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ABSTRACT	

This	paper	develops	and	tests	empirically	counting	models	for	high	frequency	data:	BIN	

(1,1)	model	with	Poisson	process,	to	check	if	this	model	allows	to	capture	the	clusturing	

phenomenon	 in	 the	 case	 of	 high	 frequence	 data,	 concening	 stocks	 intaday	 data.	 The	

process	of	estimation	of	the	model	using	data	generating	process	(DGP),	then	using	the	

acutal	 data	 coming	 from	 three	 stocks	 of	 NYSE	 place	 (BOEING,	 DISNEY,	 and	 AWK),	

involves	good	results	that	validate	model	for	generalisation	to	BIN(n,n)	and	for	works	

on	density	 forcasting.	 In	 this	paper	we	 studie	 the	 issue	of	 adequacy	of	BIN	models	 to	

capture	 the	activities	of	 financial	markets	about	 stocks	 intraday	data	 (volume,	quote,	

prices),	and	help	to	forecast	the	evolution	of	financial	markets	activities.			
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INTRODUCTION		

It	is	usual	to	find	time	series	consisting	of	count	data.	Such	series	record	the	number	of	events	
of	a	particular	type	occurring	in	a	given	interval.	Since	the	data	must	consist	of	non-negative	
integers	a	model	based	on	the	normal	distribution	is	not	appropriate,	although	it	might	provide	
a	reasonable	approximation	if	the	number	of	events	observed	in	each	time	period	is	relatively	
large.	 Then	 for	 small	 numbers,	 the	 good	 distribution	 is	 a	 binomial	 process,	 but	 for	 a	 large	
number	of	observations	the	appropriate	distribution	is	the	Poisson.		So,	Poisson	process	should	
be	used	in	the	case	of	count	data.			
	
Considering	an	independent	Poisson	random	variables,	if	 qnn ,...,1 	are	independent	with		

)(~ ii Pon ,	then	the	total	of	all	the	counts	is	

	
)...(~... 121 qq Ponnn +++++ 	and	the	counts	given	the	total	are	

),...,,(~),...,( 11 qq ppNMultNnn 	where	 qnnN ++= ...1 		

and	 )...( 1 qiip ++= 			 .,...,1 qi = 			

	
The	conditional	distribution	is	important	for	the	analysis	of	log-linear	models	and	it	leads	us	to	
an	analysis	based	on	multinomial	distribution.		
	
Several	authors	as	Engle	and	Russel	(1998),	Bauwens	and	Giot	(1999)	have	previously	worked	
on	high	frequency	financial	data	through	papers.	These	papers	deal	with	the	time	between	the	
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financials	 events	 as	 trades	 through	autoregressive	 conditional	duration	 (ACD)	models,	while	
the	 so-called	 BIN	 models	 used	 for	 count	 data	 deal	 with	 the	 number	 of	 events	 of	 the	 high	
frequency	data	(as	trades)	during	fixed	durations.					
	
The	autoregressive	conditional	duration	(ACD)	model	of	Engle	and	Russell	(1998)	is	one	of	the	
most	 important	 models	 of	 the	 durations	 in	 econometric	 literature.	 It	 was	 formulated	 as	
follows:	

,tttx = 				 ,0>t 		 1)( =tE 	

	
where	 1= tttx ,								 ,...2,1=t 			is	the	length	of	time	between	financial	events	(trades),	and	

the	 st ' 	are	independent	identical	distributed	(i.i.d.),	with		

= =

++=
p

j

q

j
jtjjtjt x

1 1
.	

	
Here	 ( ),1= ttt FxE 	the	 conditional	 expected	 waiting	 time.	 In	 practice	 Engle	 and	 Russell	

(1998)	 have	 used	 an	 exponential	 or	 Weibull	 distribution	 on	 the	 }{ t .	 Straightforward	

alternative	structures	would	be	to	parameterize	the	 tlog instead	of	the	 t .	This	formulation	

called	 logACD	 proposed	 by	 Bauwens	 and	 Giot,	 allows	 to	 avoid	 to	 make	 constraints	 on	
parameters.		
	
The	two	types	of	models	are	applied	to	high	frequency	data,	particularly	the	financial	data.	The	
ACD	models	 study	 the	distribution	of	duration	between	 the	 events	 (quote	 trades,	 volume	or	
price	duration),	while	the	BIN	models	focus	on	the	distribution	of	the	number	of	events	during	
a	fixed	length	time.	Then,	the	two	types	of	models	study	the	two	faces	of	the	same	reality,	but	
they	could	be	considered	as	complementary	than	substitute.	
	
The	aim	of	this	survey	is	to	study	the	degree	of	relevance	of	BIN(1,1),	the	autoregressive	form	
of	 the	BIN	models,	 in	 other	words	what	 is	 the	degree	of	 explanation	of	 the	 financial	market	
events,	while	in	their	paper,	Rydberg	and	Shephard	(2000)	attempt	to	prove	that,	for	modelling	
and	forecasting	the	securities	price	changes	on	the	stocks	market,	one	could	focus	on	 iN 	which	

are	the	count	data.								
	

