplitudes,	in	the	numerator	is	divided	by	the	power	of	the	range	from	10	days	until	1	
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year	which	 results	 the	 irrationality	 of	 the	 stock.	 The	 power	 of	 the	 range	 from	10	days	 until	
three	months	is	therefore	seen	as	the	inherent	variance	of	the	specific	stock.		
	
The	irrationality	of	the	DAX	shares	with	uninterrupted	data	for	the	period	under	consideration	
is	shown	in	Table	1:	
	

Table	1.	Irrationality	of	DAX	members	
Company	 Irrationality	 Volatility	
Muenchener	Rueck	AG		 73.7%	 26.7%	
Beiersdorf	AG	 76.6%	 22.8%	
Bayer	AG	 76.9%	 25.2%	
E.ON	SE	 77.2%	 25.0%	
Siemens	AG	 77.4%	 28.1%	
Henkel	AG	&	Co	KGaA	 77.5%	 21.9%	
Adidas	AG	 77.7%	 25.5%	
BASF	SE	 77.8%	 23.7%	
RWE	AG	 77.8%	 25.3%	
Allianz	SE	 77.9%	 29.2%	
Linde	AG	 78.2%	 22.5%	
Fresenius	Medical	Care	AG	&	Co	KGaA	 78.7%	 23.7%	
Merck	KGaA	 79.0%	 23.6%	
Bayerische	Motoren	Werke	AG	 79.1%	 28.7%	
SAP	SE	 79.2%	 32.5%	
Volkswagen	AG	 79.8%	 30.9%	
Daimler	AG	 80.1%	 28.4%	
Continental	AG	 80.3%	 30.8%	
HeidelbergCement	AG	 80.5%	 29.1%	
Deutsche	Lufthansa	AG	 80.9%	 28.3%	
Commerzbank	AG	 82.2%	 36.8%	
Deutsche	Bank	AG	 82.8%	 33.1%	
Thyssenkrupp	AG	 82.8%	 30.1%	
Deutsche	Telekom	AG	 84.6%	 27.0%	

Mean	 79.1%	 27.4%	
Median	 78.9%	 27.6%	

	

	
On	average	 the	 irrationality	 in	 the	 index	was	79.1%	for	 the	stocks	 included	with	 the	median	
being	slightly	below	the	mean.	A	cluster	of	conservative	titles	like	insurance	and	basic	utilities	
forms	the	lower	band	of	 irrationality.	The	automotive	industry	begins	above	the	mean	and	is	
very	 concentrated	 in	 the	 range	 from	 79.1	 %	 to	 80.3	 %.	 The	 volatile	 and	 structurally	 risky	
companies	Commerzbank	AG,	Deutsche	Bank	AG	and	Thyssenkrupp	AG	form	the	upper	end	of	
the	 ranking	 together	 with	 the	 Deutsche	 Telekom	 AG.	 The	 high	 irrationality	 of	 Deutsche	
Telekom	AG	is	no	surprise.	After	being	privatized	in	1996	right	before	the	rise	and	fall	of	the	
Dotcom	bubble	it	became	one	of	the	most	notorious	examples	of	irrational	exuberance.		
	
The	 difference	 between	 irrationality	 and	 volatility	 becomes	 apparent	 when	 comparing	
Muenchener	 Rueck	 AG	 and	 Deutsche	 Telekom	 AG,	 which	 have	 the	 lowest	 and	 highest	
irrationality	within	the	evaluation.	Muenchener	Rueck	AG	has	a	volatility	of	26.7%	and	thus	a	
value	 slightly	 below	 the	mean	 and	median,	 although	 it	 has	 the	 lowest	 irrationality.	 The	 low	
value	 of	 irrationality	 results	 from	 the	 fact	 that	 the	 contribution	 of	 the	 irrational	 frequency	
range	to	the	historical	stock	quotation	is	just	2.8	times	higher	than	that	of	the	rational	range.	
Deutsche	Telekom	AG	on	the	other	side,	while	having	a	similar	volatility,	has	a	factor	of	5.5.	The	
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higher	 factor	 results	 both	 from	 a	 lower	 contribution	 of	 the	 short	 frequencies	 to	 the	 overall	
share	price	development	and	from	a	higher	contribution	of	the	longer	frequencies	compared	to	
the	Muenchener	Rueck	AG.	
	
In	 addition	 to	 the	 results	 above,	 an	 overview	 of	 irrationality	 ranges	 measured	 for	 selected	
indices	is	presented	in	Table	2.	The	values	refer	to	individual	shares	contained	in	the	index,	not	
to	the	index	itself.	
	