COUNT	DATA	MODEL:	BIN	MODELS	

In	their	paper	Rydberg	and	Shephard	(2000)	proposed	to	model	an	asset	price	 )(rp 	at	time	 r 	
using	a	compound	Poisson	process		

=

+=
)(

1
,)()(

rN

r
tzoprp 																																					(1)	

	
where	 0)}({ rrN 	is	 a	 number	 of	 trades	 recorded	 up	 until	 r 	and	 tz 	is	 the	 price	movement	 or	
change	 associated	with	 the	 t-th	 trade.	 Rydberg	 and	 Shephard	 (2000)	 specified	 )(rN 	to	 be	 a	
counting	process1,	modelled	as	Cox	process	–	that	is	a	Poisson	process	with	a	random	intensity.	
	

																																																								
	
1	The	 counting	 process,	 which	 is	 used	 in	 this	 context,	 states,	 that	 if	 0)}({ rrN is	 a	 process	 with	 state	 space	

}{+U and	non-decreasing	right	continuous	paths,	then	 0)}({ rrN is	a	counting	process.	 			
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From	an	economic	viewpoint	 these	authors	are	 typically	 interested	 in	 comparing	 the	 rate	of	
return	on	holding	the	asset	with	that	obtainable	by	other	risky	investments	(opportunity	cost)	
or	 riskless	 interest	 rate	bearing	accounts.	 In	order	 to	do	 this	one	has	 to	 compute	 the	 return	
over	a	fixed	length	of	time	 0 .	Then	these	returns	will	be	based	around	the	difference	
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This	shows	that	the	number	of	trades	in	the	interval	 + )1(,[ ii ]	plays	a	crucial	role.	To	reflect	
this,	Rydberg	and	Shephard	specifies	an	expression	as	
	

),()1( += iNiNNi 																							(2)	

	
the	number	of	trades	in	that	time	interval2.	This	operation	called	“binning	operation”	consists	
to	partitions	time	into	sections	and	we	count	the	number	of	trades	in	that	interval.	Notice	that	
if	 0=iN ,	 then	 0=ip ,	 while	 0>iN the	 prices	 can	 change.	 So,	 iN 	is	 very	 important	 in	

determining	the	activity	in	the	changes	in	the	price	level.	For	small	values	of	 	there	will	be	a	
negligible	loss	in	information	in	doing	this,	compared	to	studying	the	complete	record	of	the	{

)(rN }	process.		
	
Let	 the	 }{ iN 	and	 }{ tz 	processes	be	 stochastically	 independent	and	covariance	 stationary	and	

assume	 that	 the	 }{ tz 	are	 independent	 and	 identically	 distributed.	 Then,	 writing	 iF 	as	 the	

information	about	the	 }{ iN 	sequence	available	infinitesimally	before	time	 i 	by	assuming	the	

moments	exist,	will	be		
																				

( ) ( ){ } ( ){ }+= iiiiiiii FNpEVarFNpVarEFpVar 	

( ) ( )+= iitiit FNVarzEFNEzVar 2)()( .	

	
Thus	predicting	the	variance	of	 the	price	over	the	next	period	of	 length	 	requires	modeling	
the	mean	and	variance	of	the	future	number	of	trades.		In	practice	 )( tzE will	be	too	small	and	

so	what	matters	in	the	above	setup	is	really	only	 ( ).ii FNE 	By	setting	 )( tzE =	0	then			

	
( ){ } ( ) ( ){ }iisisiisinsisii NpVarNpVarCovNNppCovEppCov ,,,),( 2222

+++++ += 	

).,()( 2
siit NNCovzVar += 	

	
Hence	 volatility	 clustering	 can	be	obtained	with	 the	 autocorrelation	of	 square	price	 changes	
being	proportional	to	the	counts.				

																																																								
	
2	Other	derived	financial	activities	could	be	used	as	object	of	count,	as	quote,	and	volume	to	obtain	the	count	data.				
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A	 more	 specific	 result	 is	 obtained	 by	 assuming	 the	 }{ tz 	have	 a	 first	 order	 moving	 average	

representation	((Rydberg	and	Shephard	(2000)).	Basically	empirical	modeling	would	require	
the	assumptions	that	the	 }{ iN 	and	 }{ tz 	are	stochastically	independent.		

	
Poisson	process		

Definition	1	

The	counting	process	{ }0),( ttN ,	is	a	Poisson	process	of	rate	 , 	 ,0> if		
(i)		 0)0( =N 		
(ii)	 The	 process	 has	 independent	 increments,	 in	 other	 words	 the	 distribution	 is	

memoryless;		
(iii)	The	number	of	events	in	any	interval	of	length	t	is	Poisson	process	with	mean	 t .	That	

is	for	all	 0, ts 		

{ } nttensNstNP )()()( ==+ ,		 ,...1,0=n 	
	
Note	that	it	follows	from	condition	(iii)	that	a	Poisson	process	has	stationary	increments	and	
also	that		

[ ] .)( ttNE = 	
	
which	explain	why	 	is	called	the	rate	of	the	Poisson	process.		
	
As	a	prelude	to	giving	a	second	definition	of	a	Poisson	process	we	shall	define	the	concept	of	
function	 )(f 	being	 ).(xo 	
	
The	function	 )(f 	is	said	to	be	 )(xo 	if	

0)(lim
0

=
x
xf

x
.	