Table	2.	Irrationality	range	of	selected	indices	
Index	 Min	 Max	 Mean	 Median	
S&P	500	 66.7%	 89.0%	 78.1%	 78.3%	
FTSE	 68.3%	 84.3%	 77.1%	 77.7%	
Nasdaq	 69.0%	 84.1%	 78.5%	 78.4%	
Dow	Jones	 72.7%	 80.4%	 77.0%	 77.0%	
DAX	 73.4%	 84.6%	 79.1%	 78.9%	
IBEX	 73.8%	 82.4%	 79.1%	 79.5%	
HSI	 74.0%	 83.8%	 79.9%	 80.4%	

	
Starting	with	the	mean	and	median,	both	give	a	clear	picture	of	the	Dow	Jones	being	the	index	
with	 the	 lowest	 irrationality.	 The	 minimum	 (Min)	 and	 maximum	 (Max)	 of	 the	 range	 of	
irrationality	behaves	logically.	The	more	companies	included	in	the	index,	the	wider	the	range	
of	expected	possible	outcomes.	Therefore,	the	similar	ranges	of	irrationality	for	DAX,	Spanish	
Exchange	Index	(IBEX)	and	Hang	Seng	Index	(HIS)	are	plausible.	
	
Please	 note,	 that	 as	 described	 above	 only	 qualifying	 stocks	 regarding	 data	 length	 and	
consistency	are	included.	Further	studies	with	shorter	time	periods	and	other	data	sources	like	
from	the	Center	for	Research	in	Security	Prices	(CRSP)	may	include	more	companies.	
	
Possible	 shortcomings	 and	 sources	 of	 errors	 lie	 in	 the	 fact	 that	 historical	 stock	 quotes	 are	
neither	weakly	stationary	nor	equidistant	nor	periodic.	Different	detrending	methods	will	lead	
to	slightly	different	results	due	to	possible	influence	on	the	first	frequency	bins	under	one	year.	
In	 this	 case,	 the	 values	 of	NÅ 	in	 the	 low	 frequencies	 are	 reduced	 and	 thus	 the	 proportion	 of	
irrationality	is	lower	than	it	would	be.	The	ranking	should	nevertheless	be	stable,	as	the	impact	
on	each	stock	has	a	similar	effect.	Possible	detrending	methods	are	 linear	regression	models	
e.g.	via	the	ordinary	least	square	method	or	one	can	apply	a	discrete	wavelet-analysis	as	it	can	
handle	 nonstationary	 time	 series,	 also	 low-pass	 filters	 are	 reasonable.	 Differencing	 of	
logarithmized	 time	series	 is	a	very	specific	method	of	detrending	which	 -	even	 though	being	
commonly	applied	in	economics	-	cannot	be	applied	here.		
	
The	 point	 that	weekends	 and	 holidays	were	 ignored	 is	 probably	 a	minor	 point	 for	 the	 time	
span	under	consideration.	It	will	not	add	extra	frequencies	or	eliminate	others.	Further	studies	
with	intraday	data	where	non-equidistant	data	may	impact	the	evaluation	should	consider	the	
use	of	the	Lomb–Scargle	periodogram	[8,9].		
	
Moreover,	 it	 should	 be	noted	 that	 a	 reduction	 in	measurement	 values	 necessarily	 leads	 to	 a	
broader	 frequency	 spectrum	 comparable	 to	 Heisenberg's	 "Uncertainty	 Principle"	 and	 vice	
versa	[10].	Because	of	dealing	with	nonperiodic	time	series	 it	 is	 therefore	 important	that	the	
time	period	for	the	analysis	is	well	above	the	longest	frequency	considered	(in	this	analysis	one	
year).		
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In	conjunction	with	the	above-mentioned	methods	the	concept	of	 irrationality	 is	transferable	
to	other	financial	markets	like	bonds,	housing	prices	or	derivatives	as	well	as	to	different	time	
periods.	
	
A	more	 technical	aspect	are	dividends.	After	a	dividend	has	been	paid,	 the	stock	price	drops	
correspondingly.	 This	 rapid	 drop	 has	 an	 impact	 on	 the	 high	 frequencies	 in	 the	 frequency	
domain	 but	 only	 occurs	 at	 less	 than	 1.6	 percent	 of	 the	 trading	 days	 for	 quarterly	 dividend-
paying	companies.	
	

CONCLUSIONS	
The	analysis	shows	that	irrationality	can	classify	stocks	within	an	index	according	to	risk	and	
can	 be	 directly	 reconciled	 with	 historical	 volatility	 or	 beta	 analyses	 with	 minor	
transformations	 in	 representation.	Therefore,	 the	 same	 restrictions	 as	 for	 volatility	 and	beta	
apply.	A	single	ratio	cannot	capture	all	risks	at	every	point	in	time	and	must	be	accompanied	by	
stress	tests	or	scenario	analyses	including	further	information	like	liquidity	or	funding.	
	
Additionally,	the	results	show	that	there	exists	valuable	information	unobservable	in	the	time	
domain	with	promising	results	for	analyses	within	an	index.	Further	studies	should	therefore	
compare	irrationality	to	volatility	and	beta	with	respect	to	the	compound	annual	growth	rate	
(CAGR)	to	test	the	applicability	and	informative	power	of	this	risk	measure.	At	least,	the	results	
are	expected	to	show	irrationality	being	somehow	proportional	to	the	other	two	risk	measures.	
Furthermore,	it	should	be	investigated	whether	conclusions	can	be	drawn	about	the	instability	
of	volatility	by	comparing	long	frequency	ranges	with	short	ones.			
	
The	 concept	 of	 irrationality	 is	 transferable	 to	 other	 financial	markets	 as	 for	 bonds,	 housing	
prices	or	derivatives	as	well	as	to	different	time	periods.	
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