Definition	2	

The	counting	process	{ }0),( ttN ,	is	said	to	be	a	Poisson	process	of	rate	 , 	 ,0> 	if			
(i)	 0)0( =N .	
(ii)	The	process	has	stationary	and	independent	increment.		
(iii) { } )(1)( xoxxNP +== 		

(iv)	 { } )(2)( xoxNP = 	.	
	
N 	is	a	Poisson	process	with	parameter	 .	

[ ] t
i

e
i
titNP ==
!
)()( ,											 .0t 	

	
Then,	 under	 these	 assumptions,	 )(tN 	~	 )(OP ;	 the	 duration	 between	 events	 follows	

exponential	distribution	of	parameter	 :	 )exp(~id ,	 ,...2,1=i 	and	 id 	are	independent.	
	
The	hazard	function	is	function	of	 ,	and	it	is	constant.	
The	particularity	of	BIN	models	is	that	 	is		random.	So,	this	last	model,	will	be	the	topic	of	this	
survey.	
	
The	model	and	its	properties		

Structure	of	the	model	

In	order	to	model	the	sequence	 }{ iN Ridberg	and	Shephard	(2000),	suggested	the	BIN	models	
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that	 specify	 the	 one-step	 ahead	 forecast	 distribution	 of	 }{ iN series	 using	 a	 counting	

distribution.	 In	 particular	 they	 specify	 ii FN 	~	 ),( iOP 	allowing	 i 	depending	 upon	 ,iF 	the	

information	 available	 infinitesimally	 before	 time	 i .	 Here	 ),( iOP denotes	 a	 Poisson	

distribution	with	mean	 i ,	 i 	is	a	linear	function	of	past	data	as	moving	average	models:	BIN	

(1,1).	Then	the	BIN(1,1)	is	given	as	follows	
	

),(~ 0 iii PFN 					 ,11 ++= iii N 									(3)	

	
which	 is	 labeled	 a	 BIN(1,1)	 model.	 Sufficient	 conditions	 for	 i 	to	 be	 non-negative	 is	 that	

.0,, 	This	model	 is	 inspired	 to	 the	 GARCH	model	 due	 to	 Bollerslev	 (1986)	 and	 Taylor	
(1986).		
	
This	model	is	thus	autoregressive	moving	average	(ARMA)	type	for		
	

iii uN += 																																																										(4)	

	
	 	 	 								 iii uN +++= 11 	

	

iiii uuNN +++= )( 11 																										(5)	

	
,)( 11 +++= iii uuN 																										(6)	

	
which	is	can	be	analyzed	as	standard	multivariate	ARMA	models	with	white	noise	error	term,	
where	 iii Nu = 	is	 such	 that	 ( ) .0=ii FuE 3	Then	 iu 	is	 conditional	 independent	 identically	
distributed	( iu 	~	 diic ... 	).	 	Many	of	the	interesting	features	for	the	BIN	model	follow	from	this	

structure.	 iii Nu = 	is	a	martingale	difference	(MD)	which	appears	as	an	innovation	for	 iN .	

This	 equation	 (as	 in	 the	 case	 of	 ACD(1,1))	 shows	 that	 a	 BIN(1,1)	 process	 corresponds	 to	 a	
constrained	 ARMA(1,1)	 representation	 for	 iN ,	 with	 autoregressive	 coefficient	 ,+ 	and	

moving	 average	 coefficient	 ,	 and	with	 a	MD	 error	 term	 if	 1<+ .	 	 The	 autocorrelation	
function	 (ACF)	 could	 be	 obtained	 by	 the	 standard	 formulae	 for	 the	 ARMA(1,1)	model.	Main	
features	 (mean,	 variance,	 autocorrelation	 function)	 of	 this	model	 are	 described	 in	 following	
points.		
		
Statistical	properties	of	the	BIN	models	

By	definition,	the	conditional	expectation	of	 }{ iN 	is	equal	to	 i .	Then,	equation	(3)	allows	us	to	

forecast	expected	counts,	based	on	the	information	set	at	the	previous	period.					
	
If	 }{ iN 	is	 generated	 by	 (3)	 for	 n 	with	 ,0,, > 	then	 if	 ,1<+ 	the	 unconditional	

expectation	( )	and	variance		( 2 )	of	 }{ iN 	are	given	by		

( ) ,
)(1 +

== iNE 																										(7)	

																																																								
	
3	 iu 	is	consider	as	a	Martingale	since	 i 	is	the	compensatory	of	 iN .				
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And	the	autocorrelation	function	is	derived	as	
		

,
)(21

)}(1{
21 ++

+
= 									 ,)( 1

1 += s
s 					 ,...3,2=s 	

	
	Another	way	to	compute s 	is )(1 += ss 		 	 	 	 (9)	

	

From	the	expression	of	( 2 ),	it	is	easy	to	check	that	( )	that	measures	the	overdispersion,	is	

greater	 than	zero.	 iN 	becomes	more	dispersed	than	 iu 	when	 	increases.	From	equation	(8),	

it	is	easy	to	check	that	 	is	greater	than	 ,	if	 	is	greater	than	zero,	and	implies	that	the	series	
observations	is	overdispersed.		
	
The	properties	of	 i 	are	sometimes	helpful,	in	particular	 =)( iE 	and		

= 2)( iVar 	

2

2

)(1 +
= 	

	

})(1)}{(1{ 2

2

++
= .	

	
{ })()(),( 2

iiii EENCov = 	

)( iVar= 	

	
Generalization	of	BIN	(1,1)	model	

BIN	(1,1)	model	can	be	generalized	as	a	BIN	model	of	order	 qp, 	(BIN	( qp, ))	where	

),(~ iOii PFN 					
= =

++=
p

j

q

j
jijjiji N

1 1
.	

	
As	in	the	standard	ARMA	case,	p	denotes	the	number	of	autoregressive	terms	in	the	model	and	
q	to	denote	the	number	of	moving	average	ones.	
	
We	 have:	 0,0,0 >>> jj 	that	 leads	 to	 the	 fact	 that	 i 	is	 a	 non-negative	 sequence	when	

1q 	with	probability	one.	The	ARMA	representation	of	this	model	can	be	written	as	follows:		
		

iii uN += 	
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p
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where	 iii Nu = 	is	 also	 a	 martingale	 difference	 sequence	 and	 .jjj += 	This	 model	 is	

covariance	stationary	when	
=

<
),max(

1

.1
qp

j
j 	

	
This	last	assumption	allows	us	to	write	the	following	properties	

,
1

),max(

1=

= qp

j
j

			 == 2)(),( iii VarNCov .	

And															 ),(2)()()( iiiii NCovVarNVaruVar += 	

	
Then,	 one	 can	 compute	 easily	 the	 autocorrelation	 function	 of	{ }iN 	by	 using	 results	 on	

variances	and	autocorrelations	of	ARMA	{ }qqp ),,max( 	process	as	in	the	case	of	BIN(1,1)	form.	
The	relevant	work	is	focus	on	BIN	(1,1)	model.										
	
Numerical	illustrations		

The	 first	 and	 second	 unconditional	 moments,	 and	 the	 autocovariances	 can	 be	 computed	
analytically	 as	 shown	 above.	 Then	 it	 is	 interesting	 to	 give	 numerical	 results	 about	 these	
moments	and	autocovariances	for	several	sets	of	parameters.			
	
Numerical	simulations	allow	by	using	(7),	(8),	and	(9)	to	compute	the	degree	of	overdispersion	
and	to	get	a	figure	(Figure	1)	that	plots	the	autocorrelation	function	for	four	set	parameters4.					
	
Similarly	as	in	the	case	for	the	ARCH,	GARCH,	and	ACD	class	of	models,	 	close	to	one	implies	a	
slowly	 decreasing	 autocorrelation	 function,	 and	 a	 large	 value	 of	 	implies	 a	 large	 degree	 of	
overdispersion.	 Figure	 1	 gives	 the	 graphs	 of	 the	 theoretical	 and	 empirical	 autocorrelation	
function.		
	

Figure	1:	Theoretical	and	Empirical	autocorrelation	functions	of	the	BIN	(1,1)	model		

 
								Figure	1a:	gamma	=	0.10,	delta	=	0.75																																		Figure	1b:	gamma	=	0.20,	delta	=	0.75				

							 	 Lags																																																																																																																	Lags	

	

	

	

	

																																																								
	
4	The	model	is	BIN(1,1)	with	the	unconditional	mean	set	equal	to	one,	i.e.	 =1 	
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					Figure	1c:	gamma	=	0.10,	delta	=	0.85																																								Figure	1d:	gamma	=	0.30,	delta	=	0.65	

 

																																		Lags																																																																																																																		Lags	

	
The	 figure	 1c	 seems	 to	 exhibit	 the	 best-fitted	 representation	 of	 the	model	 according	 to	 the	
residuals.	Thus,	 the	 real	 values	of	 the	parameters	 g	 and	d	 should	be	 closed	 to	0.10	and	0.85	
respectively.	The	missing	parameter	here	 is	 the	 time	 interval	of	 the	count	data	denoted	D.	 It	
will	be	taken	into	account	in	the	case	of	the	empirical	work	using	the	actual	data.					
	
In	other	hand,	we	can	examine	the	experimental	overdispersion	implied	by	changes	in	values	
of	gamma	and	delta	in	the	following	table.	The	results	are	derived	from	a	simulated	data	that	
allows	a	Data	Generating	Process.		
	

																									Table	1:	Overdispersion	of	BIN	model	

	
Coefficients																																																								Overdispersion	Ratio					
	
g	=	0.10,			d	=	.75																																																						1.014	(1.017)		
	
g	=	0.20,			d	=	.75																																																							1.184	(1.187)	
	
g	=	0.10,			d	=	.85																																																							1.031	(1.050)	
	
g	=	0.30,			d	=	.65																																																							1.339	(1.386)	
	
																																													

The	 overdispersion	 ratio	 is	 defined	 as	 the	 ratio	 of	 standard	 deviation	 /	 mean,	 computed	
according	to	the	formula	(7)	and	(8).	We	parameterize	l	to	one,	thus	a	=	1-	g	-	d.	In	brackets	we	
have	the	theoretical	overdispersion	ratio.				
	
Results	 of	 Table	 1	 exhibit	 that	 the	 overdispersion	 ratio	 is	 an	 increasing	 function	 of	 g	 and	
decreasing	function	of	d	in	BIN	(1,1)	model.			
	

Estimation	by	Likelihood	method			

Consider	 TNN ,...,1 	be	the	T	non-negative	integers	events	count	observations	for	the	dependent	
variable	 that	 is	 a	 random	 dependent	 variable	which	 represents	 the	 number	 of	 events	 (here	
financial:	quote,	price	or	volume)	that	have	occurred	during	the	observation	period	 i .	Let	that	
the	 events,	 which	 occur	 within	 each	 period,	 are	 independent	 and	 have	 constant	 rate	 of	
occurrence,	then,	 iN 	can	by	this	fact	follow	a	Poisson	distribution	with	conditional	probability	
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density	function:	
																																											

=

otherwise
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),( 											for		 0>i 		and		 ,...1,0=iN 	

		
with	expected	value	and	variance	 i 	(the	rate	of	event	occurrence,	that	must	be	greater	than	

zero)	is	assumed	to	be	an	exponential	linear	function	of	a	vector	of	explanatory	variables,	 ix :	
)exp()( iii xNE = 	

	
A	constant	term	as	the	first	element	of	 ix 	is	included	in	the	program,	and	one	can	include	any	
number	of	explanatory	variables.	
	
The	 Poisson	 regression	 model	 that	 is	 the	 standard	 model	 for	 count	 data,	 is	 a	 non	 linear	
regression.	This	regression	model	is	hence	based	upon	the	Poisson	distribution	with	intensity	
parameter	 	that	 depends	 on	 covariates	 regressors.	 In	 the	 case	 of	 missing	 of	 stochastic	
variation,	and	with	exact	parametric	dependence,	with	exogenous	covariates,	then	we	have	the	
standard	Poisson	regression.	The	mixed	Poisson	regression	is	obtained	if	the	function	relating	
	and	 the	 covariates	 is	 stochastic,	 likely	 because	 it	 involves	 unobserved	 random	 variables,	

then	assumptions	must	be	done	to	take	into	account	the	random	term	for	obtaining	the	precise	
form	or	to	come	back	to	the	standard	Poisson	model.	
	
The	 appropriate	 data	 are	 cross-sectional	 for	 applied	 work,	 which	 consist	 of	T 	independent	
observations,	 indexed	 by	 i 	 ),( ii xN 5.	 iN 	is	 the	 number	 of	 occurrence	 of	 the	 event	 object	 of	

study,	and	 ix 	is	the	vector	of	linearly	independent	regressors	that	are	thought	to	determine	 iN
.	 A	 regression	 model	 based	 on	 this	 conditional	 distribution	 with	 a	 k -dimensional	 vector	 of	
covariates,	 ),,...,( 1 kiii xxx = 	and	 parameters	 ,	 through	 a	 continuous	 function	 ),( ix ,	 such	

that	 [ ] ).,( iii xxNE = 	That	is	to	say	 iN 	given	 ix 	is	Poisson-distributed	with	density		
	

( )
!i

N
i

ii N
e

xNf
ii

= ,					 ,...2,1,0=iN 				(1)	

	
The	log-linear	form	is	the	parameterization	of	the	such	that	
																																

)exp( ii x= 																													(2)	

		to	keep	 .0> 	
	
The	Poisson	distribution	property	allows	us	 to	write	 ( ) ( ),iiii xnExnV = 	with	 in 	considered	as	
the	realization	of	random	variable	 iN ;	then,	

( ) )exp( iii xxnE = 	

).exp().....exp()exp( 2211 kkiii xxx= 	

																																																								
	
5	Here	 ix 	contains	autoregressive	components	 ),( 11 ii N 	in	the	case	of	 )1,1(BIN 	model.		
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In	the	likelihood-based	models,	the	joint	density	of	the	dependent	variables	is	specified.	
	
By	 assuming	 that	 the	 scalar	 random	 variable	 iN ,	 given	 the	 vector	 of	 regressors	 ix 	and	
parameter	vector	 ,	is	distributed	with	density	 ( ),ii xNf 6.	The	likelihood	principle	performs	

as	estimator	of	 	the	value	that	maximizes	the	joint	probability	of	observing	the	sample	values	
.,...,1 TNN 	This	 probability	 is	 called	 the	 likelihood	 function,	 and	 it	 appears	 as	 a	 function	 of	

parameters	conditional	on	the	data.	It	is	formulated	as:	

( ) ( )
=

=
T

i
ii xnfL

1

, ,																			(3)	

	
This	 formulation	 allows	 suppressing	 the	 dependence	 of	 ( )L 	on	 the	 data	 and	 has	 assumed	

independence	over	 i .	This	definition	could	be	extended	 to	 time	series	data	by	allowing	 ix 	to	
include	 lagged	 dependence	 and	 independent	 variables,	 even	 if	 it	 implicitly	 assumes	 cross-
section	data.		
	
So,	maximizing	the	likelihood	function	is	equivalent	to	maximizing	the	log-likelihood	function		

( ) ( ) ( )
=

==
T

i
ii xnfLl

1

,lnln 																		(4)	

	
Under	the	so-called	regularity	conditions	that	are	conditions	on	continuity	and	differentiation,	
the	Maximum	Likelihood	Estimator	(MLE)	 ML

ˆ 	is	the	solution	to	the	first	order	conditions.	

0
ln

1

==
=

T

i

ifl
																													(5)	

		

where	 ( ),iii xnff = 	and	
l
	is	a	 1×q 	vector.		

	
The	 data	 generating	 process	 for	 in 	has	 density	 ( )0,ii xnf 	where	 0 	is	 the	 true	 parameter	

value.	 That	 is	 to	 say	 the	 asymptotic	 distribution	 of	 the	 MLE	 is	 usually	 obtained	 under	 the	
assumption	 that	 the	 density	 is	 correctly	 specified.	 Then,	 under	 the	 regularity	 conditions,	

0
ˆ P ,	so	the	MLE	is	consistent	for	 0 .		

Then,	
( ) [ ]10 ,0ˆ ANn d
ML ,																																(6)	

	
where	the	 qq × 	matrix	A	defined	as		

=
=

T

i

i

T

fE
T

A
1

2

0

ln1lim 																						(7).	

																																																								
	

6	 = 		in	the	BIN(1,1)	case.	
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Simulation		

In	this	section,	we	perform	an	algorithm	for	reference	sample	generation	then,	we	compute	the	
characteristics	 of	 theoretical	model	 (after	 a	 parameterization),	 and	 the	parameters	 from	 the	
generate	sample.	We	did	comparison	between	the	two	generated	models.	We	also	compute	the	
autocorrelation	function	(see	Figure1).		
	
By	Monte	Carlo	simulation	of	discrete	distribution	we	can	perform	the	estimation	of	Poisson	
distribution,	but	there	exists	in	Gauss	the	command	that	allows	to	perform	the	estimation	of	a	
Poisson	process.				
	
Comparison	analysis		

By	Data	Generating	Process	(DGP)	we	realize	a	1,000	observations	sample.	
	
The	simulation	allows	us,	by	a	play	on	parameters	to	obtain	the	following	experimental	results	
in	Table	2	below,	in	brackets	we	have	the	theoretical	results.		
	

																	Table	2:	mean	s.d.	skewness	and	kurtosis	of	simulated	data	

	
Coefficients																						mean															s.d.																				skewness																			kurtosis		
g	=	0.10,	d	=	.75													1.021															1.035																				1.050																								4.153	
																																						(1.000)													(1.018)																			
	
g	=	0.20,	d	=	.75													0.976																1.156																				1.494																						5.882				
																																							(1.000)													(1.187)																																				
	
g	=	0.10,	d	=	.85													1.009																	1.041																				1.101																					4.384																				
																																							(1.000)														(1.050)																																			
	
g	=	0.30,	d	=	.65													0.920																		1.232																			1.813																					7.317																						
																																							(1.000)															(1.387)																																									
	
		
We	parameterize	l	to	one,	thus	a	=	1-	g	-	d	in	all	computations.	
	
The	results	allow	us	to	draw	the	following	conclusion.	
	

00.1= ,	 05.0= ,		 10.0= ,			 85.0= ,	we	have	the	best	fitted	model.	
	
Then,	 the	means	 of	 respectively	 theoretical	 and	 empirical	 results	 are	 1.000	 and	 1.009.	 The	
standard	deviations	of	the	theoretical	and	empirical	results	are	respectively	1.050	and	1.041.	
The	 theoretical	 and	 empirical	 overdispersions	 are	 respectively	1.050	 and	1.032,	 and	 are	 the	
lower	 overdispersion	 values	 for	 theoretical	 and	 empirical	 results.	 The	 graph	 of	 the	
autocorrelation	function	in	this	case	indicates	that	it	is	the	best-fitted	model.	

It	is	easy	to	check	that	the	overdispersion	coefficient,	which	is	equal	to,	
N

N 	increases	with	 .		

Another	tools	to	check	the	adequacy	of	the	model	are	the	skewness	and	the	kurtosis.	
	
The	skewness	measures	the	locations	indicate	the	number	around	which	the	sample	data	are	
centered.	 It	 indicates	 the	direction	 in	which	 a	 frequency	distribution	 (or	 frequency	 curve	or	
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frequency	polygon)	leans.	Then,	the	skewness	equal	to	zero	implies	a	symmetric	distribution.	
We	can	also	have	the	case	of	negative	or	positive	skewness.	
The	kurtosis	measures	a	distribution’s	peakedness,	 the	degree	to	which	one	narrow	range	of	
values	contains	a	large	fraction	of	sample	data.	So,	skewness	indicates	whether	the	histogram	
“leans	to	the	left	(negative	value)”	or	“leans	to	the	right	(positive	value)”,	and	kurtosis	indicates	
how	peaked	it	is.	Their	formulas	are	

3
2

2
3

M
M

sk = ,															
2
2

4

M
Mkur = ,	

	
where	 kM 	is	the	 kth 	moment	of	a	sample	of	ungrouped	data.		
	
The	simulation	results	give	 10.1=sk ,	which	that	the	frequency	curve	(or	density	curve)	leans	
to	the	right,	then	there	are	more	values	to	the	right	of	the	model	than	to	the	left;	 38.4=kur 	>	3,	
that	implies	a	peak	curve.		
	
These	results	are	conforming	to	Poisson	density	function.	
	

Validation	of	the	model:	Monte	Carlo	method	

For	purpose	we	used	the	data	obtained	by	DGP	for	Maximum	Likelihood	estimation,	and	we	get	
the	following	results	in	Table	3,	4,	5,	6.	In	brackets	the	fixed	value	of	the	parameter.	The	figures	
represent	the	graphs	of	counts	and	forecast	counts.	
	

																	Table	3:	Estimation	results	by	MLE	using	DGP	count	data		

Parameter																					parameter	value																		t-stat	

	
alpha																																		 0.143																																3.071																																																										
																																										 (0.150)	
	
gamma																															 0.109																																4.743																																									
																																										 (0.100)											
	
delta	 																														 0.752																																	12.981																															
																																										 (0.750)																																																			
	
	
Q(10)																																 79.87			
Q(10)*																														 9.77							
	
Q(10)	and	Q(10)*	correspond	respectively	to	the	Ljung-Box	Q-statistic	of	order	10	on	counts	(

iN )	and	Q-statistic	on	the	residual	 iu 	defined	in	the	BIN(1,1)	model.	If	Q	is	more	than	18.307,	
then	there	is	autocorrelation	of	order	10	for	a	threshold	of	5	%.	
	
The	t-statistic	must	be	compare	to	1.96.	If	the	t-stat	is	greater	than	1.96	then	the	parameter	is	
significant	for	a	threshold	of	5	%.		
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											Figure	2:	graphs	of	counts	and	forecast	counts	for	estimation	of	Table	3		

	
The	results	in	Table	3	and	the	graphs	of	figure	2	show	that	the	BIN(1,1)	model	behaves	well,	
then	the	model	may	candidate	for	estimation	and	tests.		
	

Table	4:	Estimation	results	by	MLE	using	DGP	count	data		

Parameter																					parameter	value																		t-stat	

	
alpha																																	 0.068																																	4.546																																																																									
																																										 (0.050)	
	
gamma																														 0.244																																		9.963																																																																																
																																										 (0.200)											
	
delta	 																														 0.694																																		22.397																																																							
																																										 (0.750)																																																			
	
	
Q(10)																																	1416.44				
Q(10)*																																13.97								
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Figure	3:	graphs	of	counts	and	forecast	counts	for	estimation	of	Table	4	

	

Table	5:	Estimation	results	by	MLE	using	DGP	count	data		

Parameter																					parameter	value																		t-stat	

	
alpha																																	 0.038																																	2.464																																																													
																																										 (0.050)	
	
gamma																														 0.085																																	5.312																																																						
																																										 (0.100)											
	
delta	 																														 0.88																																			34.996		
																																										 (0.850)																																																			
	
	
Q(10)																																159.88	
Q(10)*																																15.24	
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Figure	4:	graphs	of	counts	and	forecast	counts	for	estimation	of	Table	5	

	
It	easy	to	check	through	the	table	3,	4,	5	and	their	corresponding	graphs,	that	the	model	has	a	
good	behaviour	with	a	MLE	thus,	it	can	be	used	for	estimation	and	for	forecasting.	There	is	an	
absence	of	residual	autocorrelation	 in	 the	 three	cases	above.	Then	we	can	apply	 it	 for	actual	
data.		
		

APPLICATION	TO	NYSE	DATA	

The	data	of	three	stocks	

For	 empirical	 analysis,	 we	 choose	 a	 financial	 activity	 on	 two	 stocks	 traded	 on	 the	 NYSE:	
BOEING,	DISNEY	and	AWK	(American	Water	Work).		The	data	that	have	been	previously	used	
for	ACD	by	Bauwens,	Giot	and	Veredas,	were	extracted	 from	the	Trade	and	Quote	 (TAQ)	 the	
database	 of	 the	 NYSE	 (for	 more	 detail,	 see	 CORE	 discussion	 paper	 of	 Bauwens	 and	 Giot	
(1999)).	For	 the	 three	stocks,	we	choose	quote	data	 for	BOEING,	quotes	volume	 for	DISNEY,	
and	trades	for	AWK.	
	
Before	 using	 these	 data,	we	must	 transform	durations	 to	 counts.	We	 get	 the	 data	 under	 the	
count	data	form	according	to	Veredas	method,	that	is	program,	which	transforms	durations	to	
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counts.	The	 count	 is	made	 for	 a	 fixed	 length	of	 time.	 In	our	 case	we	use	 the	 interval	of	0.25	
second,	1	second	and	4	seconds,	and	estimations	are	performed	using	each	form	of	data.	The	
estimation	method	 used	 here	 is	 the	Maximum	 Likelihood	method.	 The	 results	 are	 analyzed	
through	the	section	3.2	below.						
	
Estimation	results		

	
Table	6:	Estimation	results	by	MLE	using	quote	count	data	for	BOEING	stock	

Parameter																																																								parameter	value																			

	
D																																																					 0.25																						1																											4	
	
	
a																																																			 	 0.009																					0.094																			0.743						
																																																					 	 (0.002)																	(0.021)																(0.153)						
	
g																																																				 	 0.054																					0.146																			0.257																																																																																							
																																																					 	 (0.006)																	(0.017)																(0.028)										
	
d	 																																										 0.909																				0.760																				0.557					
																																																						 	 (0.014)																(0.034)																		(0.057)								
	
	
Q(10)																																											829.49																					711.44																		304.05	
	
Q(10)*																																											41.08																								28.10																					5.60									
	
	
In	brackets	we	have	the	standard	deviation.		Q(10)	and	Q(10)*	are	the	Ljung-Box	Q-statistic	of	
order	10	on	counts	( iN )	and	Q-statistic	on	the	residual	 iu 	defined	in	the	BIN(1,1)	model.	If	Q	is	
more	than	18.307,	then	there	is	autocorrelation	of	order	10	for	a	threshold	of	5	%.	
	
	D	is	the	fixed	length	of	time.	(The	number	of	cases	is	10,491	for	D	=	0.25;	2,623	for	D	=	1;	and	
656	for	D	=	4).	
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Table	7:	Estimation	results	by	MLE	using	quote	volume	count	data	for	DISNEY	stock	

Parameter																																																											parameter	value																			

	
D																																																				0.25																								1																											4	
	
	
a																																																			0.002																				0.020																					0.548																					
																																																					(0.000)																(0.007)																		(0.169)																											
	
g																																																				0.009																				0.049																					0.255																	
																																																					(0.001)																(0.008)																		(0.037)																									
	
d	 																																										0.984																				0.931																					0.608																			
																																																					(0.002)																		(0.013)																		(0.064)																										
	
	
Q(10)																																											375.60																			332.57																		523.48																																							
	
Q(10)*																																									410.29																						44.52																				11.46																																											
	
	
In	brackets	we	have	the	standard	deviation.		Q(10)	and	Q(10)*	are	the	Ljung-Box	Q-statistic	of	
order	10	on	counts	( iN )	and	Q-statistic	on	the	residual	 iu 	defined	in	the	BIN(1,1)	model.	D	is	
the	fixed	length	of	time.	(The	number	of	cases	is	13,795	for	D	=	0.25;	3,449	for	D	=	1;	and	863	
for	D	=	4).	
	

Table	8:	Estimation	results	by	MLE	using	trades	count	data	for	AWK	stock	

Parameter																																																											parameter	value																			

	
D																																																					 0.25																												1																											4	
	
	
a																																																					 0.004																						0.013																		0.468																																																																								
																																																						 	 (0.001)																		(0.006)															(0.339)																																																											
	
g																																																						 0.012																							0.023																		0.112																																																																																																						
																																																						 	 (0.002)																			(0.005)															(0.034)																																																																				
	
d																																		 	 	 0.973	 	 						0.963	 								0.771																																																																		
	 																																										 (0.006)																		(0.010)														(0.117)																																																																									
		
	
Q(10)																																												147.74																					187.35																	189.66																																																																																																																																																																																																																			
	
Q(10)*																																												26.41																								21.78																		12.06																																																										
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In	brackets	we	have	the	standard	deviation.		Q(10)	and	Q(10)*	are	the	Ljung-Box	Q-statistic	of	
order	10	on	counts	( iN )	and	Q-statistic	on	the	residual	 iu 	defined	in	the	BIN(1,1)	model.	D	is	
the	fixed	length	of	time.	(The	number	of	cases	is	26,225	for	D	=	0.25;	6,557	for	D	=	1;	and	1,640	
for	D	=	4).	
	
We	can	see	that	when	the	length	of	fixed	time	D	 increases,	the	values	of	a	and	g	 increase	too.	
Inversely,	 the	 increases	 of	D	make	d	 decreasing.	 That	 implies	 the	 volatility	 of	 the	 clustering	
phenomenon,	and	it	is	the	basic	motivation	of	the	ARMA	representation,	to	capture	the	law	of	
the	process	of	the	high	frequency	counts	data	in	financial	market	microstructure	system.			
	
The	good	results	are	given	by	the	fixed	length	D	=	4,	where	there	is	no	residual	autocorrelation,	
in	the	estimation	of	the	count	data	of	the	three	stocks.	Then,	when	D	increases	the	estimation	
and	tests	results	may	be	better,	and	the	volatility	of	the	clustering	is	more	perceptible.		
	

CONCLUSION		

The	aim	of	this	survey	is	to	built	and	test	BIN(1,1)	model	for	the	counts	data.	Before	generating	
the	 data	 by	 parametrization,	 we	 used	 these	 data	 for	 estimation	 by	 the	 ML	 method	 for	 the	
BIN(1,1)	validation.	The	results	exhibit	a	good	behaviour	of	this	model,	so	it	could	be	applied	to	
the	actual	data.	It	is	what	we	did	for	empirical	analysis.	For	purpose,	we	use	the	transformed	
data	(durations	to	counts),	for	different	fixed	length	of	time.	The	results	of	estimation	of	three	
stocks	 that	 are	 object	 of	 trade	 on	 the	 NYSE	 (BOEING,	 DISNEY,	 and	 AWK)	 by	 the	Maximum	
Likelihood	method	allow	to	draw	the	following	remarks.	There	is	less	dependence	between	the	
high	 frequency	data	when	we	consider	a	 large	value	of	 the	 fixed	 length	of	 time,	 the	value	of	
gamma	 becomes	more	 and	more	 large	which	 increases	 the	 dispersion.	 The	model	 could	 be	
generalized	to	take	into	account	other	variables	and	it	could	be	used	for	density	forecasting.					
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ACD:	Autoregressive	Conditional	Durations	
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DGP:	Data	Generating	Process	
GARCH:	General	ARCH	
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